Resilient neural network training for accelerators
with computing errors

Dawen Xu*!, Kouzi Xing®, Cheng Liu*', Ying Wang*, Yulin Daif, Long Cheng?, Huawei Li* and Lei Zhang*
*Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
THefei University of Technology, Hefei, China
iUniversity College Dublin, Dublin, Ireland
Email: xudawen@gmail.com {liucheng, wangying2009, lihuawei, zlei} @ict.ac.cn long.cheng @ucd.ie

Abstract—With the advancements of neural networks, cus-
tomized accelerators are increasingly adopted in massive Al
applications. To gain higher energy efficiency or performance,
many hardware design optimizations such as near-threshold
logic or overclocking can be utilized. In these cases, computing
errors may happen and the computing errors are difficult
to be captured by conventional training on general purposed
processors (GPPs). Applying the offline trained neural network
models to the accelerators with errors directly may lead to
considerable prediction accuracy loss.

To address this problem, we explore the resilience of neural
network models and relax the accelerator design constraints to
enable aggressive design options. First of all, we propose to
train the neural network models using the accelerators’ forward
computing results such that the models can learn both the data
and the computing errors. In addition, we observe that some of
the neural network layers are more sensitive to the computing
errors. With this observation, we schedule the most sensitive
layer to the attached GPP to reduce the negative influence of
the computing errors. According to the experiments, the neural
network models obtained from the proposed training outperform
the original models significantly when the CNN accelerators are
affected by computing errors.

I. INTRODUCTION

Inspired by the widespread adoption of neural networks
in massive fields, neural network accelerators [1], [2] are
increasingly explored and deployed to improve the computing
performance and energy efficiency. Unlike generic applica-
tions, neural networks usually involve redundancy and are
known to be fault tolerant [3]. By taking advantage of this
feature, many neural network accelerator optimizations such
as neural network pruning and quantization can be utilized
to improve performance and energy efficiency notably with
minor inference accuracy penalty [4].

Following similar ideas to compromise between neural
network accuracy and performance, we opt to relax the design
constraints of the neural network accelerators for significant
performance or energy efficiency improvements with minor
prediction accuracy loss. In this case, many aggressive hard-
ware optimization techniques can be applied when computing
errors can be tolerated. For instance, emerging techniques
such as near-threshold voltage regime and sub-threshold digital
logic design [5] promise high energy efficiency but suffer
instability [6]. Conventional neural network accelerator can

ICorresponding author is Cheng Liu.

be pushed to operate at higher clock frequency with timing
violations [7]. They will bring benefits to the accelerator
design on various aspects including performance and energy
efficiency.

Motivated by the great advantages of relaxed design con-
straints, we further explore the use of neural network resilience
for more effective design trade-offs. Instead of deploying the
unmodified neural network models on the accelerators directly,
we borrow the retraining idea from prior neural network
quantization work [8] and have the deep neural network
models to learn and tolerate the computing errors. Basically,
we have the forward computing performed on the accelerator
and then transfer the computing results to the host processor
for backward propagation. With this approach, both the appli-
cation data and computing errors are learned and incorporated
in the neural network models. Meanwhile, we define a set of
standard interfaces to make it convenient to integrate general
CNN accelerators into the retraining framework.

In addition, we notice that some of the neural network layers
are more sensitive to the computing errors and the sensitive
layers dramatically limit the usefulness of the retraining. Thus,
we schedule the most sensitive layer of the neural networks
to host processors to reduce the negative influence of the
computing errors. With both the retraining and sensitive layer
protection, the neural networks become more resilient to the
computing errors caused by the aggressive design options
such as near-threshold logic or overclocking. Compared to the
original neural networks, the top1 and top5 prediction accuracy
improves by 20.7% and 5.9% on average.

II. RESILIENT TRAINING FRAMEWORK

Resilient neural networks allow significant performance or
energy efficiency improvement with little prediction accuracy
penalty by relaxing the neural network accelerator design
constraints. This motivates us to obtain more resilient neural
networks for advantageous accelerator design trade-offs. A
resilient neural network training framework will be detailed
in this section.

A. Overall training framework

For the problem that the computing error patterns are
difficult to be captured in training with GPPs, we have the
accelerators with computing errors integrated into the training

Target CNN

On accelerator
retraining framework

H Computing error
on GPP

Fig. 1. Resilient neural network training framework

Forward partly
on accelerator

|

|

|

|

|

|

|

| Weight
1 | adjustment
|

|

|

|

|

|

o
<
@
<
j=h
o
S
-
S
@

abeyjon mo]

process. Forward processing influenced by the accelerator
computing errors is used in training directly such that com-
puting error patterns and application data are reflected in the
neural network models. For the problem that some of the layers
are affected more than the others, we take these layers as
critical layers and opt to protect the layers from being affected
by computing errors. With reasonable performance penalty, we
can improve the overall neural network resilience.

Following this idea, the overall training framework is de-
picted in Figure 1. Instead of training on GPPs, it has the
majority of forward computing performed on the accelerators
with computing errors while the rest of the training remains
on GPPs. Note that the critical layers should be executed on
reliable hardware while GPP is one of the options. There are
many different approaches that can be used to relax the de-
sign constraints. Although they may cause distinct computing
errors, they can be fitted to the same training framework.

B. CNN accelerator abstraction and modification

As illustrated in the above section, the forward propagation
will mostly be executed on the CNN accelerator while the
rest part runs on GPPs. Essentially, the framework targets at a
heterogeneous computing architecture and frequent communi-
cation between the accelerator and the GPPs are expected. In
order to fit various CNN accelerators within the same training
framework, we abstract the CNN accelerators with a high-
level interface which makes the accelerators near transparent
to the training framework. To facilitate the data communication
between the forward propagation and the rest of the training
framework, we define a high-level interface which consists of
7 functions as listed inTable 1. With the interface functions,
general CNN accelerators can be conveniently referenced and
used in the proposed on-accelerator training framework.

In this work, we have the CNN accelerator implemented
on Xilinx FPGAs as a case study. With Xilinx SDAccel,
we can wrap the accelerators with OpenCL API while the
accelerators can either be developed with OpenCL, HLS or

CNN Accelerator
7 2 O R g
S Y S 5 S
3 3 it s 3
o |
I B I R I I B
A
Buffer
3 — H HE
L)) [}
[A A4) 4

Off-Chip Memory

— original data path ===p added optional data path

Fig. 2. Modification of the CNN accelerator data path. It essentially ensures
the feature map of each neural network layer to have an optional data path
to external memory for back propagation in training.

RTL. On top of the OpenCL API, the proposed high-level
interface can be implemented. Meanwhile, we use Caffe, a
C++ based deep learning framework, to construct the on-
accelerator training framework. With both parts developed
with C family languages, they can be integrated conveniently.

On top of the high-level interface, the CNN accelerator
also needs minor modification to enable the on-accelerator
training. The training requires the feature map of each neural
network layer for backward propagation. However, many of
the accelerators are intensively optimized for inference only
and some of the layers’ output are fully buffered in on-chip
memory to reduce the external memory access. Thereby, the
accelerator should provide an optional data path such that
intermediate output data can be written to external memory
at request. As shown in Figure 2, the output of each layer will
be transferred to memory using the added data path when the
accelerator is used for training. The write back data path can
be switched off during inference.

C. Critical neural network layer protection

In order to improve the overall neural network resilience,
we opt to protect the critical network layers to alleviate the
resilience bottleneck. The protection is essentially to have the
critical layers executed on reliable computing infrastructures
and the exact protection method depends on the target hard-
ware platform. We may either schedule the critical layers to
the GPPs or switch the accelerator to reliable mode during the
execution of the critical layers. With this approach, the overall
network can tolerate more computing errors.

To decide the critical layers of the neural networks, we for-
mulate the critical layer selection scheme. Suppose the neural
network layers include N layers and each layer is represented
as L; where ¢ € 0,1,2,..., N — 1. Then we evaluate the
prediction accuracy loss of the neural network that have one
layer protected on accelerators with computing errors. When
the ¢th layer is protected, the loss is loss;. Then the most
critical layer is the layer that leads to the most accuracy loss
i.e. ¢ € {k|lossy = max(loss;),i € {0,1,....,. N —1}}.

The above formulated approach requires large amount of
evaluation of different layers of the neural network. Instead, we

TABLE I
HIGH-LEVEL INTERFACE TO INTEGRATE GENERAL CNN ACCELERATORS WITH CAFFE

ID | Function Name | Description

1 ‘ launchAccelerator() ‘ It configures the CNN accelerator and launches it from host CPU.

2 \ dataToFPGA(weight, input, wgtDevAddr, inDevAddr) \ It transfers both the input data and weight to the FPGA device memory.

3 \ dataFromFPGA (outputDevAddr, output) \ It transfers intermediate data from FPGA device memory to host memory.

4 | convertIntToFloat(int iData, float fData) | It converts the fixed-point point to float for back propagation processing.

5 | convertFloatTolnt(float fData, int iData) | It converts the floating-point input and weight to fixed point for forward processing.
6 \ dataLayoutReorder(data, reorderedData) \ It reorders the data layout for more efficient accelerator execution.

7 | dataLayoutRecover(reorderedData, data) | It reorders the output data back to the default format for Caffe back propagation.

use the actual computing errors as the critical layer selection
metric. We set an error threshold 7" and assume 8bit integers
are used. When the error equals to 0, the computing results
are correct. When the error is larger than 7', the results
are assumed to be large errors. When the computing results
are wrong but smaller than 7', the results are considered as
moderate errors. The layers that include the largest portion of
large errors are taken as the critical layers.

In addition, scheduling the neural network layers executed
on the accelerator to GPPs has performance penalty due to
the computing efficiency gap. As the accelerators are usually
orders of magnitudes faster than the GPPs for neural network
processing especially large convolution layers, we can focus
on the last few small layers to ensure negligible performance
loss. This constrain greatly reduces the search space of the
critical layers.

III. EXPERIMENTS

In this section, we evaluate the proposed resilient neural
network training framework for accelerators with computing
errors. We experimented using Caffe on a desktop computer
with Intel(R) Core(TM) i7-6700 CPU @3.40GHz and 32GB
memory. The computing errors can be caused by various re-
laxed design constraints and we used random computing errors
in the experiments for general analysis. We injected random
bit errors to input/intermediate/output features and weights as
well as hidden layer status of neural networks. 8bit fixed point
representation was used through the experiments. The error
injection is measured with bit error rate (BER) according
to [9]. In addition, we also had random errors injected to
the internal computing results. To evaluate the training, we
take AlexNet, VGG-16 and VGG-19 as the benchmark. The
analysis can be applied to more neural networks.

To explore the resilience of the proposed neural network
training, we compare the prediction accuracy of neural net-
works in three scenarios. 1) We have the offline trained
neural network models deployed on CNN accelerators with
computing errors directly. This case is denoted as ’original’.
2) We have the neural network models retrained on the accel-
erator with computing errors. It is represented as training with
accelerator (TWA). 3) We have the critical layers protected
by offloading them to reliable GPPs. Then we perform the
retraining. It is denoted as critical layer protected(TWA+CLP).

—m—top5_original
top1_original
0.8

~e-top5_TWA
—e—topl_TWA

—a—top5_TWA+CLP
—a—topl_TWA+CLP

o

1.00E-08 5.00E-08 1.00E-07 5.00E-07
BER

(a) AlexNet

—m—top5_original tops_TWA ~#—top5_TWA+CLP
topl_original —e-topl_TWA —a—topl_TWA+CLP
1
0.8
——

o
~

Inference accuracy
o
(=2}

o
N

0 1.00E-08 5.00E-08 1.00E-07 5.00E-07 1.00E-06
BER

(b) VGG-16
~m~top5_original ~o—top5_TWA ~#—top5_TWA+CLP
top1_original ~e—topl_TWA —+—topl_TWA+CLP

0.9

o
3

o
3

Inference accuracy

o
w

0 5.00E-08 1.00E-07 5.00E-07 1.00E-06 5.00E-06
BER

(c) VGG-19

Fig. 3. The precision accuracy of the benchmark neural network models
on accelerators with different computing errors. The neural network model
is meaningful when the prediction accuracy is still acceptable. For the three
models, we are only interested in situations when the BER is 1E-7, SE-7 and
SE-7 respectively.

The comparison of the three cases is presented in Figure 3.
When the BER goes up, the prediction accuracy of the original
neural network drops considerably despite the resilience of the
neural networks. With the proposed training i.e. TWA+CLP,
the topl and top5 precision accuracy of the retrained mod-
els improves by 20.7% and 5.9% on average respectively
compared to the offline trained model at the extreme yet
acceptable error injection rate. The great prediction accuracy
improvement indicates that the resilience of the retrained
neural network models is improved targeting at the specific

error=0 ® /<error<s

TITHHITT

100 o =
90 (‘ ‘
80

70

60

50

40

30

20

10

PRECENTAGE(100%)

error>5

TFﬁ -

AV TN RNIUYOTOON OO AN
2 2>2222LLLL|Iz222222222ddd
EEEEEwEwE¥EIEEEEEEEEE >2> >
39999 8699999998 ecctc
o 0000 OO0 00O0O0O0O0GG6 6
o oo

AlexNet VGG16

conv13

fcl4
fcl5
fcl6
convl
conv2
conv3
conv4

Fig. 4. Error distribution across the neural network layers when highest BER is used in AlexNet, VGG16 and VGG19.

m Accel. Only m Accel. + CPU(critial layer)

RELATVE RUNTIME

AlexNet

VGG16 VGG19

Fig. 5. Relative runtime of neural networks when the critical layer is
scheduled to CPU.

computing error pattern. Therefore, more aggressive design
trade-offs between prediction accuracy and performance or
energy efficiency can be performed.

We decided the critical layers using the error distribution
as shown in Figure 4. We set the error threshold to be 5 and
the experiment reveals that the last FC layer has the largest
portion of computing errors that are more than 5. Thus, it is
considered as the most critical layer. The critical layer takes
only a small portion of the overall neural network computing,
so the performance penalty is small even when it is scheduled
to CPU. The last FC layer in AlexNet takes up higher portion
of computing, the performance penalty is relatively higher
compared to VGG16 and VGG19.

While scheduling the critical layers to GPPs may lead
to additional computing overhead due to the computing gap
between GPP and the accelerators, we need to evaluate the
performance overhead. The relative performance of the second
case and the third case is shown in Figure 5. The performance
penalty is less than two percent in the three neural networks.
Considering the gains of the relaxed design constraints, it
is usually beneficial to schedule the small neural network
computing layers to GPPs.

IV. CONCLUSION

In this work, we propose to replace the forward computing
on GPPs with accelerator computing during training and have
both the computing errors and the application data learned in
the neural network models. In addition, we opt to protect criti-
cal neural layers to reduce the negative influence of computing
errors. With the proposed resilient neural network training, the

prediction accuracy of the retrained neural network models
improves significantly when computing errors appear.

ACKNOWLEDGEMENT

This work is supported in part by the National Natu-
ral Science Foundation of China (No. 61874124), Chinese
Academy of Sciences STS (No. KFJ-STS-SCYD-226), Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement
(No. 799066).

REFERENCES

[1] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning: Automatic gen-
eration of fpga-based learning accelerators for the neural network family,”
in Proceedings of the 53rd Annual Design Automation Conference, ser.
DAC ’16. New York, NY, USA: ACM, 2016, pp. 110:1-110:6.

R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi,
“Caffeinated fpgas: Fpga framework for convolutional neural networks,”
in 2016 International Conference on Field-Programmable Technology
(FPT), Dec 2016, pp. 265-268.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernandez-Lobato, G. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), June 2016, pp. 267-278.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2016.

R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming moore’s law through energy
efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2,
pp. 253-266, Feb 2010.

Y. Pu, X. Zhang, J. Huang, A. Muramatsu, M. Nomura, K. Hirairi,
H. Takata, T. Sakurabayashi, S. Miyano, M. Takamiya, and T. Sakurai,
“Misleading energy and performance claims in sub/near threshold digital
systems,” in Proceedings of the International Conference on Computer-
Aided Design, ser. ICCAD *10. Piscataway, NJ, USA: IEEE Press, 2010,
pp. 625-631.

K. Shi, D. Boland, and G. A. Constantinides, “Accuracy-performance
tradeoffs on an fpga through overclocking,” in 2013 IEEE 21st Annual
International Symposium on Field-Programmable Custom Computing
Machines, April 2013, pp. 29-36.

K. Hwang and W. Sung, “Fixed-point feedforward deep neural network
design using weights +1, 0, and -1,” in 2014 IEEE Workshop on Signal
Processing Systems (SiPS), Oct 2014, pp. 1-6.

B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), June 2018, pp. 1-6.

(2]

(3]

[4]

(51

(6]

(71

(8]

(9]

