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Abstract—We investigate the tail behavior of the steady-state that extreme variability in the internet file sizes is ultieig
queue occupancies under throughput optimal scheduling intte  responsible for the LRD traffic patterns reported in [15] and
presence of heavy-tailed traffic. We consider a system cossing elsewhere.

of two parallel queues, served by a single server. One of the . . .
queues receives traffic that is heavy-tailed (the “heavy que”), Many of the early queueing theoretic results for heavyetil

and the other receives light-tailed traffic (the “light queue”). traffic were obtained for the single server queue; see [3], [5
The queues are connected to the server through time-varying [20] for surveys of these results. In [6], the authors stuuy t
ON/OFF links. We study a generalized version of max-weight tajl behavior of the waiting time in an M/G/2 system, when

scheduling, called the max-weightx policy, and show that the  on6 of the service time distributions is heavy-tailed, ainel t
light queue occupancy distribution is heavy-tailed for arrival . . '
other is exponential.

rates above a threshold value. We also obtain the exact ‘tail ] o ]
coefficient’ of the light queue occupancy distribution unde max- It turns out that the service discipline plays an important
weight-alpha scheduling. Next, we show that the policy thagives role in the delay experienced in a queue, when the traffic
complete priority to the light queue guarantees the best pasble s heavy-tailed. For example, it was shown in [1] that any
tail behavior of both queue occupancy distributions. Howeer, non-preemptive service discipline leads to infinite exgect

the priority policy is not throughput optimal, and can cause . o .
undepsirabl):a IiDnsta)E)ility effects ingthrz)a he:fvy queue. delay, when the traffic is sufficiently heavy-tailed. Furttibe

Finally, we propose a log-max-weight (LMW) scheduling asymptotic behavior of delay under various service digugs!
policy. We show that in addition to being throughput optimal, the  such as first-come-first-served (FCFS) and processor sharin
LMW policy guarantees that the light queue occupancy distd  (PS), is markedly different under light-tailed and heaaifed

bution is light-tailed, for all arrival rates that the prior ity policy ; e e ;

can stabilize. Thus, the LMW scheduling policy has desiratd scenarlosf [3]6 [dzsl]'. T.hlsl; IS |mp0rta?t, for J(-e;(ample, in the
performance on both fronts, namely throughput optimality, and context of scheduling jobs In s_erv_er arms [12].

the tail behavior of the light queue occupancy distribution In the context of communication networks, a subset of

the traffic flows may be well modeled using heavy-tailed
processes, and the rest better modeled as light-taile@gses.
Traditionally, traffic in telecommunication networks hasn such a scenario, there are relatively few studies on the
been modeled using Poisson and Markov-modulated pigoblem of schedulingetweenthe different flows, and the
cesses. These simple traffic models exhibit ‘local rand@sine ensuing nature of interaction between the heavy-tailed and
in the sense that much of the variability occurs in short tirﬂ@ht-tailed traffic. An important paper in this category[#,
scales, and only an average behavior is perceived at longgjere the interaction between light and heavy-tailed traffi
time scales. With the spectacular growth of packet-swidch@ows under generalized processor sharing (GPS) is studied.
networks such as the internet during the last couple of de;adn that paper, the authors derive the asymptotic workload
these traditional traffic models have been shown to be inadgshavior of the light-tailed flow, when its GPS weight is
quate. This is because the traffic in packetized data netwoﬁ?eater than its traffic intensity. In a related paper [2k th
is intrinsically more ‘bursty’, and exhibits correlatiomser authors obtain the asymptotic work-load behavior under a
longer time scales than can be modeled by any Markoviggneral coupled-queues framework, which includes GPS as
point process. Empirical evidence, such as the famousdellc 5 special case.
study on self-similarity and long-range dependence inrete  One of the key considerations in the design of a scheduling
traffic [15] lead to increased interest in traffic models Vhtgh po“cy for a queueing network mroughput Opt|ma||tywh|ch
variability. is the ability to support the largest set of traffic rates tisat
Heavy-tailed distributions, which have long been used tQpportable by a given queueing network. Queue length based
model high variability and risk in finance and insurance,e/verschedu”ng policies, such as max-weight scheduling [23] [
considered as viable candidates to model traffic in data nglyq its many variants, are known to be throughput optimal in
works. Further, theoretical work such as [13], linking heav 5 general queueing network. For this reason, the max-weight
tails to long-range dependence (LRD) lent weight to theetbelifamily of scheduling policies has received much attention i

This work was supported by NSF grants CNS-0626781, CNS988,5nd Various_ networking contextg, indUding switches [17]‘3‘4&95
CCF-0728554, and by ARO Muri grant number W911NF-08-1-0238 [18], wireless [19], and optical networks [7], [8].
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In spite of a large and varied body of literature related - b~

to max-weight scheduling, it is somewhat surprising that th Heavy-Tailed | P#
policy has not been adequately studied in the context ofyreav
tailed traffic. Specifically, a question arises as to whatlb&r E—— )

we can expect due to the interaction of heavy and lightdaile
flows, when a throughput optimal max-weight-like scheduylin

policy is employed. Our present work is aimed at addressipg. 1. A system of two parallel queues, with one of them fethvieavy-
this basic question. tailed traffic. The channels connecting the queues to theesare unreliable

We study a system consisting of two parallel queues, sen/@tyOFF links.
by a single server. One of the queues is fed by a heavy-tailed
arrival process, while the other is fed by light-tailed fiaf
We refer to these queues as the ‘heavy’ and ‘light' queuegptimal. To remedy this situation, we propose a log-max-
respectively. The queues are connected to the server thromgight (LMW) scheduling policy, which gives significantly
time-varying ON/OFF links. In this setting, we analyze th&wore importance to the light queue compared to max-weight-
tail behavior of the queue occupancy distributions undex-max scheduling. We show that under LMW scheduling, the light
weight« scheduling, which is a generalized version of maxgueue occupancy distribution is light-tailed for all aalivates
weight scheduling. Specifically, while max-weight schémtyl that are stably supportable under priority scheduling far t
makes scheduling decisions by comparing the queue lengligbt queue. Additionally, we show that the LMW policy is
in the system, the max-weight-policy uses different powers throughput optimal, and can therefore stabilize traffiesat
of the queue lengths to make scheduling decisions. that are not supportable under priority scheduling. This, t

In a recent paper [16], a special case of the problekMW policy has both desirable attributes — it is throughput
considered here is studied. Specifically, it was shown theptimal, and ensures good tail behavior for the light queue
when the heavy-tailed traffic has an infinite variance, tr#stribution.
light-tailed traffic experiences an infinite expected delager ~ The remainder of this paper is organized as follows. In
max-weight scheduling. It was also shown that by a choiéection I, we introduce the system model and specify the
of parameters in the max-weightolicy that increases the necessary definitions and assumptions. In Section I, weyst
preference afforded to the light queue, it is possible to enakriority scheduling. Section IV deals with queue occupancy
the expected delay of the light-tailed traffic finite. In théehavior under max-weight-scheduling. In Section V, we
present paper, we considerably extend these results by clanalyze the queue occupancy behavior under log-max-weight
acterizing the tail distribution of the queue occupanciedar Scheduling. Section VI concludes the paper. Due to space
very general heavy-tailed arrival processes, while allewihg ~ constraints, we omit several proofs, and refer the reader to
for randomly time-varying channels. [14, Chapter 5].

Under max-weightx scheduling, we show that the light
gueue occupancy distribution is light-tailed if the artivate
to the light queue is below a certain threshold value, andIn this section, we describe the system model, and specify
heavy-tailed if the arrival rate is above the threshold galuour assumptions about the traffic statistics. Our systersist:n
Further, when the arrival rate is above the threshold valuz,two parallel queuest and L, served by a single server, as
we obtain the exact ‘tail coefficient’ of the queue occupanalepicted in Fig. 1. Time is slotted, and stochastic arrivls
distributions, which helps us identify all the bounded maise packet bursts occur to each queue in each slot. The server is
of the queue lengths. capable of serving one packet per time slot, from only one of

Intuitively, the reason max-weight- scheduling induces the queues according to a scheduling policy. Hét) and L(t)
heavy-tailed asymptotics on the light queue distributmthat denote the number of packets that arrive duringstotH and
the light queue has to compete for service with the heavyrespectively. Although we postpone the precise assungption
gueue, which is occasionally very large. The simplest way tm the traffic statistics to Section 1I-B, let us loosely shgtt
guarantee a good tail behavior for the light queue distiglout the inputL(t) is light-tailed, andH (¢) is heavy-tailed. We will
is to give the light queue complete priority over the heawefer to the queued/ and L. as the heavy and light queues,
queue, so that it does not have to compete with the heaegpectively.
gueue for service. However, giving priority to the light gge = The queues are connected to the server through time-varying
has an important shortcoming — it is not a throughput optimiiks. Let Sy (¢t) € {0,1} and S.(t) € {0,1} respectively
scheduling policy for the system, and can cause undesirablEnote the states of the channels connecting Ahand L
instability effects in the heavy queue. gueues to the server. When a channel is in state 0, it is OFF,

We therefore find ourselves in a situation where on the oaed no packets can be served from the corresponding queue
hand, the throughput optimal max-weightscheduling policy in that slot. When a channel is in state 1, it is ON, and a
can lead to heavy-tailed asymptotics for the light queue. @uacket can be served from the corresponding queue if the
the other hand, giving priority to the light queue leads teerver is assigned to that queue. This channel model can be
good tail behavior for the light queue, but is not throughpuised to represent fading wireless links in a two-user ulpdin

_—
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down-link system. We assume that the scheduler can observe Aa + AL <pw+prL—papL}. (1)
the current channel states as well as the queue Iengthsebetﬂg
making a scheduling decision in a slot. L

The processes$y(t) and Si(t) are independent of each"€ In Fig. 2.

other, and independent of the arrival processes. We assum%et qH(t) and QL(t)_’ respectively, denotg the number of
that Sy (¢) and S;(¢) are ii.d. from slot to slot, distributed packets ind and L during slott under a particular scheduling

according to Bernoulli processes with positive meapsand policy, and letgy; andq., denote the corresponding steady-
p1. respectively. That isP {S:(-) = 1} = p,, i € {H,L}. We state queue occupancies when they exist. Our aim is to
say that a particular time slotis exclusiveto H, if Sg(t) = 1 characterize the distributions afy; and ¢, under various -
and . (¢) = 0, and similarly forL. scheduling policies. We now proceed.to a}naly_ze the behavior
Before we specify the precise assumptions on the arri Ithe steady-state queue occupancies in this system under

processes, we pause to make some relevant definitions. t ree scheduling policies, namely, priority schedulingaxm
weight«, and LMW.

us, the rate region is pentagonal, as illustrated by thid so

A. Heavy-tailed and light-tailed random variables

Definition 1: A non-negative random variablg is said to . ) .
be light-tailed if there existsd > 0 for which E [exp(¢X)] < In this section, we study the two ‘extreme’ scheduling
0. A random variable iheavy-tailedf it is not light-tailed. Policies, namely priority fo, and priority for /. Our analysis
In other words, a light-tailed random variable is one that h&elps us arrive at the important conclusion that the taihef t
a well defined moment generating function in a neighborhob§avy queue is inevitably heavy-tailed under any schegdulin
of the origin. The complementary distribution function of &0licy.

Iight-taileq random variablle decays at least exponeyﬁaﬂt. A. Priority for the heavy-tailed traffic
Heavy-tailed random variables are those which have com- . . .
plementary distribution functions that decay slower thag a Jnder priority for 7, the heavy queue receives service

exponential. We now define the tail-coefficient of a randOt‘Hher‘e\/er It IS non-empty and co.nnected to the serter.
variable receives service during its exclusive slots, and when both

Definition 2: Thetail coefficientof a random variable( is dUEUES are connected, blitis empty. It should be intuitively
defined by clear at the outset that this policy is bound to have an
undesirable impact on the light queue. The reason we analyze
Cx =sup{c >0 | E[X“] < oo}. this policy is that it gives us a best case scenario for the
In words, the tail coefficient is the threshold where the pow8€avy queue. The following result shows that the heavy queue

moment of a random variable starts to blow up. Note thggcupancy distribution is one order heavier than its input

the tail coefficient of a light-tailed random variable is iife. ~ distribution under this policy.

On the other hand, the tail coefficient of a heavy-tailed Proposition 1: Under priority for7, the steady-state queue
random variable may be infinite (e.g., log-normal) or finit@ccupancy distribution of the heavy queue is a heavy-tailed
(e.g., Pareto). In this paper, we restrict our attentionhie trandom variable with tail coefficient equal € — 1. That is,

class of heavy-tailed random variables which have a finite t50r €ache > 0, we have

IIl. THE PRIORITY POLICIES

coefficient. . . _ E |:ng—1—€:| < o0, )
We now state the precise assumptions on the arrival pro-
cesses. and
) . E Cyg—1+e = 00 (3)
B. Assumptions on the arrival processes qH :

1) The arrival processel () and L(t) are independent of Since priority for H affords the most favorable treatment to

each other. the heavy queue, it follows that the tail behaviorffcan be
2) H(t) is independent and identically distributed (i.i.d.ho better than the above undamy policy.

from slot-to-slot. Proposition 2: Under any scheduling policyy is heavy-
3) L(t) is i.i.d. from slot-to-slot. tailed with tail coefficient at most’y — 1. That is, Equation
4) L(-) is light-tailed withE [L(¢¥)] = Ar. (3) holds forall scheduling policies.

5) H(-) is heavy-tailed with tail coefficier@y (1 < Cy <

) Oog )andE [b)l/(t)] =\ # ( " B. Priority for the light-tailed traffic

The conditions for a rate paitAyz,\;) to be stably Under priority for L, the light queue is served whenever its
supportable in this system are well known. Specifically, ihannelis ON, and is non-empty. The heavy queue is served
follows from the results in [22] that the rate region of thé&luring the exclusive slots off, and in the slots when both

system is given by channels are ON, but is empty. This policy ensures that the
light queue does not have to compete with the heavy queue
{(Am,AL) [0 <AL <pr, 0<Am <pm, for service, and hence guarantees the best possible behavio

1The notion of stability we use is the positive recurrence hef system of the !ight quege occupancy distribu_tion. However,.we.show
occupancy Markov chain. that this policy is not throughput optimal, and that it faits
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Fig. 2. The rate region of the system is shown in solid lina] #re set of Fig. 3. Under max-weightr scheduling,q;, is light-tailed for arrival rates
stabilizable rates under priority fat is the region under the dashed line. in the unshaded region, and heavy-tailed in the shadedmregio

stabilize the heavy queue for some arrival rates within #te r and serve one packet from the queue that wins the comparison.
region in (1). The following theorem characterizes the b&hta Note thata; = apy corresponds to the usual max-weight

of both queues under priority fak. policy, which serves the longest connected queue in eath slo
Theorem 1:The following statements hold under prioritya;, /oy > 1 corresponds to emphasizing the light queue over
scheduling forL. the heavy queue, and vice-versa.
(i) If Az > pu(1 — ), the heavy queue ienstable and It can be shown using standard Lyapunov arguments that
no steady-state exists. max-weighter scheduling is throughput optimal for ally >

(i) f Ay < pu(1 — A\p), the heavy queue is stable, and anday > 0. That is, it can stably support all arrival rates
its steady-state occupanegy; is heavy-tailed with tail within the rate region (1). This throughput optimality résu

coefficientCy — 1. follows, for example, from [9, Theorem 1].
(iii) g is light-tailed, and satisfies a large deviation principle We show that under max-weight-scheduling, the tail
[11]. behavior of the steady-state light queue occupancy digioib

In Fig. 2, the lineAy = pu(1 — Az) is shown using a is strongly dependent ok, the arrival rate to the light queue.
dashed segment. The above theorem assertsthiatstable Specifically, we show that, is light-tailed when\,, is below
under priority for L only in the trapezoidal region under thed threshold value, and heavy-tailed with a finite tail coggfic
dashed line, while the rate region of the system is cleadgf A above the threshold value.
|arger_ Therefore, priority fod. is not throughput Optima| in The following result shows that the |Ight gueue distribatio
this setting. To summarize, priority fdr can lead to instability is light-tailed under any ‘reasonable’ policy, as long astte
of the heavy queue, but for all arrival rates thatdnstabilize, Az is smaller than a threshold value.
the tail behavior of both queues is as good as it can possiblyProposition 3: Suppose thad;, < pr(1—px). Thengy, is
be. light-tailed undermany policy that served. during its exclusive

The special case in which the queues are always connects.
to the server, i.epy = pr, = 1, is interesting. In this case, theProof: The proof is straightforward once we note that the
set of arrival rates stabilizable under priority forcoincides exclusive slots of. occur independently during each slot with
with the stability region of the system, which is given by  probabilityp; (1 —pg). Indeed, consider thé queue under a

policy that served. only during its exclusive slots. Under this
{(Am,AL) [ Am + AL <1}, policy, the L queue behaves like a G/M/1 queue with light-

Therefore, when the queues are reliably connected to ﬁjé'ed inputs at raté\;, and service rater (1 — pp). It can

server, priority scheduling for the light-tailed trafficttsrough- e shown using standard large deviation arguments ¢hat

put optimal, and also ensures the best possible tail beha\}%light_'tailed under the polipy _that sgrvés only during iFS
for both queues. exclusive slots. Thereforegy, is light-tailed under any policy

that served. during its exclusive slots. O
IV. MAX-WEIGHT-oo SCHEDULING The above proposition implies that for, < pr(1 — py),
htrle light queue distribution is light-tailed under max-gleti-«
scheduling. The regiok;, < pr(1—pg) is shown unshaded in
Fig. 3. Thusgy is light-tailed under max-weight-scheduling
for arrival rates in the unshaded region.

In the remainder of this section, we investigate the tail
qr(t)**SL(t) Z qu(t)* Su(t), behavior of the light queue under max-weightschedul-

In this section, we analyze the tail behavior of the lig
gueue distribution under max-weightscheduling. For fixed
parametersyy > 0 and oy, > 0, the max-weightx policy
operates as follows. During each stotcompare



ing when the arrival rate is above the threshold, i.e., for The main idea behind the proof is to consider the renewal
AL > pr(l — pg). In this case, the light queue receivesntervals that commence at the beginning of each busy period
traffic at a higher rate than can be supported by the exclusviethe system. Without loss of generality, let us consider a
slots of L alone. Therefore, the light queue has to compebrisy period that commences at time 0, and define the renewal
for service with the heavy queue during the slots that botaward processk(t) = qr(t)“#~1*<. By the key renewal
channels are ON. Since the heavy queue is very large witieorem [10],

positive probability, it seems intuitively reasonable tthiae lim E [R(t)] = E [R]

light queue will suffer from this competition, and also take t—o0 CE[T)

on a heavy-tailed behavior. This intuition is indeed coreéqynere [R] denotes the expected reward accumulated over a

although proving the result is non-trivial. _renewal interval, and [T] < oo is the mean renewal interval.
We prove that the light queue distribution is heavy—taﬂeﬁ is therefore enough to show thEt[ZT (Z.)CH,He} _
when), > pr(1—pg) for all values of the scheduling param- i=0 4L o

etersay, anday. We also obtain the exact tail coefficient o S .
X S o . . To see intuitively why the above expectation is infinite, let
the light queue distribution for ‘plain’ max-weight schéitg o . . . .
.us condition on the busy period commencing at time 0 with

(ap/an = 1), and for the regime where the light queue ig"y ot sizeh 1o the heavy quede After this instant, the
given more importancen(,/agy > 1).

heavy queue drains at rajg;, assuming for the sake of a
A. Max-weight scheduling lower bound that there are no further bursts arrivingfatin

Let us first characterize the tail coefficient of the steatdyes the mean time, the light queue receives traffic at rateand
light queue occupancy under the max-weight policy, whicBets served only during the exclusive slotslofwhich occur
serves the longest connected queue in each slot. Ginge at ratepz (1 —pp). With high probability therefore, the light
light-tailed for A, < pr,(1 — py) according to Proposition 3, dueue will steadily build up at raté; — pr(1 — px), until
we will focus on the case, > pr(1 — px). it eventually catches_ up with the plram_lng heavy queue. it ca

Theorem 2:Suppose that;, > p.(1 — py). Then, under Pe shown that the light queue will build up to and) level
max-weight schedulingy, is heavy-tailed with tail coefficient before it catches up with the heavy queue. Further, the light
Cy —1. queue occupancy stays @(b) for a time interval of length

In terms of Fig. 3, the theorem asserts thatis heavy- O(b). Therefore, with high probability, the reward is at least
tailed with tail coefficientC; — 1 for all arrival rates in the O(b“%~*<) for O(b) time slots. Thus, for some constafit

shaded region. Proving the above result involves showing (i 1~

an upper boundE [qfﬁ_l‘g} < oo, and (i) a lower bound: E ZQL(i)CH_1+E] >E[Kb- b9 1] = E [Kb“rte].

E ng*”e} = oo, for all ¢ > 0. We deal with each of them = . L _
below. The last expectation is infinite because the initial burse si

has tail coefficient equal t6'y.

In words, the light queue not only grows to a level propor-
tionate to the initial burst size, but also stays large foedaqul
E {qu’l’E} < oo, Ve>0. of time that is proportional to the burst size. This leads to a

L . . . light queue distribution that is one order heavier than tiest
Proof: This is a special case of Proposition 6, in the neX,e distribution.
O

1) Upper Bound for max-weight scheduling:
Proposition 4: Under max-weight scheduling, we have

section.

2) Lower Bound for max-weight scheduling: B. Max-weighta scheduling witha;, > ag

Proposition 5: Suppose thak., > p.(1—ps). Then, under  |n this subsection, we characterize the exact tail coefftcie
max-weight scheduling, we have of the light queue distribution under max-weighscheduling,

with a;, > a . We only treat the casg;, > p;,(1—pg), Since
qr is known to be light-tailed otherwise. Our main result for
The proof of this result is quite involved, so we informallythis regime is the following.

describe the idea behind its construction, and refer thderea Theorem 3:Suppose thah;, > pr(1 — py). Then, under
to [14, Proposition 5.4] for the formal proof. In our intwiéd max-weighte: scheduling witha;, > ag, ¢ is heavy-tailed
argument, we will ‘show’ that with tail coefficient

Tim B [q,(1) 7% 1] = oo, @) 7= (O~ 1), (5)

E [ng_l‘“} =00, Ve>0.

The above is the limit of the expectation of a sequence of rajirterms of Fig. 3, the above theorem asserts #faais heavy-
dom variables, whereas what we really want in Propositia S¢hjled with tail coefficienty for all arrival rates in the shaded
the expectation of the limiting random variabjge. Although region. As before, proving this result involves showinga()

it is by no means obvious that the limit and the expectatiqfpper bound of the fornE [0} ] < oo, and (i) a lower
can be interchanged here, we will ignore this as a technical

point in our informal argument. 2t is easy to show that this event has positive probability.



bound of the formE [q]jé] = oo, for all e > 0. We deal with Indeed, following the above argument, the reward is at least
each of them separately. OpWteoan/ary = Q(pCu—1tean/aL) for O(b*#/r) time
1) Upper Bound for max-weight-scheduling: slots, so that the expected reward over the renewal inté&sval
Proposition 6: Under max-weightx scheduling, we have lower bounded by, [O(bCx ~1 e /artean/oL)]  However,
the above expectation turns out to fieite for ay, /oy > 1.
Therefore, the above simple bound fails to give the result we

Proof: The result is a consequence of a theorem in [o}r€ after. _ _ _

Indeed, max-weight: scheduling in our context is equivalent 1N€ Problem with the above argument is that it looks at
to comparingqy (15 Sy, (t) versusqy (t)?*# Sy (t), where the time scale at whlch the I|ght qugn_atches upwhereas
8> 0 is arbitrary, and scheduling the winning queue in eaéﬁe event that decides the tall_ coefflc:lent_happafter the
slot. In particular, if we choosg = (Cy — 1)/ay — €/ar, light queue catphes up. Ir_1 particular, the I}ght gqueue ech
the conditions imposed in [9, Theorem 1] are satisfied for atyp relatively quickly, in a time scale @b (b°#/*). However,

¢ > 0, so that the steady-state queue occupancies satisfy aiter the light queue catches up with the heavy queue, the two
gueues drain together, with most of the slots being used to

E[q] ] <oo, Ve>0.

E [¢] "] < o0, serve the heavy queue. In fact, as we show, before the light

gueue occupancy can drain by a constant factor after catch-
and Cp—1—SH, up, the heavy queue drains B)(b). As such, the light queue
E [QH o } < o0. (6) remains at aD(b># /=) level for O(b) time slots. Therefore,

- the expected reward can be lower bounded by

Remark 1: (i) Proposition 6 is valid for any parametersE, O(b)O(bCH*”mH/O‘L)] =&, {O(bcH“aH/aL)} = 00,
ar, andag, and not just foray, > ag. o _ _

(i) Equation (6) and Proposition 2 together imply that thié t Which is what we want. In sum, the light queue builds up
coefficient ofgy is equal toCy — 1 under max-weightx relatively quickly until catch-up, but takes a long time t@ith
scheduling, for any parametens, and oz out after catch-up.

2) Lower Bound for max-weight-scheduling witha;, > Max-weighte scheduling withoy, < ag

Qff.

Proposition 7: Suppose thak;, > p;(1—pg). Then, under
max-weighter scheduling witha, > ag, we have

We finally consider the case; < ay, and study the tail
behavior of q,. Recall that max-weight scheduling with
ap < ay corresponds to giving the heavy queue preference
E[¢]7] =0, ¥V e>0. over the light queue. In this regime, we show thatis heavy-
tailed with a finite tail coefficient, for arrival rates in tsbaded
The proof is lengthy and intricate, but conceptually similgegion of Fig. 3. However, we are unable to determine thetexac
to the proof of Proposition 5. We present an informal sketclyj coefficient ofq;, for some arrival rate pairs in this regime.
and refer the reader to [14, Proposition 5.6] for the coreplet oy first result for this case is an upper bound on the tail
proof. We consider the renewal process that commencescgbtficient of ¢;.. Intuitively, we would expect that the tail
the beginning of each busy period of the system, and defiggayior ofy;, in this regime cannot be better than it is under

_ + i . . . .
the reward processt, (1) = qr(1)""°. We will show that 5y \eight scheduling. In other words, the tail coefficiefit
the expected reward accumulated over a renewal interval is iy this regime cannot be larger thaf; — 1. This intuition

infinite. The key renewal theorem would then imply thagindeed correct.

1imHOO_E[‘JL(t)7_+E] = oo. Finally, the result we want can Proposition 8: Suppose that;, > pr.(1—pg). Then, under
be obtained by invoking a truncation argument to mtercbangnax_weighta scheduling witha;, < ay, the tail coefficient
the limit and the expectation. of ¢z is at mostCy — 1.

_ To initively see why the expected reward over a renewglgof: Follows similarly to the proof of Proposition 5. Specif-
interval is finite, let us condition on the busy period commen;cajly, conditioning on an initial burst of sizearriving to the
ing with a bgrst of sizé at thg heavy queue. Starting at th'gheavy gueue, it can be shown that with high probabitity,
instant, the light queue will build up at the rate —p.. (1-p#)  will be O(b) in size for at leasD(b) time slots. O
with high probability. However, the light queue only builds ~ Next, to obtain a lower bound on the tail coefficientgof,

to anO(b*/*+) level before it ‘catches up’ with the heavyreca|| that Proposition 6 holds for the present regime as. wel
queue and wins back the service preference. It can alsofigys  (defined in (5)) is a lower boudin the tail coefficient
shown that the light queue catches up in a time interval gf gz In sum, we have shown that for, > pr(1 —py), the
length O(b>#/2). It might therefore be tempting to arguejight queue occupancy distribution is heavy-tailed, wittai
that the light queue stays aboggb®#/%) for an interval of coefficient that lies in the intervaly, Cy — 1].
durationO(b#/x). Although this argument is not incorrect 1t y;rns out that we can obtain the exact tail coefficient of

as such, itfails to capture what typically happens in théesys  for arrival rates in ssubsetof the shaded region in Fig. 3.
Let us briefly follow through with this argument, and conaud

that it does not give us the lower bound we want. 3Note thaty is smallerthan C'z — 1 in this regime.



qr is heavy-tailed for all non-zero arrival rates. Furtheg th
tail coefficient ofqy, is given by

Pr .
@iy Cyg —1 for ok <1, and
(i) v=2£(Cx —1) for £ > 1.
kHT V. LOG-MAX-WEIGHT SCHEDULING

In this section, we study the performance of log-max-weight
scheduling policy. During each time slotthe log-max-weight
policy compares

— DL qr(t)Sc(t) = log(1 + qu (1) Sk(t),
t and serves one packet from the queue that wins the compari-

Fig. 4. Under max-weighte scheduling witha;, < a g, g, is light-tailed son.
for arrival rates in_ the uns_haded reg_ion, and heavy-_tailéd tail cgefficient ~ The main idea in the LMW policy is to give preference to
equal toCy — 1 in for arrival rates in the gray region. For arrival rates in . .
the region colored black, the tail coefficient lies[in Cy — 1]. the light queue to a far greater extent than any max-weight-
policy. Specifically, foray, /ag > 1, the max-weighta policy
comparesy;, to a power ofgy that is smaller than 1. On the
other hand, LMW scheduling compareg to a logarithmic
function of ¢y, leading to a significant preference for the light

ueue. We will show that this significant de-emphasis of the

eavy queue with respect to the light queue ensures a better
tail behavior forq;, compared to max-weight-scheduling.

Furthermore, the LMW policy has another useful property
when the heavy queue gets overwhelmingly large. Although
the LMW policy significantly de-emphasizes the heavy queue,
it does notignore it, unlike priority for L. That is, if the
H queue occupancy gets overwhelmingly large compared to
L, the LMW policy will serve the heavy queue. In contrast,
r§)riority for L will ignore any build-up inH, as long asL
is non-empty. This property ensures that the LMW policy
stabilizes all arrival rates within the rate region in (1).

We show that LMW scheduling has desirable performance
on both fronts, namely throughput optimality, and the talil
behavior of the light queue occupancy. The LMW policy can
be shown to be throughput optimal, using the results in [9].
In terms of the tail, we show that the LMW policy guarantees
that the light queue occupancy distribution is light-tejléor
all arrival rates that can be stabilized by priority fér For
Grrival rates that are not stabilizable under priority fgrthe
LMW policy will still stabilize the system, although we are
not able to guarantee that, is light-tailed for these arrival
rates.

D. Special case of reliable links Let us now state the main result regarding LMW scheduling.

Theorem 4:Under LMW schedulin is light-tailed if at
The tail behavior of;;, under max-weightx scheduling, in least one of the following conditionsgt:](L)Id' g

the special case of reliably connected linkg; (= pr, = 1) is N

interesting. Specifically, it follows from the results aleahat 0 /\L <pr(l- p/({)’ or

the light queue occupancy distribution is heavy-tailed amd (i) Am <pa(l—Ar). _ _ _

max-weighter scheduling, for any values of the schedulinglote that forA, <pr(1 —pnu), qr is easily seen to be light-

parameters and non-zero arrival rates. The tail coeffiaiént tailed under LMW scheduling, since the arrival rate is small

gz in this special case is given by the following propositiorfnough to be supported by the exclusive sloté ofhe second

which follows from our earlier analysis. condition in Theorem 4 states that for all arrival rates tteat
Proposition 10: Suppose that the queues are always coRe stabilized under priority fof (i.e., the trapezoidal region

nected to the server. Then, under max-weighteheduling, N Fig. 2), q.. is light-tailed under LMW scheduling.
The union of the two regions in whichy, is light-tailed

4This case is symmetric to the case in Theorem 1(j). according to Theorem 4 is shown unshaded in Fig. 5. As can

Specifically, consider the region representedbyl —pg) <
AL < pr(1—XAg). In Fig. 4, this region is shown in gray. It can
be shown that all arrival rates in the region shaded gray ean
stabilized under priority fof/. Furthermore, under priority for
H, it can be shown thaf;, is heavy-tailed with tail coefficient
equal toCy — 1, whenpr (1 —pr) < Ap < pr(l — Ag).

Since the tail of¢;, under max-weightx scheduling with
any parameters is no worse than under priority fér we
can conclude that the tail coefficient gf is at leastCy — 1
whenpr(1 — pr) < Ap < pr(1 — Ag). Combining this with
Proposition 8, we conclude that the tail coefficigptis equal
to Cy — 1, when the arrival rate pair lies in the gray regio
of Fig. 4.

Proposition 9: Suppose thap;(1 — py) < AL < pr(1 —
Am). Then, under max-weight- scheduling withay, < ag,
the tail coefficient ofy;, is equal toCy — 1.

The region shaded black in Fig. A > pr(1 — Ag))
corresponds to the arrival rates for which priority fdris not
stabilizing". Under max-weightx scheduling witha;, < ag,
we are unable to determine the exact tail coefficienypf

have shown earlier that the tail coefficient lies in the indér
[v, C —1]. We conjecture that the tail coefficient @f equals
~, for arrival rates in the region shaded black.
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Fig. 5. Under LMW schedulingqy, is light-tailed for arrival rates in the
unshaded region. In the shaded triangle, the tail beha¥ig;,ds unknown.

be seen, the unshaded region occupies most of the rate ,regigﬂl
except for the shaded triangle. For arrival rates in the etiad [g)

triangle, the LMW policy still stabilizes the system. Hoveev
we are unable to determine the tail behavioggffor arrival
rates in the shaded triangle.

VI. CONCLUSIONS

We considered a system of parallel queues fed by a mifé]

of heavy-tailed and light-tailed traffic, and served by agkn

server. We studied the tail behavior of the queue occupancy

distributions under various scheduling policies. We shbw
that the occupancy distribution of the heavy queue is inblt
heavy-tailed. In contrast, the light queue occupancy idist

bution can be heavy-tailed or light-tailed, depending oa th

arrival rates and the scheduling policy. A major contribati

of this paper is in the tail characterization of the queue

Jual

weight« scheduling is light-tailed for arrivals rates below a

occupancy distributions under max-weightscheduling. We
showed that the light queue occupancy distribution underm

certain threshold, and heavy-tailed for arrival rates abie
threshold.

Another important contribution of the paper is the log-max16]

weight policy, and the corresponding asymptotic analysis.
showed that the light queue occupancy is light-tailed und

LMW scheduling, for all arrival rates that are stabilizable

under priority for the light queue. Additionally, the LMW

policy also has the desirable property of being throughput

optimal, unlike priority scheduling.
Although we study a very simple queueing network in thi

paper, we believe that the insights obtained from this study
are valuable in much more general settings. For instanca, in

general queueing network with a mix of light-tailed and heav
tailed traffic flows, we expect that the celebrated max-weig
policy has the tendency to ‘infect’ competing light-tailéavs
with heavy-tailed asymptotics. A similar effect was alsaetb
in [16], in the context of expected delay.

We also believe that the LMW policy occupies a uniqu
‘sweet spot’ in the context of scheduling light-tailed fiaf
in the presence of heavy-tailed traffic. This is because t

LMW policy de-emphasizes the heavy-tailed flow sufficiently

to maintain good light queue asymptotics, while also emguri
network-wide stability.
For future work, we propose the extension of the results in

this paper to more general single-hop and multi-hop network

models.
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