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Abstract

Despite the close relationship between speech perception and produc-
tion, research in automatic speech recognition (ASR) and text-to-speech
synthesis (T'TS) has progressed more or less independently without ex-
erting much mutual influence on each other. In human communication,
on the other hand, a closed-loop speech chain mechanism with auditory
feedback from the speaker’s mouth to her ear is crucial. In this paper, we
take a step further and develop a closed-loop speech chain model based on
deep learning. The sequence-to-sequence model in close-loop architecture
allows us to train our model on the concatenation of both labeled and
unlabeled data. While ASR transcribes the unlabeled speech features,
TTS attempts to reconstruct the original speech waveform based on the
text from ASR. In the opposite direction, ASR also attempts to recon-
struct the original text transcription given the synthesized speech. To the
best of our knowledge, this is the first deep learning model that integrates
human speech perception and production behaviors. Our experimental
results show that the proposed approach significantly improved the per-
formance more than separate systems that were only trained with labeled
data.

1 Introduction

The speech chain, which was first introduced by Denes et al. [1], describes
the basic mechanism involved in speech communication when a spoken message
travels from the speakers mind to the listeners mind (Fig. . It consists of a
speech production mechanism in which the speaker produces words and gen-
erates speech sound waves, transmits the speech waveform through a medium
(i.e., air), and creates a speech perception process in a listeners auditory system
to perceive what was said. Over the past few decades, tremendous research ef-
fort has struggled to understand the principles underlying natural speech com-
munication. Many attempts have also been made to replicate human speech
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Figure 1: Speech chain [I] and related spoken language technologies.

perception and production by machines to support natural modality in human-
machine interactions.

To date, the development of advanced spoken language technologies based
on ASR and TTS has enabled machines to process and respond to basic human
speech. Various ASR approaches have relied on acoustic-phonetics knowledge
[2] in early works to template-based schemes with dynamic time warping (DTW)
[3, 4] and data-driven approaches with rigorous statistical modeling of a hid-
den Markov model-Gaussian mixture model (HMM-GMM) [5], [6]. In a similar
direction, TTS technology development has gradually shifted from the founda-
tion of a rule-based system using waveform coding and an analysis-synthesis
method [7, [§] to a waveform unit concatenation approach [9] [I0] and a more
flexible approach using the statistical modeling of hidden semi-Markov model-
GMM (HSMM-GMM) [T}, 12]. Recently, after the resurgence of deep learning,
interest has also surfaced in the possibility of utilizing a neural approach for
ASR and TTS systems. Many state-of-the-art performances in ASR [13] 14 [15]
and TTS [16] 17, 18] tasks have been successfully constructed based on neural
network frameworks.

However, despite the close relationship between speech perception and pro-
duction, ASR and TTS researches have progressed more or less independently
without exerting much mutual influence on each other. In human communica-
tion, on the other hand, a closed-loop speech chain mechanism has a critical
auditory feedback mechanism from the speakers mouth to her ear (Fig. . In
other words, the hearing process is critical, not only for the listener but also for
the speaker. By simultaneously listening and speaking, the speaker can mon-
itor her volume, articulation, and the general comprehensibility of her speech.
Processing the information further, the speakers brain can plan what she will



Figure 2: (a) Overview of machine speech chain architecture. Examples of
unrolled process: (b) from ASR to TTS and (c) from TTS to ASR.

say next. Children who lose their hearing often have difficulty to produce clear
speech due to inability to monitor their own speech.

Unfortunately, investigating the inherent links between these two processes
is very challenging. Difficulties arise because methodologies and analysis are
necessarily quite different when they are extracting the underlying messages
from speech waveforms as in speech perception or generating an optimum dy-
namic speaking style from the intended message as in speech production. Until
recently, it was impossible in a joint approach to reunite the problems shared
by both modes. However, due to deep learnings representational power, many
complicated hand-engineered models have been simplified by letting DNNs learn
their way from input to output spaces. With this newly emerging approach to
sequence-to-sequence mapping tasks, a model with a common architecture can
directly learn the mapping between variable-length representations of different
modalities: text-to-text sequences [19, 20], speech-to-text sequences [21], [22],
text-to-speech sequences [23], and image-to-text sequences [24], etc.

Therefore, in this paper, we take a step further and develop a closed-loop
speech chain model based on deep learning and construct a sequence-to-sequence
model for both ASR and TTS tasks as well as a loop connection between these
two processes. The sequence-to-sequence model in closed-loop architecture al-
lows us to train our model on the concatenation of both labeled and unlabeled
data. While ASR transcribes the unlabeled speech features, TTS reconstructs
the original speech waveform based on text from ASR. In the opposite direc-
tion, ASR also reconstructs the original text transcription given the synthesized
speech. To the best of our knowledge, this is the first deep learning model that
integrates human speech perception and production behaviors.

2 Machine Speech Chain

An overview of our proposed machine speech chain architecture is illustrated
in Fig. a). It consists of a sequence-to-sequence ASR, a sequence-to-sequence
TTS, and a loop connection from ASR to TTS and from TTS to ASR. The key
idea is to jointly train both the ASR and TTS models. As mentioned above,



Algorithm 1 Speech Chain Algorithm

1: Input:Paired speech and text dataset DY, text-only dataset YV, speech-only dataset XY,

supervised loss coefficient «, unsupervised loss coefficient 3

2: repeat
3: A. Supervised training with speech-text data pairs
4: Sample paired speech and text
(@, y") = (2], 28 ) i - ur,))
from D with speech length Sp and text length Tp.
5: Generate a text probability vector by ASR using teacher-forcing;:
pye = Pasr(lyL,, z¥;0.45R),Vt € [1..Tp]
6: Generate best predicted speech by T'TS using teacher-forcing;:
@b = argmaxPTTs(z|x1<Ds,yP;OTTs);VS € [1..5p]
z
7 Calculate the loss for ASR and TTS
LpST = LossASR(y" ,py; 0asr) (1)
LETS = LossTTS(z",27;071s) (2)
8: B. Unsupervised training with unpaired speech and text
9: # Unrolled process from TTS to ASR:
10: Sample text yU = [y%f, .,,yS{U] from YU
11: Generate speech by TTS: 2V ~ Prrs(-|yY; 0775)
12: Generate text probability vector by ASR from TTS’s predicted speech using teacher-
forcing;:
Py = Pasr(lyY,,8V;045R),Vt € [1.Ty]
13: Calculate the loss between original text y¥ and reconstruction probability vector py,
L{}SR = LossASR(yY,py;045R) (3)
14: # Unrolled process from ASR to TTS:
15: Sample speech ¥ = [z¥, ..,ng] from xY
16: Generate text by ASR: gV ~ PASR(~|xU;9ASR)
17: Generate speech by TTS from ASR’s predicted text using teacher-forcing:
2V = argmaXPTTs(z|xZS,g)U;OTTS);Vs € [1..5]
z
18: Calculate the loss between original speech U and generated speech &V
LETS = LossTTS(zY,2Y;0r7s) (4)
19: # Loss combination:
20: Combine all weighted loss into a single loss variable
L= ax (LETS + LASR) 4 g+ (LTTS 4 LASR) (5)
21: Calculate TTS and ASR parameters gradient with
the derivative of L w.r.t @ asRr,07Ts
Gasr = Vio,gpLl (6)
Grrs = VppgL (7)
22: Update TTS and ASR parameters with gradient descent

optimization (SGD, Adam, etc)
0asr < Optim(0asr, Gasr) (8)
Orrs + Optim(0rrs, GrTs) (9)

23: until convergence of parameter Orrgs,04sRr
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the sequence-to-sequence model in closed-loop architecture allows us to train
our model on the concatenation of both the labeled and unlabeled data. For
supervised training with labeled data (speech-text pair data), both models can
be trained independently by minimizing the loss between their predicted target
sequence and the ground truth sequence. However, for unsupervised training
with unlabeled data (speech only or text only), both models need to support
each other through a connection.

To further clarify the learning process during unsupervised training, we un-
rolled the architecture as follows:

e Unrolled process from ASR to TTS
Given the unlabeled speech features, ASR transcribes the unlabeled input
speech, while T'TS reconstructs the original speech waveform based on the
output text from ASR. Fig. (b) illustrates the mechanism. We may also
treat it as an autoencoder model, where the speech-to-text ASR serves as
an encoder and the text-to-speech TTS as a decoder.

e Unrolled process from TTS to ASR
Given only the text input, T'TS generates speech waveform, while ASR also
reconstructs the original text transcription given the synthesized speech.
Fig. c) illustrates the mechanism. Here, we may also treat it as another
autoencoder model, where the text-to-speech TTS serves as an encoder
and the speech-to-text ASR as a decoder.

With such autoencoder models, ASR and TTS are able to teach each other
by adding a reconstruction term of the observed unlabeled data to the training
objective. Details of the algorithm can be found in Alg.

3 Sequence-to-Sequence Model for ASR

A sequence-to-sequence model is a neural network that directly models condi-
tional probability p(y|z), where x = [21, ..., zg] is the sequence of the (framed)
speech features with length S and y = [y1, ..., y7] is the sequence of label with
length 7. Fig. [3] shows the overall structure of the attention-based encoder-
decoder model that consists of encoder, decoder and attention modules.
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Figure 3: Sequence-to-sequence ASR architecture.

The encoder task processes input sequence x and outputs representative
information h® = [h{, ..., h§] for the decoder. The attention module is an exten-
sion scheme that assist the decoder to find relevant information on the encoder
side based on the current decoder hidden states [19, 22]. Attention modules
produces context information c¢; at time ¢ based on the encoder and decoder
hidden states:

5
= Zat(s) * he (10)
s=1

ai(s) = Align(hg, hg)

_ exp(Score(ht, b)) (11)

o7 exp(Score(he, h))




There are several variations for score functions [25]:

(he, hd), dot product
Score(h¢, h) = { heTWhe, bilinear (12)
VT tanh(W,[hS, hd]), MLP

where Score : (R x RN) — R, M is the number of hidden units for the encoder
and N is the number of hidden units for the decoder. Finally, the decoder task
predicts target sequence probability p,, at time ¢ based on previous output and
context information ¢;. The loss function for ASR can be formulated as:

T
l
Loss asr(y,py) ZZ L(y; = c) * log py,[c] (13)

t:l c=1

where C' is the number of output classes. Input x for speech recognition tasks
is a sequence of feature vectors like log Mel-scale spectrogram. Therefore, x €
RSP where D is the number of features and S is the total frame length for an
utterance. Output y, which is a speech transcription sequence, can be either
phoneme or grapheme (character) sequence.

4 Sequence-to-Sequence Model for TTS

Parametric speech synthesis resembles a sequence-to-sequence task where we
generate speech given a sentence. Using a sequence-to-sequence model, we
model the conditional probability between p(x|y), where y = [y1, ..., yr| is the
sequence of characters with length T and = = [z4,...,zg] is the sequence of
(framed) speech features with length S. From the sequence-to-sequence ASR
model perspective, now we have an inverse model for reconstructing the original
speech given the text.
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Figure 4: Sequence-to-sequence TTS (Tacotron) architecture with frame ending
binary prediction. (FC = Fully Connected, CBHG = Convolution Bank +
Highway + bi-GRU)

In this work, our core architecture is based on Tacotron [23] with several
structural modifications. Fig. [ illustrates our modified Tacotron. In the en-
coder sides, we project our input characters with an embedding layer. The char-
acter vectors are fed into several fully connected layers followed by a non-linear



activation function. We pass the result into the CBHG block (1-D Convolution
Bank + Highway + bidirectional GRU) with eight filter banks (filter size from
1 to 8). The CBHG output is expected to produce representative information
h¢ = [hS, ..., h5] for the decoder.

Our modified decoder has one input layer and three output layers (instead of
two as in the original Tacotron). The first output layer generates log Mel-scale
spectrogram M = [x{‘/f, ,xg/l] At the s-th step, the input layer is fed by a
previous step-log Mel-scale spectrogram x| and then several fully connected
layers and a non-linear activation function are processed. Next we use a stacked
LSTM with a monotonic attention mechanism [26] to extract expected context
¢s information based on the current decoder input and encoder states h¢. We
project the context with a fully connected layer to predict the log Mel-scale
spectrogram.

The second output layer reconstructs log magnitude spectrogram =z
[z, ..., 28] given the first layer generated output ™. After we get complete
sequences of the log Mel-scale spectrogram, we feed them into a CBHG block,
followed by a fully connected layer to predict the log magnitude spectrogram.

The third output layer generates binary prediction b € [0,1] (1 if the s-th
frame is the end of speech, otherwise 0) based on the current log-Mel spec-
trogram generated by the first output layer and expected context cs from the
decoder with the attention layer. We add the binary prediction layer because
the output from the first and second decoder layers is a real value vector, and we
cannot use an end-of-sentence (eos) token to determine when to stop the gener-
ation process. Based on our initial experiment, we found that our modification
helped Tacotron determine the end of speech more robustly than forcing the
decoder to generate frames with an 0 value at the end of the speech. We also
enable our model to learn from multiple speaker by concatenating the projected
speaker embedding into input before LSTM layer, first output regression layer,
and second output regression layer.

For training T'TS model, we used the following loss function:

R:

R
s s (14)
— (b log(bs) + (1 — bs) log(1 — by))

where 2M | &1, b are the predicted log Mel-scale spectrogram, the log magnitude
spectrogram and the end-of-frame probability, and 2™, 2%, b is the ground truth.
In the decoding process, we use Griffin-Lim [27] algorithm to iteratively estimate
the phase spectrogram and reconstruct the signal with inverse STFT.

5 Experiment on Single-Speaker Task

To verify our proposed method, first we experimented on a corpus with a single
speaker because until recently, most TTS systems by deep learning are trained
on a single speaker dataset.



To gather a large single speaker speech dataset, we utilized Google TTS E|to
generate a large set of speech waveform based on basic travel expression corpus
(BTEC) [28] English sentences. For training and development we used part of
the BTEC1 dataset, and for testing we used the default BTEC test set. For
supervised training on both the ASR and TTS models, we chose 10,000 speech
utterances that were paired with their corresponding text. For our development
set, we selected another 3000 speech utterances and paired them with corre-
sponding text. For our test set, we used all 510 utterances from the BTEC
default test set. For the unsupervised learning step, we chose 40,000 speech
utterances just from BTEC1 and 40,000 text utterances from BTEC1. None of
these sets overlap to each other.

5.1 Features Extraction

For the speech features, we used a log magnitude spectrogram extracted by
short-time Fourier transform (STFT) from the Librosa library [29]. First, we
applied wave-normalization (scaling raw wave signals into a range of [-1, 1]) per
utterance, followed by pre-emphasis (0.97), and extracted the spectrogram with
STFEFT (50-ms frame length, 12.5-ms frame shift, 2048-point FFT). After getting
the spectrogram, we used the squared magnitude and a Mel-scale filterbank
with 40 filters to extract the Mel-scale spectrogram. After getting the Mel-
spectrogram, we squared the magnitude spectrogram features. In the end, we
transformed each speech utterance into a log-scale and normalized each feature
into 0 mean and unit variances. Our final set is comprised of 40 dims log Mel-
spectrogram features and a 1025 dims log magnitude spectrogram.

For the text, we converted all of the sentences into lowercase and replaced
some punctuation marks (for example, ” into ’). In the end, we have 26 letters
(a-z), six punctuation marks (,:’7.-), and three special tags (<s>, </s>, <spc>)
to denote start, end of sentence, and spaces between words.

5.2 Model Details

Our ASR model is a standard encoder-decoder with an attention mechanism.
On the encoder side, we used a log-Mel spectrogram as the input features (in
unsupervised process, the log Mel-spectrogram was generated by TTS), which
are projected by a fully connected layer and a LeakyReLU (I = 1e —2) [30] acti-
vation function and processed by three stacked BiLLSTM layers with 256 hidden
units for each direction (512 hidden units). We applied sequence subsampling
[31, 22] on the top two layers and reduced the length of the speech features by
a factor of 4. On the decoder side, the input character is projected with a 128
dims embedding layer and fed into a one-layer LSTM with 512 hidden units.
We calculated the attention matrix with an MLP scorer (Eq. , followed by a
fully connected layer and a softmax function. Both the ASR and TTS models
are implemented with the PyTorch library El

LGoogle TTS https://pypi.python.org/pypi/gTTS
2PyTorch https://github.com/pytorch/pytorch
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Our TTS model hyperparameters are generally the same as the original
Tacotron, except that we used LeakyReLU instead of ReLU for most of the
parts. On the encoder sides, the CBHG used K = 8 different filter banks
instead of 16 to reduce our GPU memory consumption. For the decoder sides,
we used a two-stacked LSTM instead of a GRU with 256 hidden units. Our
TTS predicted four consecutive frames in one time step to reduce the number
of time steps in the decoding process.

5.3 Experiment Result

Table [1| shows our result on the single-speaker ASR and TTS experiments. For
the ASR experiment, we generated best hypothesis with beam search (size= 5).
We used a character error rate (CER) for evaluating the ASR model. For the
TTS experiment, we reported the MSE between the predicted log Mel and the
log magnitude spectrogram to the ground truth. We also report the accuracy
of our model that predicted the last speech frame. We used different values for
a and text decoding strategy for ASR (in the unsupervised learning stage) with
a greedy search or a beam search.

Table 1: Experiment result for single-speaker test set.

Hyperparameters | ASR TTS

Data
o 3 gen. CER Mel | Raw Acc
mode (%) (%)

Paired
(10k) - - - 10.06 | 7.068 | 9.376 | 97.7
0.25 | 1 greedy 5.83 6.212 | 8.485 | 98.4
+ Unpaired 0.5 1 greedy 5.75 6.247 | 8.418 | 98.4
(40k) 0.25 | 1 beam 5 5.44 6.243 | 8.441 | 98.3
0.5 1 beam 5 5.77 6.201 | 8.435 | 98.3

The result show that after ASR and TTS models have been trained with a
small paired dataset, they start to teach each other using unpaired data and
generate useful feedback. Here we improved both ASR and TTS performance.
Our ASR model reduced CER by 4.6% compared to the system that was only
trained with labeled data. In addition to ASR, our T'TS also decreased the MSE
and the end of speech prediction accuracy.

6 Experiment on Multi-Speaker Task

Based on our good result on a single speaker, we extended our initial work
to a multi-speaker experiment. Unlike our previous experiment, we used a
real natural speech corpus instead of synthesized speech. We used the BTEC
ATR-EDB [32] corpus, which contains about 180,000 speech utterances from
six different regions (Australia, British, US West, US Northeast, US South, and
US West ). In this experiment, we only used the US Northeast portion in the
dataset (contains about 22000 utterances). The US Northeast contains about 50
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different speakers (25 males, 25 females) and about 440 utterances per speaker.
For training, validation, and testing sets, we split the dataset by 20 utterances
per speaker for validation, 20 utterances per speaker for testing, and the rest
for training. For the paired speech and text, we got 80 pairs per speaker and
the rest of the speech and text were used as unsupervised training sets. None of
these training sets (paired and unpaired) or the validation and test sets overlap.

6.1 Model Details

In this experiment, we used the same ASR model as in the previous section with-
out any modifications. However, for the T'TS, we used the modified Tacotron
with speaker embedding. Here, we used the pre-trained model from a single
speaker and transferred the weight except for the speaker-embedding layer.

6.2 Experiment Result

Table 2: Experiment result for multi-speaker test set.

Hyperparameters | ASR TTS
Data
o 3 gen. CER Mel Raw Acc
mode (%) (%)
Paired

- - - 26.47 | 10.213 | 13.175 | 98.6

greedy | 23.03 | 0.137 | 12.863 | 98.7
greedy | 20.91 | 0312 | 12.882 | 98.6
beam 5 | 22.55 | 0.350 | 12.767 | 98.6
beam 5 | 19.09 | 9.198 | 12.839 | 98.6

(80 utt/spk)

0.25
+ Unpaired 0.5
(remaining) | 0.25
0.5

o e il

Table 2] reports our result on the multi-speaker ASR and TTS experiments.
Similar with the single speaker result, we improved both the ASR and TTS
models by additional training on unpaired datasets. However, in this experi-
ment, we found that a different ASR performance o = 0.5 produced a larger
improvement than a = 0.25. We hypothesize that because the baseline model
is not as good as the previous single speaker experiment, we should put a larger
coefficient on the loss and the gradient provided by the paired training set.

7 Related Works

Approaches that utilize learning from source-to-target and vice-versa as well as
feedback links remain scant. He et al. [33] quite recently published a work that
addressed a mechanism called dual learning in neural machine translation. Their
system has a dual task: source-to-target language translation (primal) versus
target-to-source language translation (dual). The primal and dual tasks form
a closed loop and generate informative feedback signals to train the translation
models, even without the involvement of a human labeler. This approach was
originally proposed to tackle training data bottleneck problems. With a dual-
learning mechanism, the system can leverage monolingual data (in both the
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source and target languages) more effectively. First, they construct one model
to translate from the source to the target language and another to translate from
the target to the source language. After both the first and second models have
been trained with a small parallel corpus, they start to teach each other using
monolingual data and generate useful feedback with language model likelihood
and reconstruction error to further improve the performance.

Another similar work in neural machine translation was introduced by Cheng
et al. [34]. This approach also exploited monolingual corpora to improve neu-
ral machine translation. Their system utilizes a semi-supervised approach for
training neural machine translation (NMT) models on the concatenation of la-
beled (parallel corpora) and unlabeled (mono-lingual corpora) data. The central
idea is to reconstruct monolingual corpora using an autoencoder in which the
source-to-target and target-to-source translation models serve as the encoder
and decoder, respectively.

However, no studies have yet addressed similar problems in spoken language
processing tasks. This paper presents a novel mechanism that integrates human
speech perception and production behaviors. With a concept that resembles
dual learning in neural machine translation, we utilize the primal model (ASR)
that transcribes the text given the speech versus the dual model (TTS) that
synthesizes the speech given the text. However, the main difference between
NMT is that the domain between the source and the target here are different
(speech versus text). While ASR transcribes the unlabeled speech features, TTS
attempts to reconstruct the original speech waveform based on the text from
ASR. In the opposite direction, ASR also attempts to reconstruct the original
text transcription given the synthesized speech. Nevertheless, our experimental
results show that the proposed approach also identified a successful learning
strategy and significantly improved the performance more than separate systems
that were only trained with labeled data.

8 Conclusion

This paper demonstrated a novel machine speech chain mechanism based on
deep learning. The sequence-to-sequence model in closed-loop architecture al-
lows us to train our model on the concatenation of both labeled and unlabeled
data. We explored applications of the model in various tasks, including single
speaker synthetic speech and multi-speaker natural speech. Our experimen-
tal results in both cases show that the proposed approach enabled ASR and
TTS to further improved the performance by teaching each other using only
unpaired data. In the future, it is necessary to further validate the effectiveness
of our approach on various languages and conditions (i.e., spontaneous, noisy,
and emotion).
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