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Abstract— Recent advances in using quantitative ultrasound
(QUS) methods have provided a promising framework to non-
invasively and inexpensively monitor or predict the effectiveness
of therapeutic cancer responses. One of the earliest steps in
using QUS methods is contouring a region of interest (ROI)
inside the tumour in ultrasound B-mode images. While manual
segmentation is a very time-consuming and tedious task for
human experts, auto-contouring is also an extremely difficult
task for computers due to the poor quality of ultrasound B-
mode images. However, for the purpose of cancer response
prediction, a rough boundary of the tumour as an ROI is only
needed. In this research, a semi-automated tumour localization
approach is proposed for ROI estimation in ultrasound B-
mode images acquired from patients with locally advanced
breast cancer (LABC). The proposed approach comprised
several modules, including 1) feature extraction using keypoint
descriptors, 2) augmenting the feature descriptors with the
distance of the keypoints to the user-input pixel as the centre
of the tumour, 3) supervised learning using a support vector
machine (SVM) to classify keypoints as “tumour” or “non-
tumour”, and 4) computation of an ellipse as an outline of the
ROI representing the tumour. Experiments with 33 B-mode
images from 10 LABC patients yielded promising results with
an accuracy of 76.7% based on the Dice coefficient performance
measure. The results demonstrated that the proposed method
can potentially be used as the first stage in a computer-
assisted cancer response prediction system for semi-automated
contouring of breast tumours.

I. IDEA AND MOTIVATION

Precision medicine is an emerging technique that tailors
medical treatment depending on the characteristics of each
patient [1]. For example, in cancer therapy, the main goal of
precision medicine is to decide on the most effective cancer
therapy for a patient based on his/her response to treatment
administrations. To this end, the first step in personalized
cancer therapy is to either predict or provide a means to
assess the individual responses to treatment early during
the course of a therapy. There are several functional imag-
ing modalities such as magnetic resonance imaging (MRI),
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diffuse optical spectroscopy (DOS), and positron emission
tomography (PET) that can provide imaging at a microscopic
level to detect cell death [2]. Two main limitations of
these imaging technologies include: the requirements for a
large capital investment and an external agent. The latter
is also expensive, and may cause some side effects and/or
allergic reactions [3]. In contrast, quantitative ultrasound
(QUS) methods provide a portable, non-expensive, and non-
invasive means for a rapid acquisition of functional images
that can be used for an early assessment of cancer therapeutic
effects [3]. Moreover, in QUS methods, the endogenous
contrast – generated by the very process of cell death –
is employed in treatment assessment, which alleviates the
requirement for injecting external agents.

The applications of QUS methods have recently been
extended from cancer response monitoring [4] to can-
cer response prediction [5], and tissue characteriza-
tion/visualization using 3-D automated breast ultrasound
(ABUS) scanners [6]. The first major step in the imple-
mentation of each of these applications is to contour a
region of interest (ROI) inside the tumour in frames with
identifiable tumour areas. This step is currently performed
manually as there is no automated software to segment an
ROI in ultrasound B-mode images. The manual segmentation
of tumours, however, is a very time-consuming task as
hundreds of frames should be contoured in a study due
to the availability of multiple frames for each subject (an
animal in preclinical and a patient in clinical studies). With
the availability of 3-D scanners such as ABUS technologies,
the problem will be even more severe as tens of frames
should be contoured in each patient. Therefore, designing
an automated segmentation method can save a significant
amount of experts’ time and efforts.

In this study, a semi-automated supervised tumour local-
ization method was proposed for ROI estimation in B-mode
images acquired from patients with locally advanced breast
cancer (LABC).

II. BACKGROUND

There is an extensive literature on image segmentation.
Several segmentation techniques have been tried for ultra-
sound images [7]. In a more recent literature, classification
techniques applied on some expressive features have been
more frequently employed to extract segments from images.
These classification techniques include simple methods like
k-means and fuzzy c-means (FCM) and more sophisticated
algorithms such as support vector machines (SVM). These
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classifiers group pixels into segments to enable subsequent
measurements and recognition. Most of these methods, when
applied to digital images, rely on the availability of invariant
features. Among feature extraction methods in the literature,
those which are based on invariant features extracted from
some keypoints demonstrated success in segmentation tasks.
Keypoints represent pixel positions in an image surrounded
(within certain vicinity) with significant information, e.g.,
textures, corners, edges, etc [8]. For instance, FAST (features
from accelerated segment test) [9], BRISK (binary robust
invariant scalable keypoints) [10], and SURF (speeded up
robust features) [11] are among the most commonly used
keypoint-based feature descriptors providing inputs to a
classifier.

SURF is a feature detection method, which is partly
inspired by the scale-invariant feature transform (SIFT) de-
scriptor, but is generally faster than SIFT [11]. It uses an
integer approximation of the determinant of the Hessian blob
detector to detect keypoints. Its feature descriptor is based
on the sum of the Haar wavelet response around the point of
interest. The three main modules of the algorithm include:
interest point detection, local neighborhood descriptor, and
matching.

In BRISK detector, the scale of each keypoint is estimated
in the continuous scale-space [10]. The BRISK descriptors
are composed of binary vectors by concatenating the results
of brightness comparisons. The key concept of the BRISK
descriptor is based on using a specific pattern to sample the
neighborhood of all keypoints.

FAST is a corner detection method [9]. The advantage of
using FAST corner detector is its high computational effi-
ciency and a better performance when subsequent machine-
learning methods such as a supervised classification are
applied [12]. It uses a 16-pixel circle to classify a candidate
point as a corner or no corner, where for each pixel in
the circle, an integer number from 1 to 16 will be labeled
clockwise.

III. PROPOSED APPROACH

The first step in tumour response prediction is contouring
(segmenting) the tumours. Subsequently, texture analysis will
be performed on the QUS parametric maps computed within
the contoured tumours (tumour cores), and their margins
(including surrounding healthy tissue) to predict patient’s
response [5]. In the aforementioned analysis steps, however,
a rough localization of the tumour is of more interest than its
exact segmentation [5]. Considering this, and also the fact
that ultrasound images are known to be very difficult for
segmentation, a semi-automated approach was proposed in
this study to obtain an estimation of the tumour location as
described in the next paragraphs.

Algorithm 1 describes the proposed approach.
Patient Data – The study involved 10 LABC patients

with tumour sizes between 5 and 15 cm. The data acquisition
was performed in accordance with the clinical research
ethics approved by Sunnybrook Health Sciences Centre. A
biopsy was used as the gold standard test to confirm all

Algorithm 1 Proposed Approach
1: ——– Preprocessing and Feature Extraction ——–
2: Read number of training images N
3: Calculate the average width w̄ and height h̄ of all

segments
4: while i < N do
5: Read current image Ii and its ground truth image Gi

6: Pre-process Ii (contrast adjustment and filtering)
7: Extract n keypoints with m descriptors Fi(n,m)
8: Acquire a point (xi

c, y
i
c) close to the centre of Gi

9: while j < n do
10: Calculate the weighted distance d between (xi

c, y
i
c)

and the coordinates of keypoint nj :
11: dj =

√
(xj − xi

c)
2 + [ w̄

h̄
(yj − yic)]

2

12: Add distance to the descriptors Fi(nj ,m+1) = dj
13: end while
14: Save Fi(n,m

′), (m′ = m + 1)
15: end while
16: ——– Testing ——–
17: while i < N do
18: Read the current image Ii
19: Use remaining images to train a classifier with features

F(n,m′) and target E
20: Classify pixels of Ii using the trained classifier
21: Fit an ellipse Ei into the tumour pixels

(xi
1, y

i
1), (xi

2, y
i
2), . . . provided by classifier

22: Read Gi

23: Calculate the accuracy Di =Dice(Gi, Ei)
24: end while

cancer cases. In order to measure the size of tumours, all
patients were imaged using MRI. Also, all patients were
imaged using ultrasound before the start of neoadjuvant
chemotherapy (“pre-treatment”). The acquisition of US data
was performed using a Sonix RP ultrasound system. The
system was equipped with an L14-5/60 linear transducer
(centre frequency at ∼7 MHz). Depending on tumour size
and location, the transducer was focused at the midline of
the tumour with a maximum depth of 4-6 cm. The number of
scans obtained from each tumour depended on it size. This
resulted in three to five scan planes from each tumour, with
a scan plane separation of about 1 cm.

Pre-Processing – In order to increase the quality and
contrast of B-mode images, before computation of feature
descriptors, each image was pre-processed by applying the
fuzzy histogram hyperbolization [13]. Subsequently, a 3 ×
3 median filter was applied to each image.

Feature Extraction – Features were extracted from the
keypoints identified on the pre-processed images for submis-
sion to a classifier. Three major feature extraction algorithms
explained in Section II, including SURF, FAST, and BRISK
were adapted in this stage.

Extended Features Descriptors – After applying feature
extraction methods, a feature descriptor of size m for each



keypoint was used to characterize an image. However, the
preliminary results using these features revealed that there
was no strong correlation between the tumour and the feature
points to obtain an acceptable result (the initial performance
using only extracted features resulted in relatively low per-
formance, i.e., less than 60% accuracy for segmentation of
tumours). Although the manual contouring of multiple scans
is a very time-consuming and tedious task, requiring the
clinician to provide the rough location of the tumour centre
(e.g., via a mouse click) does not pose an unacceptable
burden on him/her. Assuming that the tumour centre (xc, yc)
is available, the distance d of each keypoint from (xc, yc)
can be added to the descriptor to augment the feature
space (Algorithm 1, lines 9-12). This, as our experiments
demonstrated later, considerably increased the accuracy of
contouring tumours.

Classification – A support vector machine (SVM) clas-
sifier with a radial basis function (RBF) kernel was used
in a supervised paradigm to classify the keypoints in each
image as “tumour” or “non-tumour” points based on the
extended feature descriptors F extracted from the keypoints
(Algorithm 1, line 14). In addition, k-means and FCM
were also used for the classification of the keypoints in the
same way for the purpose of comparison with the SVM
performance.

Ellipsification – After classification, all keypoints would
be classified as “tumour” or “non-tumour” pixels. Suppose
that there are n points which are defined as tumour points
in one image. For the purpose of ellipsification of a tumour
area, at first, the positions of all the n points were found
in the vertical direction and the leftmost position xl and
the rightmost position xr were identified. In the horizontal
direction, the highest position yh and the lowest position
yl were determined. These four points are the four vertices
of an ellipse, which was used as the boundary of the ROI
representing the tumour.

Accuracy Measurement – Dice coefficient was measured
for calculating the accuracy of classification results. The Dice
coefficient is given by

D =
2|E ∪G|
|E|+ |G|

(1)

where E is the fitted ellipse and G is the ground-truth. It
can be interpreted as a measure of overlapping between the
estimated and correct classes [14].

Validation – Leave-one-out validation was performed
to evaluate the performance of the designed ellipsification
system on the 33 available B-mode images. The algorithm
was developed using Matlab (R2011a, Mathworks, USA) on
a 64-bit Intel Core i5-4200U CPU @ 2.30 GHz processor
equipped with 8 GB of memory and Windows 8.1.

IV. RESULTS

Fig. 1 depicts the result of pre-processing on one typical
breast ultrasound image using fuzzy histogram heprboliza-
tion. A comparison between the pre-processed (right) and the

Fig. 1. A sample breast ultrasound image (left) and its enhanced pre-
processed version after contrast adjustment using fuzzy histogram hyper-
bolization (right).

Fig. 2. Representative results for good, average, and bad ellipsification
performances: 92.66% (top), 77.23% (middle), and 46.94% (bottom). Figure
shows the computed keypoints (left), estimated ellipses (middle), and
ground-truth contours (right) on representative B-mode images.

original (left) images shows the improvement in the quality
of the B-mode image after pre-processing.

Fig. 2 shows representative good, average, and bad ellip-
sification results. As can be observed from this figure, the
accuracy can significantly vary. Images with an irregular or
small-size shape may not be classified correctly (accuracy as
low as 46.9% in Fig. 2-bottom row). In contrast, for images
with a normal size and shape, the accuracy can be quite high
(e.g., 92.7% in Fig. 2-top row).

Table I provides the results of ellipsification using the
Dice measure on all 33 B-mode images for various feature
descriptors and classifiers used in the experiments. The
highest average accuracy is 76.7% with a standard deviation
of 15.2% using the SURF features and SVM classifier. In
terms of computational cost, the SVM took longer time than
other methods (approximately 10 minutes for each image, or
5 hours in total), while the other two classification methods
were relatively fast. The results of classification can be
improved by increasing the number of images as using only
33 scans in the experiments restricted the learning capability
of the proposed ellipsification system.

Fig. 3 shows the distribution of the accuracy of ellip-
sification in respect to the number of generated keypoints
for all the images used in the experiments (the results
are only shown for the SVM classifier). BRISK, with an
average accuracy of 75.63%, produced 979± 332 keypoints.
FAST, with an average accuracy of 73.66%, resulted in



TABLE I
THE RESULTS OF ELLIPSIFICATION USING THE DICE PERFORMANCE

MEASURE ON 33 B-MODE IMAGES BASED ON “LEAVE-ONE-OUT”
VALIDATION SCHEME.

Features Classifier D ± σ
BRISK SVM 0.7563 ± 0.1387
FAST SVM 0.7366 ± 0.1746
SURF SVM 0.7665 ± 0.1515

BRISK k-Means 0.7427 ± 0.1575
FAST k-Means 0.7376 ± 0.1602
SURF k-Means 0.7507 ± 0.1671

BRISK FCM 0.7503 ± 0.1507
FAST FCM 0.7379 ± 0.1601
SURF FCM 0.7510 ± 0.1670
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Fig. 3. The distribution of the accuracy of ellipsification versus the number
of keypoints generated for all 33 B-mode images in the experiments. The
slight advantage of SURF in our results (Table I) can be verified visually;
compared to the BRISK and FAST, SURF appeared to result in higher
accuracies more consistently, and within a narrower interval of features.

791 ± 420 keypoints. And SURF, with an average accu-
racy of 76.65%, generated 565 ± 179 keypoints. Therefore,
the SURF achieved a higher performance using a smaller
number of keypoints, which reduced the computational cost
of subsequent classification step. Moreover, the SURF was
more consistent in selecting the number of keypoints from
B-mode images, as can be judged from the smaller standard
deviation (179) achieved compared to the other two methods.

V. DISCUSSION AND CONCLUSION

In this study, a semi-automated localization method was
proposed to mark a tumour with an ellipse based on a user
single-click input, keypoint descriptors, and the SVM classi-
fication. The results demonstrated that the SURF features
extended with the proposed weighted distances from the
tumour’s centre pixel (identified by the expert), along with
the SVM classifier, achieved promising results. The original
breast cancer ultrasound images exhibited very poor quality.
Employing the central tumour point provided a higher cor-
relation between the tumour area and the extracted features
in noisy ultrasound images. Nonetheless, the segmentation
of these images remains a challenging task as also reported
by other researchers. For example, a recently published
paper reported only between 50% and 60% accuracy in the
segmentation of B-mode US images of breast [15].

In future work, a larger image dataset will be used for the
training process. This will increase the chance of including
examples of the images of different sizes and shapes, which
will help to fully automate the approach.
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