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Abstract

Inadequate sleep affects health in multiple ways. Unobtrusive ambulatory methods to monitor 

long-term sleep patterns in large populations could be useful for health and policy decisions. This 

paper presents an algorithm that uses multimodal data from smartphones and wearable 

technologies to detect sleep/wake state and sleep episode on/offset. We collected 5580 days of 

multimodal data and applied recurrent neural networks for sleep/wake classification, followed by 

cross-correlation-based template matching for sleep episode on/offset detection. The method 

achieved a sleep/wake classification accuracy of 96.5%, and sleep episode on/offset detection F1 

scores of 0.85 and 0.82, respectively, with mean errors of 5.3 and 5.5 min, respectively, when 

compared with sleep/wake state and sleep episode on/offset assessed using actigraphy and sleep 

diaries.

I. INTRODUCTION

Inadequate sleep impairs quality of life and results in increased risk of morbidity and 

mortality. Chronic sleep disturbances have been associated with medical problems, including 

diabetes [16], obesity, and psychological conditions[17]. There is a need for better tools to 

enable accurate long-term evaluation of sleep timing and duration in daily life.

While sleep measurements based on polysomnography (PSG) are currently the gold 

standard, existing PSG technologies are impractical for long-term home use. Smartphones 

and wearables that measure acceleration, skin temperature, skin conductance, light exposure, 

and behavioral parameters offer possibilities for easy-to-use, long-term daily sleep 

monitoring.

We present a novel method to automatically detect sleep/wake and sleep episode on/offset 

times using multimodal data from a smartphone and a wrist-worn sensor. While previous 

methods have leveraged accelerometer [15], smartphone [1], [2], or biosensor [6] data alone, 

our method combines the multimodal ambulatory physiological and behavioral data offered 
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by both smartphone and wrist-worn sensors. Our method consists of binary sequential 

classification of epochs by recurrent neural networks, commonly used in deep learning, and 

is followed by a sleep episode on/offset detection algorithm based on cross-correlation with 

trained templates.

The main contributions of this work are: (1) comparisons of sleep/wake and sleep episode 

on/offset detection performance using physiological and behavioral data from a mobile 

phone and a wearable sensor with data from actigraphy and sleep diaries, which are two 

methods frequently used in ambulatory sleep studies; (2) use of recurrent neural networks 

for ambulatory sleep state detection.

II. Methods

A. Data acquisition

186 undergraduate students in 5 cohorts participated in an ~30-day study (120 males, 66 

females, age: 18–25) that produced 5580 days of data. Participants were recruited through 

email. During the ~30-day experiment, participants (i) wore a wrist sensor on their dominant 

hand (Q-sensor, Affectiva, USA) to measure 3-axis acceleration (ACC), skin conductance 

(SC), and skin temperature (ST) at 8 Hz; (ii) installed an Android phone application using 

the funf open source framework [7] to measure timing of calls, timing of short message 

service (SMS), location, and timing of screen-on; (iii) wore a wrist actigraphy monitor on 

their non-dominant hand (Motion Logger, AMI, USA) to measure activity and light 

exposure levels every 1 minute; and (iv) completed a sleep diary every morning to record 

bed time, sleep latency, wake time, and the number and timing of awakenings. The sleep 

diary was inspected by an experimenter every day to check completion and to obtain 

corrections or clarifications from the student if there were any clear errors or missing data.

We used a previously established method to score sleep from diaries and actigraphy data 

[18]. An experienced investigator first reviewed the data and selected analysis windows for 

potential sleep episodes based on the combined diary and activity data. Software (Action-W) 

set the sleep episode on/offset times and classified each epoch as sleep or wake. Based on 

the sleep episode time and duration, the investigator labeled each sleep episode as either a 

main sleep or a nap. From this procedure, we obtained (1) a classification of sleep or wake 

for every 1-min epoch, (2) sleep episode on/offset times, (3) whether a sleep episode was a 

main sleep or a nap. These labels were used as “ground truth”. Fig. 1 shows an exemplary 

day of raw data collected in our study in which the first stage labels are superimposed. These 

assessments were used to train and test results from the Q-sensor (i, above) and phone data 

(ii, above).

B. Feature preparation

Table I shows the features we computed for each time window. A window length of 20 or 30 

seconds is the convention for PSG sleep scoring [8], while other studies using ambulatory 

data adopt 10-min [1] or 5-min [2] windows. In this study, we used a window length of 1 

minute without overlap to match the scale of our ground truth labels. There were several 

reasons why we chose these feature variables. First, it has been shown that SC is more likely 
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to have periods of high frequency activity called “storms” during deep sleep [3]; we used 

algorithms developed to automatically detect storms in SC data [4]. Therefore, for the SC 

modality we computed mean, standard deviation, and frequency-domain features, including 

powers for five frequency bands (0–0.5 Hz, in 0.1 Hz intervals), and three storm features 

according to [4], including the number of SC responses, storm flag (whether we observe a 

storm in that minute), and the elapsed time since a storm started. Also, ST rises during sleep 

in individuals in living environments similar to those in our experiment [11]. Second, our 

phone app recorded time stamps both when phone users sent a SMS and also when they 

received a SMS. Since receiving a SMS is a passive behavior that could happen during sleep, 

we only kept SMS-sending events as a feature variable. Third, the raw location data acquired 

in our experiments were the latitude and longitude of phones, whose absolute numbers are 

nearly meaningless for sleep estimation across subjects. Hence, we developed a movement 

index for each minute, formulated as the arithmetic mean of the variances of the latitude and 

the longitude, to indicate whether a user was actively moving in that minute.

We had missing data lasting from a few minutes to several hours because of phone and 

sensor charging, and activities such as removal for a shower. We used a two-step strategy to 

solve this problem. First, a 25% missing tolerance threshold was applied to the wrist-worn 

sensor data: if any modalities had a missing rate higher than 25% within a day, the whole 

day’s data were dropped. This rule was not adopted on the phone data for sporadic events 

such as sending a SMS, because we cannot discriminate if such events did not happen or 

were missed. Second, for the remaining days, we filled minutes with missing data using the 

average of the same feature variable over the remaining part of the same day. After dealing 

with the missing data, we had 3439 days of data left. To train and evaluate a machine 

learning model, we needed to split our features and labels into a training set and a test set. 

The simplest way to do this is to randomly assign every minute to either the training or test 

set. However, sleep/wake detection can be improved by using both past and future 

information. If we assign two consecutive days to the training and test sets respectively, the 

first period of the second day will lose its past information. Therefore, we connected 

consecutive days of each subject into chunks, and then randomly cut the first or last 20% of 

each chunk as the test set. Finally, we had 2772 days in the training set, and 667 days in the 

test set. To equalize features and help with gradient descent optimization, every feature 

variable was also normalized to the [0,1] range within each day.

C. Sleep/wake detection

Our goal is to automatically classify every minute of data as sleep or wake, which is a binary 

sequential classification problem. We wish to use a model that exploits how current feature 

variables can depend on both past and future ones. For example, if a participant turned on 

her phone screen at 11:01pm, it would be highly likely that she was still awake at 11:00pm. 

One powerful tool to solve this kind of problem is a recurrent neural network (RNN). Long 

Short-Term Memory networks (LSTMs), first proposed in [10], are a special kind of RNN, 

capable of learning long-term dependencies. LSTMs have recently shown great success in 

sequence learning tasks such as speech recognition [12] and machine translation [13], [14].
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Fig. 2 shows the structure of the bidirectional LSTM neural network we used for sleep 

detection. The vector xt contains all the features at time t, and yt is a binary label indicating 

sleep or wake for each minute. The activation function used in the fully-connected layer is 

rectified linear units. The bidirectional neural network was trained using RMSprop [9] with 

binary cross-entropy loss. We set the past-and future-looking window lengths to 30 min each 

based on the work of Min et al. [1]. The whole algorithm was implemented using deep 

learning frameworks Theano 0.8.2 and Keras 1.0.5.

D. Sleep on/offset points estimation

After sleep/wake detection, we estimated sleep episode on/offset points. Fig. 3 shows an 

example of our method using cross-correlation and peak detection algorithms. First, to 

summarize the pattern of a sleep episode onset point (sleep-to-wake transition point) or sleep 

episode offset point (wake-to-sleep transition point) in the sleep detection results, we 

sampled an L-min window of detection probabilities (Fig. 3(a)) around every sleep episode 

onset or offset point in the training set, and computed the average of them respectively to 

form two templates Ts and Tw (Fig. 3(b)). After removing mean values from the templates, 

the templates were compared to a 1-min-stride sliding window of the detection probabilities 

using cross-correlation to find time points with the highest similarities to them. Let P[t] be 

the sleep detection probability of time t. The cross-correlation is defined as

(P ★ Ts/w)[t] = ∑
τ = 1

L
P[τ + t − L + 1

2 ] · Ts/w[τ] (1)

in which the translation factor L + 1
2  is for centering the template around time t.

Fig. 3(c) displays the cross-correlation results of the example, in which the peaks are sleep 

episode on/offset point candidates. To localize them, we applied the findpeaks function in 

MATLAB R2015b to the signal to find local maxima satisfying certain conditions. On one 

hand, to eliminate potential false positives, the height of a detected peak needs to be higher 

than a threshold, which was optimized on the training set towards a higher F1 score 

(introduced below) and applied to the test data. On the other hand, the distance between two 

peaks needs to be longer than 30 min. This rule was set to avoid false positives, since the 

shortest time interval between two neighboring sleep episode on/offset points was 45 min in 

our data.

The detected peaks in the cross-correlation data of the test set were then compared to the 

ground truth quantitatively. If the distance between a peak and its closest sleep episode on/

offset point in the ground truth were less than 30 min, we defined the peak as a true positive. 

Based on this, we computed the precision, recall, and F1 score (the harmonic mean of 

precision and recall) of our estimation. For all the true positive points, we also reported the 

average of their distances to the ground truth as the estimation errors.
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III. Results

We summarize sleep detection performance in Table II, comparing two main cases: whether 

the algorithm could not use the clock time (“without time”) or could use the clock time as an 

input feature (“with time”). This quantifies how much the algorithm is biased by sleep being 

more likely to occur at night. ACC + ST showed the best performance, 96.2% and 96.5% 

accuracy without and with time, respectively, and phone features showed the worst 

performance.

Table II also shows a summary of sleep episode on/offset detection with a 59-min template. 

We obtained the best F1 score with ACC + ST features both for sleep episode on/offset 

without and with time features. Without time features, the error was smallest for the wrist 

sensor + phone for sleep episode onset and for ACC + ST for sleep episode offset. With time 

features, the ACC showed the smallest error for sleep episode onset and ACC + ST for sleep 

episode offset.

For detecting sleep episode on/offset, we also compared different lengths of the template, 

from 9 to 239 min. Here, we describe the best template lengths for sleep episode on/offset 

with ACC + ST + time. For sleep episode onset, F1 score was highest (0.87) at the template 

length of 169 min (the mean error 5.4 min), and for sleep episode offset, F1 score was 

highest (0.85) when the template length was 199 min (error 6.0 min). On the other hand, we 

observed that the mean errors of sleep episode onset or offset increased as we increased the 

length of the template beyond 79 min.

In order to test whether our model’s performance differed between main sleep and naps, we 

computed the percent of main sleep and naps that were successfully detected. Our results 

showed that with ACC + ST and time features, 93% of epochs within main sleep were 

correctly classified (3% sleep was misrecognized as wake, 4% wake was misrecognized as 

sleep) and 65% of epochs within naps (33% sleep was misrecognized as wake, 2% wake was 

misrecognized as sleep) were successfully detected. As expected, given the irregular timing 

of naps, the performance in detecting naps was lower when using time features.

IV. Discussion

Our classifier with LSTM showed the best accuracy (96.5%) with features from ACC, ST, 

and time. The combination of movement features (ACC) with ST helps distinguish sleeping 

and being still from being awake and still. Features from phones showed the lowest 

accuracy. In prior work [1], only features from phones were used to detect sleep. Since in 

our study we used different information from the phone, we could not simply compare our 

accuracy from phone data with those in the previous studies.

Our results showed higher accuracy (96.5%) using devices which are less burden to users 

than that in previous work (93.1% with phone data [1], or 93.2% with electrocardiogram, 

respiration + ACC data [6]). We also had smaller mean errors (onset error: 5.1 min, offset 

error: 5.5 min) than reported in sleep episode on/offset (onset error 35 min, offset error 31 

min) [1], and smaller total sleep time errors than the 40.2 min [6] and 42 min [2]).

Chen et al. Page 5

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2018 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One limitation is that the ground truth used was not PSG, the gold standard. We used diaries, 

plus actigraphy, with an experienced investigator reviewing the data; this process is time 

consuming and does not always produce the same results as PSG when PSG and actigraphy 

are collected simultaneously. Ensemble labels could also be obtained from multiple 

investigators to lower potential bias. In addition, our phone data did not distinguish if we had 

missing data (e.g., phone battery ran out and phone was off), or if participants did not use 

their phone or were not carrying their phone. Although we asked our participants to charge 

their phone every day, our data might include some time when a phone was not operating.

For future work, we need to further test how our choices of parameters (e.g., the missing 

tolerance threshold and the minimum peak distance) affected our results. In order to assess 

the generalizability of our method, the algorithm also needs to be trained and tested with 

data from different participants, and evaluated in other populations, including people who do 

not intensively use their mobile phones, people with medical conditions and/or on 

medications that may affect the Q-sensor data, and people whose primary wake episode is 

not during the day (e.g., night or shift workers). In addition, while here we describe a 

general model for all users, we could also build personalized models with individual data or 

keep updating a model while capturing daily sleep data. In this way, the model performance 

could improve especially for irregular sleepers, shift workers or frequent travelers. Sleep/

wake detection performance when using only the phone data might further improve if our 

phone application was modified to collect acceleration, audio and ambient light.
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Fig. 1. 
Raw data streams from an exemplary day. The pink bars mark sleep epochs and the red 

triangles indicate waking up during the night as determined from actigraphy and sleep diary. 

The blue bars denote missing data. (SC = skin conductance, ACC = accelerations of three 

axes, ST = skin temperature)
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Fig. 2. 
Our bidirectional LSTM model for sleep detection. Output dimensions are denoted in each 

box. (FC = fully-connected layer)

Chen et al. Page 9

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2018 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
An exemplary day showing our sleep episode on/offset points estimation method. The red 

and blue lines indicate the sleep episode on/offset points from “ground truth” method. (a) 

Sleep detection results in probabilities. (b) 59-min templates around a sleep episode onset or 

offset (in the gray box) point. (c) Cross-correlation results with the optimized peak detection 

threshold and the detected peaks denoted.
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TABLE I

Feature sets for sleep detection

Source Modality Feature variables

Wrist sensor

Skin conductance (SC) Mean, SD, power within 0–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4–0.5Hz bands, the number of SC 
responses, storm flag, elapsed time since a storm started

Acceleration (ACC) Mean, SD

Skin temperature (ST) Mean, SD

Phone

Screen Screen was on, the time the screen was turned on

SMS Sent a message

Call On a call, missed a call

Location Movement index, connected to WiFi, connected to cellular nets

Time Time Elapsed minutes since 12:00 AM
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