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Abstract— This paper addresses the design of anti-windup
gains for obtaining stability for linear systems with discrete
time varying delay and saturating inputs delay. Considering
that a dynamic output feedback has been designed to stabilize
the AQM system (without saturation), a method is proposed for
designing an anti-windup gain which relates the saturation of
the queue when congestion, which is inevitable in networks. It is
shown that the closed-loop system obtained from the controller
plus the anti-windup gain can be modeled by a linear system
with a dead zone nonlinearity. A modified sector condition is
then used to obtain stability conditions based on Lyapunov
functions. Differently from previous works these conditions are
directly in linear matrix inequality form. Resulting in a new
AQM which will be simulated in MATLAB and compared to
RED.

I. INTRODUCTION

Active queue management (AQM) is an effective solution
for the congestion control problem. It can achieve high qual-
ity of service (QoS) by reducing the packet dropping prob-
ability and improving network utilization. It is implemented
in router to inform TCP senders about a current congestion.
Based on this information senders adapts their sending rate
to the state of network. A lot of Active queue management
are developed in the literature, among them, Random Early
Detection (RED): monitors the average queue size and drops
(or marks when used in conjunction with ECN) packets based
on statistical probabilities, and PI controller (proportional-
integral controller) is a special case of the PID controller in
which the derivative (D) of the error is not used [18], [1], [2].
These controllers are widely used in practice, because their
implementation is simple. On the other hand, many automatic
controllers use artificial intelligence (fuzzy logic, neural
networks, ...) [3], [6], [11], [17], [18]. These controllers give
very good results, but the implementation of their algorithms
requires the presence of an expert. Note that the works above
do not consider plant input saturation. Since the control
action in AQM is determining the discarting probability,
which is clearly a real number bounded between [0, 1], you
cannot have a realistic AQM that disregards input saturation.
In order to mitigate the saturation effect on stability of sys-
tems, an anti-windup synthesis for state-delayed systems has
been addressed in [5], [7], [8], [9], [10], [16], [19]. It must
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be noted that these works neglect the system discretizing
which is very important to study the real system. Thus, we
extend the output dynamic used in [9] and [10] to this work.
The dynamics of this controller has been chosen so that the
closed loop system is stable. The anti-windup compensator
itself emits two signals, one which is fed directly into the
constrained control signal and one which may be used to
drive the controller state equation directly. Virtually all anti-
windup compensators which are present in the literature
can be represented in the form of [16] and the anti-windup
compensator discussed here will be the same type.
The objective of this paper is to design a controller which
is capable of achieving the queue size and guaranteeing the
stability of saturated discrete TCP/AQM systems with both
link capacity disturbances. For this reason, dynamic anti-
windup AQM control is very simple to implement and give
good results. To explain the controller design, we organized
this paper as follows: a problem formulation under study
and useful lemmas are presented in Section II. We announce
a main theorem and this proof, an optimization problem
and an important implementation of our AQM are discussed
in Section III. Finally, a numerical example is included to
illustrate the developed results.

II. PROBLEM FORMULATION AND PRELIMINARIES

Our study will focus on the sharing of a communication
link between multiple transmitters at remote locations. We
consider a single bottleneck router running TCP flows as
illustrated in the following figure

Fig. 1. Simulation of network topology

The model of TCP behavior relating the average value of
key network variables is described by the following coupled
equations [13], [14]

Ẇ (t) =
1

RT T (t)
− W (t)W (t −RT T (t))

2RT T (t −RT T (t))
p(t −RT T (t))

q̇(t) = −C(t)+
N(t)

RT T (t)
W (t) (1)
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where
W (t) is the average TCP window size (packets);
q(t) is the average queue length (packets);
RT T (t) is the round trip time = q(t)

C(t) +Tp (secs);
C is the link capacity (packets/secs);
Tp is the propagation delay (secs);
N is the number of sessions;
p ∈ [0 1] is the probability of packet marking/dropping.

The window size and the queue length are positive and
bounded; i.e. W ∈ [0 Wmax] and q ∈ [0 qmax]. For a
given triplet of network parameters (N,C0,Tp), any triplet
ℑ= (W0,q0, p0), let

Ξ = {ℑ : W0 =
RT TC0

N
, q0 =C0(RT T −Tp), p0 =

2

W 2
0

}

be a possible operating point. Now define δℭ= ℭ−ℭ0 with
ℭ=W,q, p,C. Then, we can obtain the linearized version of
(1) as follows

δẆ (t) =
−N

RT T 2C0

(
δW (t)+δW (t −RT T (t))

)
− 1

RT T 2C0

(
δq(t)+δq(t −RT T (t))

)
−RT TC2

0

2N2 δ p(t −RT T (t))

+
RT T −Tp

RT T 2C0

(
δC(t)+δC(t −RT T (t))

)
δ q̇(t) =

N
RT T

δW (t)− 1
RT T

δq(t)− Tp

RT T
δC(t)

RT T (t) =
δq(t)

C0
+RT T (2)

Thus, rewriting (2) in state space form yields

ẋ(t) = Ax(t)+Aτ x(t − τ(t))+Bu(t − τ(t))+Bww(t)

y(t) = Cyx(t)

z(t) = Czx(t) (3)

in which

x(t) =

[
δW (t)
δq(t)

]
, w(t) =

[
δC(t)

δC(t −RT T (t))

]
,

u(t) = δ p(t), y(t) = δq(t), z(t) = RT T (t)−RTT,

A =

[ −N
RT T 2C0

−1
RT T 2C0

N
RT T

−1
RT T

]
, Ad =

[ −N
RT T 2C0

−1
RT T 2C0

0 0

]
,

B =

[
−RT TC2

0
2N2

0

]
, Bw =

[
RT T−Tp

RT T 2C0

RT T−Tp

RT T 2C0−Tp
RT T 0

]
,

Cy =
[

0 1
]
, Cz =

[
0 1

C0

]
.

The discretization of the system (3) gives

x(k+1) = Adx(k)+Aτd x(k−d(k))+Bdu(k−d(k))

+Bwd w(k)

y(k) = Cyd x(k)

z(k) = Czd x(k) (4)

where Ad = eAT , Aτd = eAτ T , Cyd = Cy, Czd = Cz, Bd =∫ T
0 eAτ (T−s)Bds, Bwd = eBwT and d(k) is a positive integer

representing the time delay of the system that we assume to
be time dependent and to satisfy the following

dm ≤ d(k)≤ dM (5)

where dm and dM are known positive and finite integers.
Then, we have

Ad =

[
1− e

−T
RT T 2C0 e

−NT
RT T 2C0

e
−T

RT T λ

]
, Aτd =

[
e

−T
RT T λ
0 0

]
,

Bd =

[
1− e

−RTTC0T

N2

0

]
, Bwd =

[
1− e

−TpT
RT T β

0 0

]

where λ = NC0RT T
RT T 2C0−2N

(
e

−2NT
RT T 2C0 − e

−T
RT T

)
e

−NT
RT T 2C0 and β =

e
−(RTT−Tp)T

RT T 2C0 .
Thus, the dynamic output stabilizing controller is considered
as

xc(k+1) = Acxc(k)+Bcy(k)

yc(k) = Ccxc(k)+Dcy(k) (6)

The interconnection of this controller with (4) is given by

x(k+1) = Adx(k)+Aτd x(k−d(k))+Bdsat(yc(k−d(k)))

+Bwd w(k)

y(k) = Cyd x(k)

z(k) = Czd x(k)

xc(k+1) = Acxc(k)+Bcy(k)−Ecψ(yc(k−d(k)))

yc(k) = Ccxc(k)+Dcy(k) (7)

The term Ecψ(yc(k−d(k))) is injected to mitigate the effect
of windup caused by saturation and

ψ(yc(k−d(k))) = yc(k−d(k))− sat(yc(k−d(k))) (8)

Note that, ψ(yc(k − d(k))) corresponds to a decentralized
dead-zone nonlinearity.
In this case, the augmented system can be represented as
follows

ξ (k+1) = 𝔸ξ (k)+𝔸dξ (k−d(k))− (𝔹+ℝEc)

×ψ(𝕂ξ (k−d(k)))+𝔹ww(k)

z(k) = ℂzξ (k) (9)

and the augmented state and matrices are given by

ξ (k) =
[

x(k)
xc(k)

]
, 𝔸=

[
Ad 0

BcCyd Ac

]
, 𝔹=

[
Bd

0

]
,

𝔸d =

[
Aτd +BdDcCyd BdCc

0 0

]
, 𝔹w =

[
Bwd

0

]
,

ℝ=

[
0

Inc

]
, 𝕂=

[
DcCyd Cc

]
, ℂz =

[
Czd 0

]
.

Denote by 𝔉zw the closed-loop transfer function from w(k)
to z(k). The objective of the H∞ control design is to find a
controller such that

∥𝔉zw∥2 <
√

γ (10)



and to minimize γ if possible. Clearly, γ describes a kind of
disturbance rejection ratio between the controlled variable
and the exogenous disturbance.
Furthermore, consider a matrix G ∈ ℜm×n and define the
following polyhedral set

S =
{

ξ (k) ∈ ℜn; ∣(𝕂(k)−G(k))ξ (k)∣ ≤ u0(k)

}
the following useful lemmas will be used in this paper

Lemma 2.1: [7] If ξ (k) ∈ S , then the following relation

ψT (𝕂ξ (k))T
[
ψ(𝕂ξ (k))−Gξ (k)

]
≤ 0

is verified for any diagonal positive matrix T ∈ ℜm×m.

III. MAIN RESULTS

A. Stability Results

In congestion control, one important problem is to find
maximum allowable upper bound of the time delay such that
the network can still be stabilized or find the H∞ performance
index can still be guaranteed. This problem can be easily
dealt based on the following Theorem.

Theorem 3.1: If there exist symmetric positive definite
matrices P̂, Q̂, R̂, appropriately sized matrices Fc, T̂ , Ĝ,Ŷ1,Ŷ2,
Ŷ3,Ŷ4,Ŷ5 and positive scalar γ satisfying the LMI (11)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 Π15 Π16 Π17

∗ Π22 Π23 Π24 Π25 Π26 0
∗ ∗ Π33 Π34 Π35 0 0
∗ ∗ ∗ Π44 0 Π46 0
∗ ∗ ∗ ∗ Π55 Π56 0
∗ ∗ ∗ ∗ ∗ Π66 0
∗ ∗ ∗ ∗ ∗ ∗ Π77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (11)

where dMm = dM −dm and

Π11 = −P̂+ Q̂+dMmR̂− Ŷ1 − Ŷ T
1 , Π12 = Ŷ1 − Ŷ T

2

Π22 = −Q̂+ Ŷ2 + Ŷ T
2 , Π13 = Ŷ1 − Ŷ T

3 , Π23 = Ŷ2 + Ŷ T
3

Π33 = Ŷ3 + Ŷ T
3 , Π14 =−Ŷ T

4 , Π24 = ĜT + Ŷ T
4 , Π34 = Ŷ T

4

Π44 = −2T̂ , Π15 =−Ŷ T
5 , Π25 = Π35 = Ŷ T

5 , Π55 =−I

Π16 = P̂𝔸T , Π26 = P̂𝔸T
d , Π46 =−T̂𝔹T −FT

c ℝ
T

Π56 = 𝔹
T
w, Π66 =−P̂, Π17 = P̂ℂT

z , Π77 =−γI

then, an anti-windup compensation Ec = FcT̂−1 exists, such
that the closed-loop system (9) satisfies
(1) asymptotic stability;
(2) the performance index (10).

Proof 1: To prove this theorem, let us consider the fol-
lowing Lyapunov function

V (k) = V1(k)+V2(k)+V3(k)

= ξ T (k)Pξ (k)+
k−1

∑
l=k−d(k)

ξ T (l)Qξ (l)

+
−dm+1

∑
l=−dM+2

k−1

∑
m=k+l−1

ξ T (m)Rξ (m) (12)

and let us compute the difference of the Lyapunov function

ΔV1(k) = ξ T (k+1)Pξ (k+1)−ξ T (k)Pξ (k) (13)

ΔV2(k) =
k

∑
l=k+1−d(k+1)

ξ T (l)Qξ (l)−
k−1

∑
l=k−d(k)

ξ T (l)Qξ (l)

= ξ T (k)Qξ (k)−ξ T (k−d(k))Qξ (k−d(k))

+
k−1

∑
l=k+1−dm

ξ T (l)Qξ (l)−
k−1

∑
l=k+1−d(k)

ξ T (l)Qξ (l)

+
k−dm

∑
l=k+1−d(k+1)

ξ T (l)Qξ (l) (14)

ΔV3(k) =
−dm+1

∑
l=−dM+2

[
k

∑
m=k+l

ξ T (m)Rξ (m)

−
k−1

∑
m=k+l−1

ξ T (m)Rξ (m)

]

= dMmξ T (k)Rξ (k)−
k−dm

∑
l=k+1−dM

ξ T (l)Rξ (l) (15)

where dMm = dM −dm.
Since (5) with ∀Q < R, one can easily see that

k−1

∑
l=k+1−dm

ξ T (l)Qξ (l)−
k−1

∑
l=k+1−d(k)

ξ T (l)Qξ (l)

≤
k−1

∑
l=k+1−dm

ξ T (l)Qξ (l)−
k−1

∑
l=k+1−dm

ξ T (l)Qξ (l) = 0

(16)

k−dm

∑
l=k+1−d(k+1)

ξ T (l)Qξ (l)−
k−dm

∑
l=k+1−dM

ξ T (l)Rξ (l)

≤
k−dm

∑
l=k+1−d(k+1)

ξ T (l)Rξ (l)−
k−dm

∑
l=k+1−dM

ξ T (l)Rξ (l)

≤
k−dm

∑
l=k+1−dM

ξ T (l)Rξ (l)−
k−dm

∑
l=k+1−dM

ξ T (l)Rξ (l) = 0

(17)

From (13)-(17), it follows that

ΔV (k) = ξ T (k+1)Pξ (k+1)+ξ T (k)
(
−P+Q+dMm

×R
)

ξ (k)−ξ T (k−d(k))Qξ (k−d(k)) (18)

Using the Newton-Leibniz formula provides for any appro-
priately dimensioned matrices Y1,...,5 yields[

ξ T (k)Y1 +ξ T (k−d(k))Y2 +
k−1

∑
i=k−d(k)

yT (i)Y3

+ψT (𝕂ξ (k−d(k)))Y4 +wT (k)Y5

][
−ξ (k)

+ξ (k−d(k))+
k−1

∑
i=k−d(k)

y(i)
]
= 0 (19)



where y(i) = ξ (i+1)−ξ (i).
On the other hand, according to the system equation (9), we
have

ΔV (k) ≤
[
𝔸ξ (k)+𝔸dξ (k−d(k))− (𝔹+ℝEc)

×ψ(𝕂ξ (k−d(k)))+𝔹ww(k)
]T

P
[
𝔸ξ (k)

+𝔸dξ (k−d(k))− (𝔹+ℝEc)ψ(𝕂ξ (k−d(k)))

+𝔹ww(k)
]
+ξ T (k)

[
−P+Q+dMmR

]
ξ (k)

−ξ T (k−d(k))Qξ (k−d(k))+2
[
ξ T (k)Y1

+ξ T (k−d(k))Y2 +
k−1

∑
i=k−d(k)

yT (i)Y3 +wT (k)Y5

+ψT (𝕂ξ (k−d(k)))Y4

][
−ξ (k)+ξ (k−d(k))

+
k−1

∑
i=k−d(k)

y(i)
]
−2ψT (𝕂ξ (k−d(k)))T

×
[
ψ(𝕂ξ (k−d(k)))−Gξ (k−d(k))

]
−wT (k)w(k)+

1
γ

zT (k)z(k) (20)

where ΔV (k) = ΔV (k)−wT (k)w(k)+ 1
γ zT (k)z(k).

By simple manipulation, (20) can be rewritten as

ΔV (k)−wT (k)w(k)+
1
γ

zT (k)z(k)≤ ηT (k)Ψη(k) (21)

where

Ψ =

⎡⎢⎢⎢⎢⎣
Ψ11 Ψ12 Ψ13 Ψ14 Ψ15

∗ Ψ22 Ψ23 Ψ24 Ψ25

∗ ∗ Ψ33 Ψ34 Ψ35

∗ ∗ ∗ Ψ44 Ψ45

∗ ∗ ∗ ∗ Ψ55

⎤⎥⎥⎥⎥⎦ ,

ηT (k) =
[

ξ T (k) ξ T (k−d(k)) ∑k−1
i=k−d(k) yT (i)

ψT (𝕂ξ (k−d(k))) wT (k)
]

and

Ψ11 = 𝔸
T P𝔸−P+Q+dMmR−Y1 −Y T

1 +
1
γ
ℂ

T
z ℂz

Ψ12 = 𝔸
T P𝔸d +Y1 −Y T

2 , Ψ22 = 𝔸
T
d P𝔸d −Q+Y2 +Y T

2

Ψ13 = Y1 −Y T
3 , Ψ23 = Y2 +Y T

3 , Ψ33 = Y3 +Y T
3 , Ψ34 = Y T

4

Ψ14 = −𝔸
T P(𝔹+ℝEc)−Y T

4 , Ψ15 = 𝔸
T P𝔹w −Y T

5

Ψ24 = −𝔸
T
d P(𝔹+ℝEc)+GT T T +Y T

4 , Ψ35 = Y T
5

Ψ44 = (𝔹+ℝEc)
T P(𝔹+ℝEc)−2T, Ψ25 = 𝔸

T
d P𝔹w +Y T

5

Ψ45 = −(𝔹+ℝEc)
T P𝔹w, Ψ55 = 𝔹

T
wP𝔹w − I

The matrix Ψ can be rewritten as Ψ = ϒ+Γ = ϒ+ LT PL
where

ϒ =

⎡⎢⎢⎢⎢⎣
ϒ11 ϒ12 ϒ13 ϒ14 ϒ15

∗ ϒ22 ϒ23 ϒ24 ϒ25

∗ ∗ ϒ33 ϒ34 ϒ35

∗ ∗ ∗ ϒ44 0
∗ ∗ ∗ ∗ ϒ55

⎤⎥⎥⎥⎥⎦ ,L =

⎡⎢⎢⎢⎢⎣
𝔸

T

𝔸
T
d

0
−(𝔹+ℝEc)

T

𝔹
T
w

⎤⎥⎥⎥⎥⎦

and

ϒ11 = −P+Q+dMmR−Y1 −Y T
1 +

1
γ
ℂ

T
z ℂz

ϒ12 = Y1 −Y T
2 , ϒ22 =−Q+Y2 +Y T

2 , ϒ13 = Y1 −Y T
3

ϒ23 = Y2 +Y T
3 , ϒ33 = Y3 +Y T

3 , ϒ14 =−Y T
4

ϒ24 = GT T T +Y T
4 , ϒ34 = Y T

4 , ϒ44 =−2T

ϒ15 = −Y T
5 , ϒ25 = Y T

5 , ϒ35 = Y T
5 , ϒ55 =−I

Then, we have

ΔV (k)−wT (k)w(k)+
1
γ

zT (k)z(k)≤ ηT (t)(ϒ+LT PL)η(t)

It is clear that if

ϒ+LT PL < 0 (22)

then

ΔV (k)−wT (k)w(k)+
1
γ

zT (k)z(k)< 0 (23)

Thus, the following condition is obtained by applying the
Schur complement to (22)⎡⎢⎢⎢⎢⎢⎢⎣

ϒ11 ϒ12 ϒ13 ϒ14 ϒ15 𝔸
T P

∗ ϒ22 ϒ23 ϒ24 ϒ25 𝔸
T
d P

∗ ∗ ϒ33 ϒ34 ϒ35 0
∗ ∗ ∗ ϒ44 0 −(𝔹+ℝEc)

T P
∗ ∗ ∗ ∗ ϒ55 𝔹

T
wP

∗ ∗ ∗ ∗ ∗ −P

⎤⎥⎥⎥⎥⎥⎥⎦< 0 (24)

Pre- and post-multiplying (24) by Δ = diag{P−1,P−1,P−1,
T−1, I,P−1}. Then, applying the Schur complement and
taking the following changes of variables

P̂ = P−1, T̂ = T−1, Fc = EcT̂ , Ĝ = GP̂, Ŷ5 = Y5P̂

Λ̂ = P̂ΛP̂ with Λ = Q,R,Y1,Y2,Y3, and Ŷ4 = T̂Y4P̂

We obtain the condition (11). Since (11) holds, the condition
(23) is satisfied. Now, summing up (23) from 0 to ∞ with
respect to k yields,

V (∞)<V (0)+
∞

∑
k=0

(
wT (k)w(k)− 1

γ
zT (k)z(k)

)
(25)

Under the zero initial condition V (0) = 0 and by noting that
V (∞) ≥ 0, we have (10) which implies that system (9) has
its restricted L2−gain from w(k) to z(k) less than γ . Now
taking w(k) = 0, it is easy to see that ΔV (k)< 0. The proof
is completed.

B. Optimization Problem

Verifying LMIs of Theorem 3.1 ensures that the closed
loop system (9) presents bounded trajectories for any ad-
missible perturbation. For a non-null positive bound on
the L2−norm of the admissible disturbances, the idea is
to minimize the upper bound of the L2−gain of w(k)
on z(k). Considering that the initial condition is null, this
can be obtained from the solution of the following convex
optimization problem

minγ sub ject to (11) (26)



C. Implementation Constraints

The control signal for the network is given by

δ p(k) = u(k) = yc(k) =
[
𝕂1 𝕂2 𝕂3

]
ξ (k) (27)

In order to relax the computing resources to implement our
proposal on a real network we use an approximation as
follows

δW (k) =W (k)−W0 =
RT T

N

(NW (k)
RT T

−C0

)
=

RT T
N

(
f low rate−C0

)
=

RT T
N

× rate o f mismatch(28)

Furthermore, as in [4], one can also notice that the rate of
mismatch is the rate at which the queue length grows when
the buffer is nonempty. Therefore, we can approximate it by
δq
T where 1

T is the sampling frequency.
Hence, (27) becomes

δ p(k) =
(
𝕂1

RT T
NT

+𝕂2

)
δq(k)+𝕂3xc(k)

=
[

0 𝕂1
RT T
NT +𝕂2 𝕂3

]
ξ (k) (29)

As pointed out before, to implement our AQM controller
using (11), we first discretize (3).

IV. ILLUSTRATIVE EXAMPLE

The above AQM controller is obtained via Theorem 3.1
using the LMI-toolbox of MATLAB. In order to demon-
strate the effectiveness and applicability of proposed design
methodology, some Matlab simulations of experiments are
provided to compare the proposed design approach with
RED control scheme for AQM routers. A single bottlenecked
router running AQM controller (29) is considered in the
simulations. In addition to the TCP flows addressed in the
model, we also introduced FTP flows into the router to
generate a realistic traffic scenario.
The round trip time is RT T = 0.253, the bottleneck link
capacity is C0 = 3750, the operating point is q0 = 175, the
number of connections N = 60. From the following model
builder W0 = RT TC0

N , p0 = 2
W 2

0
and Tp = RT T − q0

C0
we can

calculate the steady state discard probability, the propagation
delay and the round trip time, respectively. For this setup, we
assume u0 = p0. On the other hand, bellow the matrices of
output stabilizing controller are given explicitly

Ac = 0, Bc = 1,Cc = 8.4969×10−6, Dc = 1.6996×10−5

The simulation results are evaluated according to the distur-
bance signal which is defined as

w(t) =

{
10, 0 ≤ t ≤ 1

0, t ≥ 1

Then, in order to compare the results of the proposed
AQM controller with other AQM router design schemes, we
introduce RED controller in the simulations.
From [12] a transfer function model for RED is C(s) =
K×Lred

s+K where Lred = Pmax
maxth −minth

. The RED parameters
are chosen as that K = 0.005 and the dynamic range

(minth,maxth) are (150,700) packets. REDs averaging
weight α = 1.33×106 and Pmax = 0.1.
Fig. 2 and 3 depict the queue length and discard probability,
respectively, of both AQM controller and RED with initial
values ξ0 = [0.5 0.5]T and the obtained anti-windup com-
pensator from Theorem 3.1, Ec = −2.7461 × 10−5 where
dMm = 0.246 and T = 0.0001. The resolution of the opti-
mization problem (26) let us obtain

√γ = 0.1809.

Time [s]
10 20 30 40 50 60 70 80 90 100

174.92

174.94

174.96

174.98

175

175.02

175.04

175.06

Theorem 3.1
RED

Fig. 2. Variation of a queue over average value

Time [s]
10 20 30 40 50 60 70 80 90 100

×10-3

7.998

7.9985

7.999

7.9995

8

8.0005

8.001

8.0015

8.002

8.0025

Theorem 3.1
RED

Fig. 3. Variation of discard probability over average value

It can be seen from Fig. 2 that all queue length were stabi-
lized at target value when our AQM controller is used. Also,
the proposed method has achieved superior performance
with less probability of packet drop compared to RED as
shown in Fig. 3. This proves that the compensator used can
force the system to rapidly achieve the desired reference
value. In addition, the achieved controller tackles one of
the great weakness of previous AQM mechanisms as it does
not require to be tuned for different operating conditions.
Specifying the desired performance objective through the
desired reference value, the proposed controller can also meet
the other performance objectives.

V. CONCLUSION

It is clear that the dynamic anti-windup compensator re-
duces the probability dropping packet. Therefore, it increases
the throughput of the networks of the users. A control
theory approach has been successfully developed to solve
congestion problem in TCP/IP Routers. The methodology
has been validated by a numerical example, showing the
improvements with respect to previous approaches in the
literature.
The paper can be improved by using a more realistic model



− 

of Internet traffic within a large parameter set. A typical 
traffic mix can be used for the evaluation. More complex 
network topologies can be add. These may include the 
reverse-dumbbell topology with multiple congested gateways 
and realistic Internet-like topologies such as power-laws. 
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