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Abstract—One key component when analyzing actigraphy data
for sleep studies is sleep-wake cycle detection. Most detection
algorithms rely on accurate sleep diary labels to generate
supervised classifiers, with parameters optimized for a particular
dataset. However, once the actigraphy trackers are deployed in
the field, labels for training models and validating detection
accuracy are often not available.

In this paper, we propose a generic, training-free algorithm
to detect sleep-wake cycles from minute-by-minute actigraphy.
Leveraging a robust nonlinear parametric model, our proposed
method refines the detection region by searching for a single
change point within bounded regions defined by the parametric
model. Challenged by the absence of ground truth labels, we
also propose an evaluation metric dedicated to this problem.
Tested on week-long actigraphy from 112 children, the results
show that the proposed algorithm improves on the baseline model
consistently and significantly (p<3e-15). Moreover, focusing on
the commonality in human circadian rhythm captured by actigra-
phy, the proposed method is generic to data collected by various
actigraphy trackers, circumventing the laborious label collection
step in developing customized classifiers for sleep detection.

Index Terms—Actigraphy, sleep-wake cycle detection, change
point detection

I. INTRODUCTION

Accurate detection of sleep-wake cycles is an essential
aspect of sleep research [1]. Wearable activity trackers, such as
ActiGraphTM and Fitbit®, have been widely adopted in sleep
research in the last decade. Such trackers usually consist of a
3-axis accelerometer which captures proper acceleration [2] in
the forward, lateral, and vertical directions at a sampling rate
of up to 100 Hz. When used for tracking daily activity levels,
data from the 3-axis accelerometer are often transformed into
vector magnitudes and aggregated minute by minute, using
various research-based and proprietary algorithms, to give
activity counts.

While the promising applications of such activity trackers
have excited the fields of sleep research and behavior monitor-
ing, certain challenges ensue in the deployment of such activity
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trackers. Once the trackers are deployed in the field, labels for
training models and validating detection accuracy are often
unobtainable, inconvenient to collect, or contain inaccuracies.
For example, the customers of commercially-available fitness
trackers may not volunteer their sleep diary information, or
sleep researchers may elect not to collect such labels in order
to minimize the burden on human subjects and maximize the
compliance rate. Besides, the accuracy of sleep diary reporting
is often unknown, especially when proxy reports are used (e.g.
parents reporting for children).

The absence of labels in field studies creates two challenges:
1) The development of accurate sleep detection algorithms;
and 2) the evaluation of detection accuracy. Most state-of-the-
art detection algorithms resort to supervised classifiers, where
the activity data are windowed and classified as either “asleep”
or “awake”. The performance of classifiers can then be eval-
uated using the sleep diary labels and cross-validated using
metrics such as accuracy and specificity. As such classifiers are
fine-tuned to maximize the detection accuracy for a particular
dataset, their generalizability to other datasets is questionable.
Without ground truth labels, supervised classifiers cannot be
developed.

Moreover, regardless of ground truth labels, other issues are
associated with the windowing step under a machine-learning
framework, using either supervised or unsupervised learning
[3]. As structural changes in features can happen over various
timescales, a fixed window length cannot capture structural
changes adequately [4]. Often, such window-based methods
produce fragments of an activity state and the results need to
be smoothed by an ad hoc temporal filter (e.g. a median filter)
[5] or heuristic rules, which can further reduce the temporal
resolution of the detection.

To address these issues, we propose an automated sleep
detection algorithm using minute-by-minute unlabeled actig-
raphy that is generic to various types of wearable activity
trackers. Leveraging the prior information obtained from a
nonlinear parametric model, we then detect the sleep/wake
onset time with higher precision using a parametric change
point (CP) detection algorithm. Our contribution lies in the
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following:
• Proposing a generic algorithm that detects sleep/wake

cycles in minute-by-minute activity data without sleep
diaries or supervised training;

• Proposing an evaluation metric for sleep/wake detection
algorithms in the absence of valid ground truth labels.

II. METHODS

A. Data Collection

The study sample was a subset of children born of mothers
who had been recruited for the Newborn Epigenetic Study
(NEST) between 2005 and 2011. The women were recruited
during pregnancy, and re-contacted in 2014 when their chil-
dren were at least three years old. Informed consent was ob-
tained from the mothers for the children to wear ActiGraphTM

sensors on their hips to measure their physical activity at home
for at least 7 days. After field data collection, the ActiGraphTM

sensors were collected by researchers at Duke University for
data download and analysis. The study was approved by the
Institutional Review Board at Duke University, and the study
visits took place at Duke University from 2014 to 2017.

B. Preprocessing

Among the variables collected by the ActiGraphTM sensor,
only the vector magnitude (VM) was used for sleep detection,
due to its reliability and pervasiveness. To obtain reliable
estimation of circadian rhythms, we excluded subjects who
had worn the sensor for less than five days from the analysis.
Since we did not require the subjects to wear the sensor at
all times, the actigraphy data may contain structural zeros due
to non-wearing, mixed with true zeros due to resting, creating
problems for sleep detection. In our analysis, we relaxed the
90-minute threshold proposed by Choi et al [6] by excluding
subjects with 120 minutes of consecutive zeros. Using these
criteria, we included 112 children’s data (aged 7.8±1.8 years,
52% female) to develop and test our sleep detection algorithm.

C. Fitting the Nonlinear Parametric Model

Since cyclic data can be modeled by fitting periodic curves
such as cosine functions, assuming each subject has a single
underlying clock, i.e. a constant circadian rhythm, we can fit
cosine functions to actigraphy data as well. In fact, Marler et
al proposed a sigmoidally-transformed cosine (STC) model to
address this problem in 2006 [7]. By extending a 3-parameter
cosine function to a 5-parameter function, the STC model, the
solution proposed by Marler et al captured the asymmetries
between the awake period (e.g. 16 hours) and the asleep period
(e.g 8 hours), as opposed to the equal durations captured by
the 3-parameter cosine model described in Equation (1):

r(t) = mes+ amp× cos( [t− φ]× 2π

T
) (1)

where t = 1, 2, ..., n, t ∈ N, is the time index for the
actigraphy sequence. T is the period of one’s circadian rhythm,
often set as a constant of 24 (hours), or in our case 1440

(minutes). Transforming r(t) with the Hill sigmoid function
from Equation (2), we can obtain the STC function [8]:

h(r) =
rγ

mγ + rγ
(2)

In Equations (1) and (2), mes, amp, φ, γ, and m are the five
parameters to be estimated. Interpretations of these parameters
in the context of circadian rhythms can be found in [7]. Here,
we are more interested in the segmentation capability implied
by the STC curves, especially the parameters related to timing
information. To fit the STC model, we used a nonlinear least
squares method [9] and initialized the parameters with multiple
starting points in order to find the global minimum [10]. Once
we obtained the STC curve, we dichotomized the curve into
two states (i.e. “asleep” or “awake”) by thresholding the STC
curve. In our case, we empirically set an adaptive threshold
at 20% of the range of each STC curve, which captured the
diurnal activity adequately. The transitions between the two
states can be considered as CP detected by STC, denoted by
CPSTC.

D. Change Point Detection

Consistent sleep/wake times imposed by the STC model
do not allow further investigation of sleep irregularity or
variability. Therefore, the precise sleep/wake times must be
determined with a more refined searching algorithm. Fortu-
nately, once we obtain CPSTC after fitting the STC model, we
have strong prior information about the approximate locations
of the true CPs, which should be in the proximity of CPSTC.
Moreover, assuming that one must sleep at least once between
two consecutive waking times and wake up at least once
between two consecutive sleep onsets, we can identify a single
CP between two CPSTC of the same type. These CPs can
be identified using the Pruned Exact Linear Time (PELT)
algorithm [11], with the actigraphy data modeled as following
a gamma distribution [12], denoted by CPPELT.

Hence, we broke down the problem of searching for mul-
tiple CPs in multiple days of actigraphy into searching for a
single CP within a well-approximated sleep-wake cycle, which
is much easier to solve. Unlike the fixed-length windowing
method, the long sequences of multiple days were broken
down organically into segments of sleep-wake cycles. The key
steps of our proposed algorithm are described in Algorithm 1.

With the label vector, L, obtained from Algorithm 1 and
the STC model, we captured diurnal activity and nocturnal
activity in two time series vectors D and N :{

Dt = Lt ·Xt, t = 1, 2, ...n

Nt = (1− Lt) ·Xt, t = 1, 2, ...n

E. Evaluation

To evaluate the detection performance without ground truth
labels, we have to rely on a set of assumptions. First, we
assume that nocturnal activity is much less than diurnal
activity, thus the ratio between diurnal activity levels and
nocturnal activity levels must be much greater than 1. Sec-
ondly, underestimating the awake period in L will increase the



Input: CPSTC = [CP1, CP2, ..., CPm],
X = [X1, X2, ..., Xn]; . time series of actigraphy

Output: CPPELT , CPawake, CPsleep, L
Initialize: set CPsingle to an empty list,

set k to 0; . the number of CP PELT
Search for the first CPPELT1 in [X1, X2, ...XCP2 ];
for each CPi in [CP2, CP3, ..., CPm−1], do

CPPrevious = CPPELTi−1
;

M = [XCPPrevious
, ..., XCPi+1 ]

M = M + 1e-3; . shift zeros in M to small positive
values such that M ∼ Γ(α, β)

while CPsingle is empty do
k = k + 1;
CPsingle = PELT(M , k, ’gamma’);

end
if more than one CPsingle detected then

keep only the CPsingle closest to CPi;
end
CPPELT = CPPrevious + CPsingle;

end
Search for the last CPPELTm

in [XCPPELTm−1
...XT ];

Identify CPawake, CPsleep in CPPELT;
Convert CPawake and CPsleep to label L, such that{

Lt = 1, when Awake

Lt = 0, when Asleep

Algorithm 1: Detecting precise sleep/wake onset times
guided by STC.

variance of N ; whereas underestimating the sleep period will
decrease the variance of D. Lastly, we consider the STC model
as a baseline model which gives the lower bound of detection
accuracy. Therefore, any model that improves detection must
have larger R than the STC model. Given these assumptions,
we define an evaluation metric R as the ratio between the
variance of D and N :

R =

n∑
t=1

(Dt −D)2

n∑
t=1

(Nt −N)2
(3)

Intuitively, R is sensitive to the detected nocturnal activity.
Although a high level of nocturnal activity can also reduce
R, we argue that diurnal activity mis-identified as nocturnal is
likely to be much higher than true nocturnal activity. Moreover,
when comparing models, the effect of true nocturnal activity
on R can be canceled out. Furthermore, detection results with
RProposed < ε and RProposed − RSTC < ε (ε is a small
positive value) can be automatically identified as containing
detection errors and re-examined.

III. RESULTS

Figure 1 shows the fitted STC curve and dichotomized STC
curve in the form of a binary label vector for an 8-day wearing
period. Despite some non-wearing periods in the data, the

STC model was able to converge and estimate the underlying
circadian rhythm and the transition edges between sleeping
and waking.

Figure 2 shows that the proposed method corrected the
transition edges detected by the STC model, in a case where
the diurnal activity was severely underestimated by the STC
model. Using the same case, Figure 3 shows the residual
diurnal/nocturnal activity after applying the STC model and
the proposed method. With the fine-grained search of CP
between two transitions, the proposed algorithm corrected the
large detection error by presenting much less residual activity
in the sleeping period. In this extreme case, R is near 1 for
the STC model because the estimated total diurnal activity and
total nocturnal activity are nearly the same. Using the proposed
model, R is boosted to about 100 by better capturing diurnal
activity.

Fig. 1. STC model fitting.

Fig. 2. CPs detected by the proposed model improves upon the STC model.

Fig. 3. Residual nocturnal activity vs. diurnal activity after applying two
types of sleep detection algorithm.



Fig. 4. Differences in evaluation metric R.

Figure 4 illustrates the difference in detection performance
between the STC model and the proposed model evaluated
by the proposed metric R. Overall, detection results for most
subjects significantly improved using the proposed algorithm
in comparison with the baseline STC model (p<3e-15, using
a one-sided, paired t-test). After visual inspection, we empir-
ically set ε to 10, and found seven subjects’ results had small
positive or negative values of RProposed−RSTC . Researchers
can then perform manual inspection on those subjects’ data,
and re-estimate their sleep/wake times, without having to
manually inspect each subject’s data one by one. Overall, with
the algorithm implemented in MATLAB 2017a using an Intel
Xeon 6-Core CPU at 3.5Hz with 16.0GB RAM, it took 10 ∼
30s to process one subject’s actigraphy data.

IV. DISCUSSION

Our top-down approach converts the sleep/wake cycle de-
tection problem into a change-point detection problem with
bounded regions, organically segmented by a nonlinear para-
metric model. In contrast to previous methods that focused
on cutoff points to threshold the activity counts (or metrics
derived from them), the assumptions of our method focus
on the commonality of sleep patterns in humans. Following
the assumption, our method aims to capture the temporal
rhythm via a STC model and the day-to-day variability via
CP detection bounded by the STC model. Therefore, although
our data was collected on children using a hip-worn sensor,
the method is generalizable to other types of actigraphy, given
visually apparent circadian rhythms and reasonably modeled
data distributions.

In the entire process, the only parameter that needs to
be chosen in advance is the threshold to dichotomize the
STC curve. Although we used a set of priors to initialize
the STC model, those values are related to the circadian
rhythms of human beings, thus can be applied to other datasets
without tuning. Moreover, with the well-bounded sleep-wake
cycles detected, this generic algorithm can also be extended
hierarchically to detect naps, disturbed sleep episodes, and
sleep stages.

One limitation of our evaluation metric is the assumption
that activity during the true sleep state is usually lower than
activity while awake. However, for subjects with severely
disturbed sleep, this may not be the case. Still, this intuitive
evaluation metric does not rely on any sleep diary labels or
polysomnography data, and is sensitive to sleep/wake detection

errors, providing an automatic screening method for wrongly-
detected sleep/wake cycles. Another disadvantage of the pro-
posed algorithm is that the computation time can be slightly
longer than directly applying discriminative classifiers when
finding globally optimized parameters to fit the STC model.
Nevertheless, since the proposed algorithm circumvents the
laborious collection of sleep labels and training classifiers for
various actigraphy datasets (collected by different devices with
different configurations), this automated approach reduces the
overall overhead in developing sleep detection algorithms.

V. CONCLUSIONS

We proposed a generic, training-free algorithm to detect
sleep/wake onset times using field actigraphy data absent of
ground truth labels. We also proposed an intuitive metric
to evaluate the performance of our detection algorithm and
compared it with a nonlinear parametric model. The results
show that our proposed detection algorithm improves detection
precision, whilst maintaining the accuracy imposed by the
parametric model. Work is underway to validate the method
and the effectiveness of the proposed metric with ground
truth polysomnography data, and to apply the model to other
actigraphy datasets.
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