2002.05257v1 [cs.LG] 12 Feb 2020

arxXiv

Shortest Path Distance Approximation using Deep
learning Techniques

Fatemeh Salehi Rizi
Department of Computer Science
and Mathematics
University of Passau
Passau, Germany
Fatemeh.SalehiRizi @uni-passau.de

Abstract—Computing shortest path distances between nodes
lies at the heart of many graph algorithms and applications.
Traditional exact methods such as breadth-first-search (BFS) do
not scale up to contemporary, rapidly evolving today’s massive
networks. Therefore, it is required to find approximation methods
to enable scalable graph processing with a significant speedup.
In this paper, we utilize vector embeddings learnt by deep
learning techniques to approximate the shortest paths distances
in large graphs. We show that a feedforward neural network
fed with embeddings can approximate distances with relatively
low distortion error. The suggested method is evaluated on the
Facebook, BlogCatalog, Youtube and Flickr social networks.

Index Terms—Shortest Path Distance, Deep Learning, Graph
Embedding

I. INTRODUCTION

Finding shortest path distances between nodes in a graph
is an important primitive in a variety of applications. For
instance, the number of links between two URLs indicates
page similarity in a graph of the Web [1]]. In a semantic web
ontology, shortest path distances among entities are used for
ranking their relationships [2]. The number of hops from one
person to another indicates the level of trust in a trust network
[3]. In social networks, the shortest path distance is used to
compute the closeness centrality [4].

Traditional methods for computing node distance do not
scale with graph size. For a graph with n nodes and m
edges, efficient implementations of Dijkstra compute the short-
est paths for a node to others in O(nlogn + m) time. A
slight generalization of Dijkstra, known as the A* algorithm,
uses heuristic techniques for computing shortest distances. In
practice, A* works at least as quickly as Dijkstra’s algorithm,
however, the run time complexity is still O(nlogn + m).
Tolerable for small graphs, but on a large million node graph
computation can take up to a minute for a single node distance
[S]. Given the high cost of storing precomputed distances, re-
searchers have limited choice but to sample subgraphs or seek
approximate results. For many practical applications, finding
out approximate distances between nodes can be sufficient.

In this paper, we propose a novel method for approximating
shortest path distance measurements between two nodes utiliz-
ing vector embeddings generated by deep learning techniques.
Node2vec and Poincare embeddings are recently studied for

Joerg Schloetterer
Department of Computer Science
and Mathematics
University of Passau
Passau, Germany
Joerg.Schloetterer @uni-passau.de

Michael Granitzer
Department of Computer Science
and Mathematics
University of Passau
Passau, Germany
Michael.Granitzer @uni-passau.de

the basic graph analysis tasks such as link prediction [6], [7]
and node classification [|6], [8]. This is due to the fact that
they speed up the computation time and yield precise results
compared to the traditional matrix factorization techniques.
We thus exploit these two embeddings to approximate shortest
path distances. At a high level, we first learn embeddings
using node2vec [9] and Poincaré [[10] for every single node
in the graph. We then follow the “landmark-based” approach
proposed in [11], where we choose a small number of nodes
as landmarks. We compute the actual shortest paths distances
from each landmark to all of the remaining nodes. We use
these pairs as our training set. Finally, we train a feedforward
neural network with embedding vectors to approximate the
distance between corresponding nodes. Feedforward networks
are well known for their good representational capability [|12]]
and should be sufficient to approximate shortest path distance
functions giving graph embeddings.

Due to the sparsity property of real-world (social) networks,
the number of edges is proportional to the number of nodes.
Therefore, generating the ground truth using the landmark-
based approach takes a linear time complexity which yields
a linear running time for the entire proposed method. More
details are elaborated in section

Overall, we study advanced graph embedding techniques to
make the following contributions:

o« We theoretically motivate and suggest the use of
node2vec and Poincaré embeddings for node distance
approximation in large graphs (section [III).

e We show that neural networks can predict the shortest
path distances effectively and efficiently, especially for
shorter paths (section [[V).

o We demonstrate that different embedding techniques as
well as different parameter settings have a significant
influence on the approximation quality (section [[V]).

e We compare our approximations to the most prominent
works in the state-of-the-art and show, that our approach
outperforms current methods in terms of prediction ac-

curacy (section [IV).

In order to demonstrate the performance of our method
in practice, we conduct experiments with four real-world

datasets. The experiments indicate, that our predictor performs
better for shorter paths. However, embeddings behave poorly
to approximate the longer paths. The reason lies in both the
embedding technique and the sampling strategy for training
pairs. We provide more details in section

The rest of the paper is structured as follows. Section
provides an overview of recent existing shortest path distance
approximation and graph embedding techniques. Our proposed
method is elaborated in section[[[Il Section [Vl summarizes the
experimental evaluation results. Finally, section [V] concluding
remarks.

II. BACKGROUND AND RELATED WORK
A. Shortest Path

The task of computing the shortest path distance from a
single node to all other nodes is known as single source
shortest paths (SSSP). Exact methods such as Dijkstra compute
SSSP for weighted graphs with n nodes and m edges in time
O(m+nlogn). For unweighted sparse graphs, shortest paths
can be computed using Breadth First Search (BFS) in time
O(m + n). However, exact methods, are extremely slow for
performing queries on today’s very large online networks. For
many practical applications, finding out approximate distances
between nodes can be sufficient. Among the approximate
methods, a family of scalable algorithms for this problem are
the so-called landmark-based approaches [11]]. In this family
of techniques, a fixed set of landmark nodes is selected and
actual shortest paths are precomputed from each landmark to
all other nodes. Knowledge of the distances to the landmarks,
together with the triangle inequality, typically allows one to
compute approximate distance between any two nodes in O(l)
time, where [is the number of landmarks. [11]]. Although
landmark-based algorithms do not provide strong theoretical
guarantees on approximation quality [13]], they have been
shown to perform well in practice, scaling up to graphs with
millions of edges with acceptable accuracy and response times
of under one second per query [[14].

Inspired by landmark-based methods, authors in [11]] and
[15]], suggested the idea of graph coordinate systems, which
embeds graph nodes into points on a coordinate space. The
resulting coordinates can be used to quickly approximate node
distance queries on the original graph. However, it has several
limitations in practice. First, their initial graph embedding
process is centralized and computationally expensive, which
presents a significant performance bottleneck for larger graphs.
Second, their results produce relatively high error rates, which
limits the types of applications it can serve. Finally, it is unable
to produce actual paths connecting node pairs, which is often
necessary for a number of graph applications.

B. Graph Embedding

Besides the aforementioned methods, embedding the nodes
with the explicit objective of preserving the shortest path
length, various methods to embed the graph in general (or
dimension reduction respectively) have been proposed (c.f.
Goyal and Ferrara [16] for a survey). Among the classical

methods are Principal Component Analysis (PCA) [17]], Linear
Discriminant Analysis (LDA) [18]], ISOMAP [19], Multi-
dimensional Scaling (MDS) [20], LLE [21]] and Laplacian
Eigenmap [22] (c.f. Yan et al. [23] for a survey). However,
most of these methods typically rely on solving eigen decom-
position and the complexity is at least quadratic in the number
of nodes, which makes them inefficient to handle large-scale
networks.

Recently, neural network based approaches have been pro-
posed, which were inspired by the ideas of Word2Vec [24],
which is build around the distributional hypothesis, stating
that words in similar contexts tend to have similar mean-
ing [25]]. DeepWalk [26] samples random walks from the graph
and treats them as sentence equivalents. That is, given the
representation of a node in the embedding space, DeepWalk
approximates the conditional probability of nodes in the the
neighborhood. Thereby, nodes sharing a similar neighbor-
hood, tend to have a similar representation in the embedding
space. Similar to Word2Vec implicitly factorizing a matrix of
word co-occurrences [27], [28], Deepwalk has been shown
to factorize a matrix of node transition probabilities [29].
Node2vec [6] extends Deepwalk by introducing parameters
to control the random walk behaviour. At the most extreme
parameter choices, node2vec employs breadth-first or depth-
first sampling, exploring the close-by neighborhood or nodes
that are far apart in the network. LINE [30] explicitly opti-
mizes the embeddings to capture first- and second-order prox-
imity, by training separate embeddings for them, which are
finally concatenated. First-order proximity is given by explicit
connections between nodes, while second-order proximity is
given by comparing the nodes’ neighborhoods. Nickel and
Kiela [[7] embed the graph into a hyperbolic space, or more
precisely into an n-dimensional Poincaré ball, capturing hier-
archy and similarity. Several approaches have been proposed
to better model long distance relationships or higher order
proximity respectively. Instead of approximating the k-order
proximity matrix, as DeepWalk does, GraRep [31]] calculates
it accurately, at the cost of increased complexity. Yang et
al. [32] alleviate this problem by using information from
lower order proximity matrices. The authors of HOPE [33]]
experimented with different similarity measures, such as Katz
Index, Rooted Page Rank and Adamic-Adar. HARP [34] and
Walklets [35]] address capturing higher-order proximity by
adapting the random walk strategy. While HARP coarsens the
graph and learns representations via hierarchically collapsed
graphs, Walklets skips over steps in the random walks. Deep
architectures have been proposed, aiming at capturing non-
linearity in the graphs. SDNE [36] and DNGR [37] utilize
autoencoders, GCN [38]] defines a convolution operator on the
graph.

To our best knowledge, approximating the shortest path
distances based on embeddings that have not been specifically
tailored towards this end, has not been investigated yet.

ITII. APPROACH
A. Distance Approximation

Let G = (V, E) be an unweighted undirected graph with
n nodes and m edges. Graph embedding techniques create a
real-valued, the so called vector embedding ¢(v) € R? for
every node v € V. Given a pair of nodes u,v € V with the
real shortest path distance d,, ,,, the goal is to approximate the
distance as d using a feedforward neural network. Formally,
we define d as function

d: ¢(u) x ¢(v) —» R

that maps a pair of vector embeddings to a real-valued shortest
path distance d,, , in G.

To train the neural network, we need to extract training
pairs from the entire graph G. We first choose a small number
of [nodes as landmarks, where [< n. We then compute
the actual shortest distances from each landmark to all of
the remaining nodes using BFS. It yields I(n — [) training
pairs. Given a training pair < ¢(v), ¢(u) >, we create a joint
representation as input to the neural network by applying a
binary operation, namely subtraction, concatenation, average
and point-wise multiplication, over the vector embeddings.
The definitions of the binary operations are listed in the
Table [l Eventually, vectors of the training set serve as input
for a feedforward neural network. The neural network maps
the input vectors to a real-valued distance.

TABLE I: Choice of binary operators correspond to the ith
component of ¢

Operator Symbol Definition
Subtraction S @i(u) — ¢i(v)
Concatenation D (p(w), ¢(v))
Average %) M
Hadamard ©} @i(u) * ¢ (v)

Our feedforward network consists of an input layer, a hidden
layer, and an output layer. The size of the input layer depends
on the binary operation on vector embeddings. For example
subtraction needs d neurons while concatenation requires 2d.
We set the rectified unit (ReLU) [39]] as activation function
for the first two layers. ReLU does not face gradient vanishing
problem and it has been shown that deep networks are trained
efficiently using ReLLU. Since the network does a regression
task, the output layer is a single unit of softplus [40] which is a
smoother version of ReLU with the range of [0, cc]. We assess
the quality of predictor by Mean Squared Error (MSE) which
measures the average of the squares of difference between
the estimator and what is estimated. As optimizer, we use
Stochastic Gradient Descent (SGD) [41]] which is usually fast
and efficient for large-scale learning.

B. Computational Complexity

The proposed method achieves a linear runtime complexity.
First, we learn vector embeddings which takes precomputation
time O(n) where n is the number of nodes in the graph [[16].

We then use the landmark-based scheme to minimize the
number of shortest path computations needed to establish
the ground truth. By choosing a small, constant number of
landmarks, we only need to compute a BFS tree for each
landmark. The resulting values represent shortest distances
from all remaining nodes to these landmarks, and are sufficient
to compose the training set. With [nodes as landmarks,
where | < n, we have [(n —) training pairs. It takes time
O(l(n + m)), knowing BFS on unweighted sparse graphs
consumes O(n + m) time. The advantage of using a graph
embedding is that a feedforward neural network can answer a
distance query between two nodes u, v in a small amount
of time independent of the graph size, i.e. O(1) time. So
calculating the shortest path distances from a starting node
u to all other nodes takes O(n).

IV. EXPERIMENTAL EVALUATION

In this section, we report the performance of the proposed
method. We evaluate node2vec and Poincaré embeddings for
distance approximation applying the four different binary
operations. We start by describing our datasets, and then we set
the hyperparameters. Eventually, we describe our verification
approach along with discussions over the results.

A. Datasets

We test our method on four real-world social network
graphs, representing four different orders of magnitude in
terms of network size.

o Facebook. This dataset consists of friends lists from
Facebook. Facebook data was collected from survey
participants using a Facebook app. Facebook data has
been anonymized by replacing the Facebook internal ids
for each user with a new value [42].

« BlogCatalog. This is a network of social relationships of
the bloggers listed on the BlogCatalog website. The labels
represent blogger interests inferred through the metadata
provided by the bloggers [43]].

o Youtube. This is the friendship network of the video-
sharing site Youtube. Nodes are users and an undirected
edge between two nodes indicates a friendship [44].

o Flickr. This dataset is built by forming links between
images sharing common metadata from Flickr. Edges
are formed between images from the same location,
submitted to the same gallery, group, or set, images
sharing common tags, images taken by friends [45].

The properties of the datasets are summarized in Table
The table shows the number of nodes n, number of edges m
and average shortest distance between nodes d. The most rel-
evant previous works using a similar methodology, Orion [[11]]
and Rigel [15], used Flickr as a common dataset in their
evaluations. We therefore compare our results with the state-
of-the-art on the Flickr dataset.

B. Parameters and Environment

To generate node2vec embeddings, we use the default
settings [6] with the number of walks v = 10 and length

TABLE II: Statistics of Social Network Datasets

Dataset Nodes Edges d

Facebook 4,039 88,234 431
BlogCatalog 10,312 333,983 2.72
Youtube 1,134,890 | 2,987,624 | 5.55
Flickr 1,715,255 | 15,551,250 | 5.13

I = 80. We tuned the context size setting it finally to k = 5
for learning node representations by predicting more nearby
nodes. We also set p = ¢ = 1 to explore local and global
nodes equally. For Poincaré, we follow the default settings as
r>1,t=0.01[7], and 50 iterations.

We consider two different embedding dimensions d = 32
and d = 128 to investigate the impact of more features
on distance approximation. To train the neural network, we
initialize weights randomly and set the learning rate [= 0.01
running 15 iterations. We run experiments on Linux machines
with five 3.50GHz Intel Xeon(R) CPUs and 16GB memory.

C. Approximation Quality

Since shortest path distances are discrete real values, we
first round the results of the prediction. We then measure the
accuracy of our method using two key metrics. The first is the
Mean of Relative Error (MRE). The Relative Error is widely
used in the study of shortest path evaluation and defined as,

|d —d|
d

where d is the actual distance measured by BFS algorithm and
d the approximation [[11]], [[13[], [14]. The MRE has a natural
tendency to be smaller for larger distance values, which is not
a perfectly fair comparison. Therefore, as a second evaluation
measure we use the Mean Absolute Error (MAE) which is the
most natural measure of average error magnitude independent
of the target value.

RE =

D. Training and Test Data

In order to capture training pairs, we require computing BFS
trees rooted from each landmark to all other remaining nodes.
For the smaller datasets such as Facebook and BlogCatalog,
we set [= 100 while for the two others 5 landmarks are
enough. We omit paths with length 1 since the time complexity
of finding direct neighbors is already linear O(n) [46].

To avoid an imbalanced training set and perform a fast
sampling, we downsample the minority classes (i.e. classes
with few samples). In detail, when we search the shortest path
for a given training pair by BFS, we also retrieve the nodes
are included in this path. Respecting the fact that a shortest
path carries nodes by keeping shortest distance between them.
Additionally, in complex networks such as social networks the
average distance is very small therefore the distribution of long
paths is quite low [47]]. In Figure [I] we plot histograms that
reflect the distribution of training pairs in all four datasets.
In BlogCatalog the average shortest path distance is 2.72 and

the distribution of path longer than 5 is prohibitively low. We
therefore limit the path length to 5.

To compose the training matrix, we need to perform binary
operations on the embedding vectors of given training pairs.
We do Subtraction, Concatenation, Average and Hadamard on
pairs of vectors.

For test pairs, we do the same strategy as training pairs
considering a smaller set of landmarks. We start BFS traversals
from landmarks to other remaining nodes which generate a set
of unseen pairs. Overall, we gather around 100, 000 unseen test
pairs for each dataset. The statistics of training and test pairs
are available in Table

TABLE III: Statistics of Training and Test data

Dataset Nodes Training pairs Test pairs
Facebook 4,039 1,022,640 109,978
BlogCatalog 10,312 1,409,700 88,316
Youtube 1,134,890 2,452,757 184,413
Flickr 1,715,255 2,579,437 112,967

E. Baseline

As a baseline, we conduct an experiment where the predictor
is a simple linear regression. The input of the predictor is
embeddings learnt by node2vec or Poincaré and the output
is distance values between pair of nodes. Since the state-of-
the-art [16] observes the best performance with embedding
dimensions d = 128 in primitive graph analysis tasks (e.g. link
prediction, node classification), we set d = 128 in our baseline
experiment. However, we study the effect of dimension while
we predict the distance using neural networks. Table [[V] shows
MAE values for distance prediction besides the impact of
different binary operations. We observe that node2vec achieves
lower error values than Poincaré specifically when we take the
average of embedding vectors as the input of the predictor.

TABLE IV: Mean Absolute Error (MAE) of shortest paths
return by a Linear Regression

Dataset Embedding MAE
S] ® @ ©
node2vec 0.679 | 0.663 0.546 | 0.653
Facebook
Poincaré 0.801 | 0.788 0.656 0.767
BlogCatalog node2vec 0.483 | 0453 0.407 0.423
Poincaré 0.417 | 0.450 0.436 0.447
node2vec 0.708 | 0.722 0.695 0.739
Youtube
Poincaré 0.983 1.267 1.195 1.099
. node2vec 0.633 | 0.694 0.574 0.739
Flickr

Poincaré 0.944 | 0.891 0.831 0.822

F. Results and Discussion

Using a feedforward neural network, we calculate the mean
relative and the mean absolute error during the test phase.

Facebook BlogCatalog

0.7
0.6
£0.25 205
£0.20 204
So1s §03
2 0.10 0.2
0.1

3 4 5 6 00775 5

3 4
Path Length

Path Length

Flickr

Youtube

0.35

Probability

3

5

4
Path Length Path Length

Fig. 1: Distributions of distances in the training set with downsampling for all datasets

The obtained error values for different embedding techniques,
different embedding sizes and the different binary operators
are provided in Table [V] The best results are achieved by
node2vec embeddings of size 128 with an average MAE of
15% across all datasets. The results indicate, that independent
of the network size, our method achieves a quite low approx-
imation error compared to the baseline.

a) Embedding Techniques and Embedding Size: The
number of dimensions play an important role. Although higher
dimensions produce smaller errors, as the dimension increases
the time for generating embeddings and distance approxima-
tion increases as well.

Reducing the size of embeddings in hierarchically orga-
nized networks was one goal underlying the development
of Poincaré embeddings. Poincaré use a Hyperbolic space
to alleviate overfitting and complexity issues that Euclidean
embeddings face especially if the data has intrinsic hierarchical
structure. Scale-free graphs in general and Social Networks in
particular have been known to form innate hierarchical struc-
tures [48], which motivates the use of Poincaré embeddings.
Moreover, we would expect Poincaré embeddings to more
accurately represent distances than node2vec embeddings in
Euclidean space. However, Table [V] shows that the error
observed for node2vec embedding is remarkably lower than
Poincaré embedding.

The features learned in node2vec are fundamentally tied
to the random walk strategy. Node2vec adopts short random
walks to explore therefore it learns the structure of local
neighborhoods. In scale-free networks, the average shortest
path distance grows logarithmically [49] , hence the shortest
path distance stays as a local feature. According to the result
in Table [V] node2vec successfully learns distances specifically
for embedding size 128.

While, Poincare makes use of hyperbolic spaces to encode
both hierarchy and semantic similarity into a Poincare ball.
Regarding our results, Poincaré cannot capture features related
to distances of nodes belong to different hierarchies. Table [V]
demonstrates that increasing dimensionality in Poincare ball
do not effect the accuracy of prediction in all datasets.

b) Error Distribution over Path Lengths: We explore
the accuracy of predictions for paths of different lengths.
Figure [2] shows the mean absolute errors per path length on
three graphs. Error values are estimated for different binary
operations on embeddings of size 128. Observe that the larger

errors caused by longer paths utilizing node2vec embeddings.
In one hand, we do not have enough samples for longer
distances in the training set. On the other hand, node2vec fails
to learn structural features of faraway nodes. Similarly, long
paths cause high errors using Poincaré embedings in all three
datasets. It can be the effect of locality property of the Poincaré
distance which places leaf nodes to the boundary. Therefore,
the distance between leaf nodes of different hierarchies cannot
be preserved according the original graph neighborhood.

c) Effect of Binary Operators: To generate feature rep-
resentations of training pairs, we compose the learned embed-
dings of the individual nodes using simple binary operators.
The binary operators are listed in Table [This composi-
tionality lends node2vec and Poincaré to the prediction task
involving nodes. As Table [V] shows, binary operators do not
have a consistent behavior over different datasets and different
dimension sizes. For instance, the average operator outper-
forms others in Facebook graph while concatenation works
better for Youtube dataset. As a future work, we would like to
explore the reasons behind the unstable behavior of operators
as well as effect of some other operators on prediction.

d) Comparison to the State-of-the-Art: In Figure 3] we
plot the MAE for different path lengths using our method
against the two state-of-the-art methods Rigel [15] and
Orion [11]] on the Flickr dataset. Errors are calculated when
the input of the predictor is node2vec embeddings of size 128.
We can observe that Orion shows the highest MAE value for
all paths. In general, our method consistently and significantly
outperforms Rigel specifically for shorter paths.

V. CONCLUSION AND FUTURE WORK

Traditional methods for computing shortest path distances
no longer scale to today’s massive graphs with millions of
nodes and billions of edges. Motivated by landmarked-based
approaches, we propose a new method that approximates node
distances by first embedding graphs into an embedding space.
We utilized two recent graph embedding techniques and fed
their vectors into a feedforward neural network. The results
are impressive. Our method produces shortest distances for
the large majority of node pairs, matching the most accurate
of ground truth. And it does this quickly, returning results in
a linear time.

We plan to handle longer paths in larger graphs, where we
face the higher errors. One way is to apply other embedding

TABLE V: Mean Absolute Error (MAE) and Mean Relative Error (MRE) of shortest paths utilizing different embedding

techniques
Dataset Embedding | Size MAE MRE
S} b @ ©] S) b @ ©

32 0.480 | 0415 0.233 | 0.531 | 0.175 | 0.164 | 0.068 | 0.188

node2vec
Facebook 128 | 0.197 0.258 0.118 | 0.217 | 0.071 | 0.099 | 0.038 | 0.081
. P 32 0.592 | 0.594 0.552 | 0.604 | 0.214 | 0.211 | 0.218 | 0.212

Poincaré
128 | 0.437 0.315 0.372 | 0.608 | 0.169 | 0.115 | 0.142 | 0.246
32 0.277 0.242 0.197 | 0.193 | 0.092 | 0.103 | 0.067 | 0.067

node2vec
BlogCatalog 128 | 0.220 | 0.275 0.159 | 0.154 | 0.077 | 0.119 | 0.064 | 0.059
Poi . 32 0.338 0.338 0.343 | 0.338 | 0.108 | 0.108 | 0.112 | 0.108

oincaré
128 | 0.331 0.354 0.277 | 0.338 | 0.115 | 0.138 | 0.097 | 0.108
32 0.676 | 0.265 0.455 | 0.625 | 0.230 | 0.066 | 0.163 | 0.223

node2vec
Youtube 128 | 0.344 | 0.154 0.174 | 0.244 | 0.101 | 0.034 | 0.040 | 0.061
. . 32 1.095 0.708 1.134 | 0.774 | 0.429 | 0.264 | 0.446 | 0.291

Poincaré
128 1.270 1.185 1.746 | 0.771 | 0.497 | 0.468 | 0.681 | 0.262
32 0.699 0.295 0.564 | 0.525 | 0.250 | 0.086 | 0.183 | 0.198

node2vec
Flickr 128 | 0.238 0.168 0.181 | 0.222 | 0.171 | 0.074 | 0.178 | 0.179
. P 32 0.995 0.808 1.022 | 0.874 | 0.349 | 0.284 | 0.429 | 0.278

Poincaré
128 | 0.803 0.662 0.807 | 0.764 | 0.397 | 0.432 | 0.566 | 0.364

Facebook with © operation

10 I node2vec

0.g] Poincare

2 3 5 6

4
Path Length

BlogCatalog with © operation

0.8 EEE node2vec
0.7{ HEE Poincare

3 4
Path Length

Youtube with © operation

B node2vec
Il Poincare

3 4 5
Path Length

Facebook with ® operation

Facebook with @ operation

0.5 mmm node2vec
Il Poincare

2 3 5 6

4
Path Length

BlogCatalog with ® operation

[node2vec
B Poincare

2 3 5 6

4
Path Length

BlogCatalog with @ operation

[node2vec
0.5{ HEE Poincare

3 4
Path Length

Youtube with ® operation

[node2vec
I Poincare

3 4
Path Length

Youtube with @ operation

[node2vec
I Poincare

3 4 5
Path Length

[node2vec
I Poincare

3 4 5
Path Length

Facebook with ® operation

1.21 mmm node2vec
1.0 M Poincare

2 3

4 5 6
Path Length

BlogCatalog with ® operation

[node2vec
I Poincare

3 4
Path Length

Youtube with © operation

3 4 5
Path Length

Fig. 2: Mean Absolute Error (MAE) of different path lengths comparing node2vec and Poincaré embeddings with size 128 for
Facebook, BlogCatalog and Youtube datasets.

Flickr with © operation

Flickr with ® operation

Flickr with @ operation

Flickr with ® operation

2 3 4 5 6 7 8 : 2 3 4 5 6 7 8
Path Length Path Length

Il Our Method
I Rigel
3 Orion

2 3 4 5 6 7 8) 2 3 4 5 6 7 8
Path Length Path Length

Fig. 3: Mean Absolute Error (MAE) of shortest paths returned by our method, Orion and Rigel on the Flickr dataset.

techniques such as HARP [34] which learns the structure
of neighborhoods using graph coarsening. Another way is to
reach a balance training set and to use other neural networks
such as Siamese neural networks [50].

ACKNOWLEDGMENT

The presented work was developed within the Provenance
Analytics project funded by the German Federal Ministry of
Education and Research, grant agreement number 03PSIPTSC.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

REFERENCES

A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy, “A sketch-
based distance oracle for web-scale graphs,” in Proceedings of the third
ACM international conference on Web search and data mining. ACM,
2010, pp. 401-410.

K. Anyanwu and A. Sheth, “P-queries: enabling querying for semantic
associations on the semantic web,” in Proceedings of the 12th interna-
tional conference on World Wide Web. ACM, 2003, pp. 690-699.

G. Swamynathan, C. Wilson, B. Boe, K. Almeroth, and B. Y. Zhao, “Do
social networks improve e-commerce?: a study on social marketplaces,”
in Proceedings of the first workshop on Online social networks. ACM,
2008, pp. 1-6.

M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. d. C.
Reis, and B. Ribeiro-Neto, “Efficient search ranking in social networks,”
in Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management. ACM, 2007, pp. 563-572.
M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path
distance estimation in large networks,” in Proceedings of the 18th ACM
conference on Information and knowledge management. ACM, 2009,
pp. 867-876.

A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.
New York, NY, USA: ACM, 2016, pp. 855-864.

M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” in Advances in Neural Information Processing Systems
30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 6341-6350. [Online]. Available: http://papers.nips.cc/paper/
7213-poincare-embeddings-for-learning- hierarchical-representations.
pdf

F. S. Rizi, M. Granitzer, and K. Ziegler, “Global and local feature
learning for ego-network analysis,” in Proceedings of the 28th Interna-
tional Workshop on Database and Expert Systems Applications (DEXA).
IEEE, 28-31 Aug. 2017.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ~ACM, 2016,
pp. 855-864.

M. Nickel and D. Kiela, “Poincar\’e embeddings for learning hierarchi-
cal representations,” arXiv preprint arXiv:1705.08039, 2017.

X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao, “Orion: shortest
path estimation for large social graphs,” networks, vol. 1, p. 5, 2010.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

J. Bilski, “The ud rls algorithm for training feedforward neural net-
works,” International Journal of Applied Mathematics and Computer
Science, vol. 15, pp. 115-123, 2005.

J. Kleinberg, A. Slivkins, and T. Wexler, “Triangulation and embedding
using small sets of beacons,” in Foundations of Computer Science, 2004.
Proceedings. 45th Annual IEEE Symposium on. 1EEE, 2004, pp. 444—
453.

A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum, “Fast and
accurate estimation of shortest paths in large graphs,” in Proceedings of
the 19th ACM international conference on Information and knowledge
management. ACM, 2010, pp. 499-508.

X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao, “Efficient shortest paths on
massive social graphs,” in Collaborative Computing: Networking, Ap-
plications and Worksharing (CollaborateCom), 2011 7th International
Conference on. 1EEE, 2011, pp. 77-86.

P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” arXiv preprint arXiv:1705.02801, 2017.

I. T. Jolliffe, “Principal component analysis and factor analysis,” in
Principal component analysis. Springer, 1986, pp. 115-128.

A. M. Martinez and A. C. Kak, “Pca versus lda,” IEEE transactions on
pattern analysis and machine intelligence, vol. 23, no. 2, pp. 228-233,
2001.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” science, vol. 290,
no. 5500, pp. 2319-2323, 2000.

J. B. Kruskal and M. Wish, Multidimensional scaling.
vol. 11.

S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323-2326,
2000.

M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in neural information
processing systems, 2002, pp. 585-591.

S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensionality
reduction,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 29, no. 1, pp. 40-51, 2007.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

Z. Harris, “Distributional structure,” Word, vol. 10, no. 23, pp. 146-162,
1954.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701-710.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532-1543.

O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Proceedings of the 27th International Conference on
Neural Information Processing Systems, ser. NIPS’14. Cambridge, MA,
USA: MIT Press, 2014, pp. 2177-2185.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in Proceedings of the

Sage, 1978,

http://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations.pdf
http://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations.pdf
http://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations.pdf

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

24th International Conference on Artificial Intelligence, ser. IICAI’15.
AAALI Press, 2015, pp. 2111-2117.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web, ser. WWW 15,
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2015, pp. 1067-1077.

S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management.
ACM, 2015, pp. 891-900.

C. Yang, M. Sun, Z. Liu, and C. Tu, “Fast network embedding enhance-
ment via high order proximity approximation,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
1JCAI, 2017, pp. 19-25.

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding.” in KDD, 2016, pp. 1105-1114.

H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical repre-
sentation learning for networks,” in Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18), 2018.

B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, “Don’t walk, skip!:
Online learning of multi-scale network embeddings,” in Proceedings of
the 2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2017. ACM, 2017, pp. 258-265.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2016, pp. 1225-1234.
S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations.” in AAAI 2016, pp. 1145-1152.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations (ICLR-17), 2017.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807-814.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, 2011, pp. 315-323.

L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177-
186.

J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in Advances in neural information processing systems,
2012, pp. 539-547.

R. Zafarani and H. Liu, “Social computing data repository at ASU,”
2009. [Online]. Available: http://socialcomputing.asu.edu

J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181-213, 2015.

A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proceed-
ings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 29-42.

U. Kang, S. Papadimitriou, J. Sun, and H. Tong, “Centralities in large
networks: Algorithms and observations,” in Proceedings of the 2011
SIAM International Conference on Data Mining. SIAM, 2011, pp.
119-130.

T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data. ACM, 2013, pp. 349-360.

E. Ravasz and A.-L. Barabdsi, “Hierarchical organization in complex
networks,” Physical Review E, vol. 67, no. 2, p. 026112, 2003.

A.-L. Barabasi, Network science. Cambridge university press, 2016.
G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML Deep Learning Workshop, vol. 2,
2015.

http://socialcomputing.asu.edu

	I Introduction
	II Background and related work
	II-A Shortest Path
	II-B Graph Embedding

	III Approach
	III-A Distance Approximation
	III-B Computational Complexity

	IV Experimental Evaluation
	IV-A Datasets
	IV-B Parameters and Environment
	IV-C Approximation Quality
	IV-D Training and Test Data
	IV-E Baseline
	IV-F Results and Discussion

	V Conclusion and future work
	References

