
HAL Id: hal-01965996
https://hal.science/hal-01965996v1

Submitted on 2 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining a physical model with a nonlinear fluctuation
for signal propagation modeling in WSNs

Sandy Mahfouz, Paul Honeine, Farah Mourad-Chehade, Joumana Farah,
Hichem Snoussi

To cite this version:
Sandy Mahfouz, Paul Honeine, Farah Mourad-Chehade, Joumana Farah, Hichem Snoussi. Combining
a physical model with a nonlinear fluctuation for signal propagation modeling in WSNs. Proc. 11th
IEEE/ACS International Conference on Computer Systems and Applications, 2014, Doha, Qatar.
pp.413-419, �10.1109/AICCSA.2014.7073228�. �hal-01965996�

https://hal.science/hal-01965996v1
https://hal.archives-ouvertes.fr


Combining a physical model with a nonlinear fluctuation

for signal propagation modeling in WSNs

Sandy Mahfouz∗, Paul Honeine∗, Farah Mourad-Chehade∗, Joumana Farah†, Hichem Snoussi∗
∗Institut Charles Delaunay (CNRS), Université de Technologie de Troyes, Troyes, France
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Abstract—In this paper, we propose a semiparametric
regression model that relates the received signal strength indi-
cators (RSSIs) to the distances separating stationary sensors
and moving sensors in a wireless sensor network. This model
combines the well-known log-distance theoretical propagation
model with a nonlinear fluctuation term, estimated within the
framework of kernel-based machines. This leads to a more
robust propagation model. A fully comprehensive study of
the choices of parameters is provided, and a comparison to
state-of-the-art models using real and simulated data is given
as well.

Index Terms—Distance estimation, kernel functions, multi-
kernel learning, RSSI, semiparametric regression.

I. INTRODUCTION

Received signal strength indicator (RSSI), a standard

feature in most radios, has shown attractive properties that

could be exploited for localization in WSNs [1]. In fact, one

can take advantage of the attenuation of the signal strength

with the increase of the traveled distance, to estimate the

distances between sensors, using only RSSI information,

without the need of additional hardware. However, estimat-

ing the exact distances using RSSI turns out to be really

challenging, since the measurements of signals’ powers

could be significantly altered by the presence of additive

noise, multipath fading, shadowing, and other interferences.

Therefore, it becomes more and more important to find

a mathematical model which can accurately describe the

relationship between the RSSI values and the distances.

Several models have been proposed in the literature to

characterize the relationship between the RSSIs and the

distances. A popular one is the Okumura-Hata model, also

known as the log-distance propagation model [2], [3], [4];

even though this model has many limitations, it is still

widely used because of its simplicity. However, this model

is basically for outdoors, since it predicts the signal strength

without taking the surrounding environment into account,

such as the walls and the floors. Therefore, it becomes

inaccurate in cases where there is no line of sight between

sensors. Different models have been proposed to overcome

this problem, such as modified versions of the log-distance

model [5], [6], in which the attenuations due to floors

and walls are explicitly included. In other ones [7], [8],

the authors determine a mathematical relationship between

RSSIs and distances, without taking physical properties

into consideration. To this end, they estimate an empirical

model based on polynomial regression. Depending on the

applications and the considered environment, several other

models can also be found in the literature [9], [10], [11].

Lately, kernel machine methods have been greatly used

in the context of function approximation and model fitting,

since they simplify the specification of a nonparametric

model, especially in the case of nonlinear data [12], [13],

[14]. In addition, kernel machine methods are being widely

used for semiparametric regression, to characterize relation-

ships between data in the medical domain as in [15], or in

hyperspectral imaging as in [16]. In this paper, we propose a

semiparametric propagation model to define the relationship

between the RSSIs and distances. The proposed model

combines the well-known log-distance propagation model

with a nonlinear fluctuation term, defined in a reproducing

kernel Hilbert space. The nonlinear term added in the

proposed model compensates for the missing term in the

log-distance model, i.e., all environment’s sources of noises,

therefore allowing a better modeling of the RSSI/distance

relationship. To our knowledge, such a model has not yet

been proposed in the literature.

The rest of the paper is organized as follows. Section

II gives a brief description of two well-known state-of-the-

art models, along with an estimation of their parameters.

Section III describes the proposed semiparametric model.

Section IV provides a comparison of the proposed model

to the two state-of-the-art models using real and simulated

data, while Section V concludes the paper.

II. STATE-OF-THE-ART MODELS

As previously explained, many signal propagation mod-

els, that characterize the relationship between the RSSIs

and the distances, are proposed in the literature. Some

models take into account the physical characteristics of

the environment, such as the path-loss in the well-known

theoretical log-distance model [2], [3]. Others avoid the

physical properties by finding a mathematical relationship

based on polynomial regression [7], [8].

A training phase is necessary for both types of mod-

els in order to determine their parameters. To this end,

N reference positions, denoted by pℓ, ℓ ∈ {1, . . . , N},

are generated uniformly or randomly in the studied en-

vironment. A stationary sensor with known position s

continuously broadcasts signals in the network at a fixed

initial power, and a sensor is placed consecutively at the

reference positions to detect the broadcasted signals and

measure their RSSIs. Let ρℓ be the power received from



the stationary sensor at position s by the sensor at position

pℓ. Then, the distances dℓ between each reference position

pℓ and the stationary sensor are computed. In this way, a

training set of N pairs (ρℓ, dℓ) is obtained, that can be used

for the estimation of the model’s parameters.

After determining the model’s parameters, one can esti-

mate the distance between the stationary sensor at position

s and a sensor at an unknown position xi using the

estimated model and the RSSI value ρi measured by the

sensor.

A brief description of the log-distance model and the es-

timation of its parameters is provided in the first subsection.

In the second subsection, a description of the mathematical

model based on polynomial regression is provided, along

with its parameters.

A. Log-distance propagation model

Both theoretical and measurements-based propagation

models indicate that the received signal strength decreases

logarithmically with distance. Therefore, the log-distance

propagation model, that characterizes the relationship be-

tween RSSIs and distances, is expressed as follows:

ρi = ρ0 − 10nP log10
di

d0
, (1)

where ρi is the power received from the stationary sensor

at position s by the sensor at position xi, ρ0 is the power

at the reference distance d0, di = ‖s−xi‖ is the Euclidian

distance between the position xi of the considered node

and the position s of a stationary sensor, and nP is the

path-loss exponent. The value of nP depends on the specific

propagation environment, i.e. type of construction material,

architecture, location within building, dimensions of the

coverage area, etc. For low values of nP , the signal loss

towards distance is low. Developing equation (1) leads to

the following:

log10 di =
ρ0

10nP
+ log10 d0 −

ρi

10nP
. (2)

Now let a = − 1
10nP

and b = ρ0
10nP

+ log10 d0. Then

equation (2) can be written as follows:

log10 di = a ρi + b. (3)

The parameters a and b depend on the characteristics of the

environment and can be estimated from the N reference

measurements using the Least-Squares (LS) method. They

must be chosen in a way to minimize the sum of squared

residuals, i.e. the mean squared error on the training set,

given by:

1

N

N
∑

ℓ=1

ε2ℓ . (4)

Here, εℓ = log10 dℓ − a ρℓ − b, and ℓ ∈ {1, . . . , N}.

By taking the partial derivatives of (4) with respect to a

and b and setting them to zero, one gets the following in

matrix form:
[

1
⊤D

D

]

=

[

1
⊤ρ

ρ

N

1

] [

a

b

]

, (5)

where 1 is the N×1 vector of ones, D is the N×1 vector

whose ℓ-th entry is equal to log10 dℓ, and ρ is the N × 1
vector whose ℓ-th entry is equal to ρℓ, with ℓ ∈ {1, . . . , N}.

Having computed the values of a and b using (5), one can

estimate the distance d̂i between the considered stationary

sensor at position s and a sensor at an unknown position

xi in the network using the following equation:

d̂i = 10aρi+b,

where ρi is the power received from the stationary sensor

at position s by the sensor at position xi.

B. Polynomial model

Having described the log-distance propagation model and

its parameters, we introduce in this subsection the polyno-

mial model. The objective of using a polynomial regression

is to determine a mathematical relation between RSSIs and

distances, without having to take physical properties into

consideration. In such case, the signal propagation model

is then the n-th degree polynomial given by the following:

di = a0 + a1 ρi + a2 ρ
2
i + · · ·+ an ρ

n
i , (6)

where aj , j ∈ {0, . . . , n}, are the polynomial’s coefficients

to be determined.

The parameters aj should be chosen in a way to fit the

n-th degree polynomial through the training set. The LS

method is used here as well; therefore, we need to find the

parameters aj that allow us to minimize the mean squared

error on the training set as given in (4), with εℓ = dℓ −
a0 − a1 ρℓ − a2 ρ

2
ℓ + · · · − an ρ

n
ℓ , and ℓ ∈ {1, . . . , N}.

The partial derivatives of (4) with respect to a0, a1, . . . , an
are then set to zero and rearranged in order to obtain the

following matrix form of the solution:











d1
d2
...

dN











=











ρ01
ρ02
...

ρ0N

. . .

. . .

. . .

. . .

ρn1
ρn2
...

ρnN





















a0
a1
...

an











. (7)

Having estimated the parameters aj , j ∈ {1, . . . , n} using

(7), one can then estimate the distance d̂i separating the

stationary sensor at position s from the sensor at unknown

position xi using (6).

Remark 1. It is interesting to notice that replacing log10 di
by di in (3) leads to a particular case of (6), where the

parameters aj , j ∈ {2, . . . , n}, are null. In fact, as already

mentioned, it is proven that the received signal strength

decreases logarithmically with distance; in other words,

the distance in logarithm scale is a linear function of the

received signal strength as shown in (3).

 



III. PROPOSED SEMIPARAMETRIC MODEL

As we already stated, the received signal strength de-

creases logarithmically with distance. However, the log-

distance signal propagation model of (1) alone is insuf-

ficient to characterize the RSSI/distance relationship, since

it assumes that the latter is fully parametric, neglecting

then all other factors in the environment, such as physical

obstacles, multipath propagation, additive noises, etc. In

this section, we propose a new model to characterize

the relationship between the RSSIs and the distances.

Our model is a semi-parametric one that combines the

theoretical log-distance signal propagation model with a

nonlinear fluctuation term, that represents a combination

of all unknown factors affecting the RSSI measures. This

term should provide the log-distance physical model with

flexibility, resulting in a more accurate model.

Let ψ(·) denote the model that associates to each RSSI

ρi the logarithm of the distance log10(di). According to

the definition given in the beginning of this section, ψ(·)
can be decomposed into twos terms: a linear term and a

nonlinear fluctuation term, as follows:

ψ(·) = ψlin(·) + ψnlin(·) (8)

To determine ψ(·), we consider the log-distance model of

(1), and add a noise term ϕ. Then the relationship between

the RSSIs and the distances is given by:

ρi = ρ0 − 10nP log10
di

d0
+ ϕ. (9)

This model can be written as follows:

log10 di =
ρ0

10nP
+ log10 d0 −

ρi

10nP
+

ϕ

10nP
. (10)

One can see that (10) is a combination of a linear model in

terms of ρi and a nonlinear model. Thus, one can conclude

the following:
{

ψlin(ρi) = α ρi + β,

ψnlin(ρi) =
ϕ

10nP

,
(11)

where α = − 1
10nP

and β = ρ0
10nP

+ log10 d0. As for

the nonlinear term ψnlin(·), we assume that it lies in a

reproducing kernel Hilbert space denoted by Hnlin, and

generated by a positive definite kernel function κnlin(·, ·).
From the representer’s theorem [17], [18], ψnlin(·) can be

written as a linear combination of kernels:

ψnlin(·) =
N
∑

ℓ=1

γℓ κnlin(ρℓ, ·), (12)

where κnlin : IR× IR 7→ IR, and γℓ, ℓ ∈ {1, . . . , N}, are

parameters to be estimated. According to [19], it can be

shown that the direct sum of Hlin and Hnlin of the RKHS

of kernels κlin(ρu, ρv) = ρ⊤u ρv and κnlin is also a RKHS

with the following kernel function:

κ(ρu, ρv) = ρ⊤u ρv + κnlin(ρu, ρv),

= κlin(ρu, ρv) + κnlin(ρu, ρv).

TABLE I: Some commonly used reproducing kernels, with

parameters c, σ > 0, and q ∈ IN+.

Type General form

Polynomial κnlin(ρu, ρv) =
(

c+ ρ
⊤
u ρv

)q

Exponential κnlin(ρu, ρv) = exp
(

1

σ
ρ
⊤
u ρv

)

Gaussian κnlin(ρu, ρv) = exp
(

− 1

2σ2
‖ρu − ρv‖2

)

Table I shows some of the most commonly used kernel

functions κnlin.

Now the N +2 parameters, α, β, and γ = (γ1 . . . γN )⊤,

to be estimated can be found using the training set and

the Least-Squares (LS) method. They must be chosen in

a way to minimize the mean squared error on the training

set, given by:

1

N

N
∑

ℓ=1

ε2ℓ + η‖ψnlin‖
2
Hnlin

. (13)

Here, εℓ = log10 dℓ − αρi − β −
∑N
j=1 γj κ(ρj , ρℓ), ℓ ∈

{1, . . . , N}, and the quantity η is a regularization parameter

that controls the tradeoff between the training error and the

complexity of the solution.

By multiplying (13) by N for convenience and writing

it in matrix form, one gets the following:

D⊤D + α2 ρ⊤ρ+Nβ2 + γ⊤K⊤

nlinKnlinγ

− 2αD⊤ρ− 2β1⊤D − 2D⊤Knlinγ + 2αβ1⊤ρ

+ 2αρ⊤Knlinγ + 2β1⊤γ

+ η Nγ⊤Knlinγ, (14)

where Knlin is the N×N matrix whose (u, v)-th entry is

κnlin(ρu, ρv), for u, v ∈ {1, ..., N}.

Then, the partial derivatives in matrix form of (14) with

respect to α, β and γ are given by the following:










1
2
∂
∂α

= ρ⊤ρα+ 1
⊤ρβ + ρ⊤Knlinγ −D⊤ρ,

1
2
∂
∂β

= 1
⊤ ρα+Nβ + 1

⊤Knlinγ − 1
⊤D,

1
2
∂
∂γ

= ρα+ 1β + (Knlin + ηNI)γ −D,

(15)

where I is the N×N identity matrix.

Setting the derivatives in (15) to zero will lead to a linear

system having the form B = AX , where

X =





α

β

γ



 ,B =





1
⊤D

D

D⊤ρ



 ,

A =





1
⊤ρ

ρ

ρ⊤ρ

N

1

1
⊤ρ

1
⊤Knlin

Knlin + ηNI

ρ⊤Knlin



 (16)

The solution is then given by:

X = (A⊤A)−1A⊤B. (17)

After computing the model’s parameters using (17), one can

find the logarithm of any distance separating a stationary

 



sensor and a moving sensor in the network using only the

RSSI ρi, as follows:

log10 di = ψ(ρi) = αρi + β +

N
∑

ℓ=1

γℓ κ(ρℓ, ρi). (18)

The distance is then given by di = 10ψ(ρi).

Remark 2. It is interesting to see that the solution obtained

in (5) is actually included in the final solution (16) of

the proposed semiparametric model. Indeed, the main dif-

ference between the proposed model and the log-distance

model lies in the nonlinear fluctuation term, whose inclu-

sion induces the introduction of γ, thus the incorporation

of N new equations to the system.

Remark 3. In this paper, we use the gaussian kernel of Table

I. Nevertheless, let us consider the polynomial kernel and

study the effect of such choice on our model. From (18)

and Table I, one can write the following:

log10 di = αρi + β +

N
∑

ℓ=1

γℓ
(

c+ ρ⊤ℓ ρi
)q
, (19)

where c > 0, and q ∈ IN+. For q = 1, the terms of (19)

can be rearranged as follows:

log10 di = β + c

N
∑

ℓ=1

γℓ + (α+

N
∑

ℓ=1

γℓρℓ)ρi.

This equation takes the same form as (3). Therefore, when

choosing the polynomial kernel with q = 1, the obtained

model is equivalent to the log-distance propagation model.

Now let q = 2; equation (19) can then be written as

follows:

log10 di = β+c2
N
∑

ℓ=1

γℓ+(α+2c

N
∑

ℓ=1

γℓρℓ)ρi+(

N
∑

ℓ=1

γℓρ
2
ℓ)ρ

2
i .

This equation is of the following form: log10 di = a0 +
a1ρi + a2ρ

2
i . For larger values of q, one will eventually be

able to rearrange the terms and write the following:

log10 di = a0 + a1 ρi + a2 ρ
2
i + · · ·+ aq ρ

q
i , (20)

where aj , j ∈ {0, . . . , q}, are coefficients that are functions

of α, β, c, and γℓ, ℓ ∈ {1 . . .N}. Finally, one can conclude

that choosing the polynomial kernel in our model leads to

(20), which is the same model described in Remark 1.

IV. EXPERIMENTAL RESULTS

We now propose to evaluate the accuracy of the proposed

model, when used for distance estimation, in the case of

real data and simulated data. In the first subsection, a set

of collected measurements available from [20] is used for

the evaluation, and the results are then compared to ones

obtained using the two state-of-the-art models of Section

II. Then, in the second subsection, the model is evaluated

on simulated data; the results are also compared to ones

obtained using the models of Section II.

A. Evaluation of the model on real data

In this subsection, we use the set of collected measure-

ments available from [20] for the evaluation of the proposed

model. The measurements are carried out in a room of

approximately 10m×10m, where 48 uniformly distributed

EyesIFX sensor nodes are deployed. Furniture and people

in the room cause multi-path interferences affecting the

collected RSSI values. We consider that there are 4 fixed

stationary sensors at known positions, and 44 other sensors

with known positions for the training and test phases. The

left plot of Fig. 1 shows the topology of the testbed.

It is important to note that the average values over

time of the RSSIs are used in this section. In fact, the

RSSIs vary a lot with respect to time and movements, as

one can see in the right plot of Fig. 1. These variations

are known as short-term or multi-path fading. On the

other hand, the local average of the signal varies slowly.

These slow fluctuations depend mostly on environmental

characteristics, and they are known as long-term fading.

Therefore, it is more suitable to use the average values of

the RSSIs than to use all the collected values [9].

Based on the described scenario, one can see that there

are 4 signal propagation models to be determined, i.e., one

model per stationary sensor. Each model has a different

set of training data to be used, and different parameters

that need to be found. In fact, the RSSIs of the signals

exchanged between each stationary sensor and the 44 other

sensors are used along with the distances separating this

stationary sensor from the other sensors. This information

is then used in the training phase as described in III to

compute the model’s parameters. We use the Gaussian

kernel from Table I, whose parameters are chosen in a

way to minimize the error on the training set. The value

of this error for the 4 computed models is given in Table

II, along with the error on the training set for the physical

log-distance propagation model used in [2], [3], [4] and

for the polynomial model used in [7], [8]. We also use

the leave-one-out (LOO) technique in order to evaluate the

performance of the proposed model in the case of data

that are not part of the training set. The LOO technique

involves using a single observation from the collected data

as the validation data, and the remaining observations as

the training data. This is repeated 44 times, such that

each observation is used once as the validation data. This

technique is interesting because it allows us to compare

our proposed model to the log-distance model and the

polynomial model, even though the set of collected data is

not really large. Finally, the mean estimation error averaged

over the 44 simulations is stored in Table II for the 4
computed models, in the case of the proposed model,

as well as the two already-described ones. One can see

from Table II that the proposed model yields better results

than the state-of-the-art models, when comparing the mean

estimation error.
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Fig. 1: Left plot: Topology of the testbed, where ∆ represents the stationary sensors and + represents the training

positions. Right plot: RSSIs measured at the training positions as a function of the distances separating these positions

from the stationary sensor 1.

TABLE II: Comparison between models (error in meters) for real data

Physical Polynomial Polynomial Polynomial Proposed

model model (n = 2) model (n = 3) model (n = 4) model

Model 1
Training error 1.14 1.13 1.09 1.10 0.44

LOO error 1.19 1.24 1.21 1.76 1.07

Model 2
Training error 1.55 1.41 1.40 1.40 1.42

LOO error 1.62 1.48 1.51 1.54 1.51

Model 3
Training error 1.47 1.44 1.44 1.41 1.32

LOO error 1.52 1.55 1.88 2.53 1.46

Model 4
Training error 1.66 1.65 1.65 1.62 1.47

LOO error 1.72 1.78 1.78 1.83 1.71

Mean error
Training error 1.46 1.41 1.39 1.38 1.16

LOO error 1.51 1.51 1.60 1.91 1.43

B. Evaluation of the model on simulated data

In this subsection, we evaluate the proposed model using

simulated data. To this end, we consider the average walls

model described in [11] to generate the RSSI measures.

This model is a modified version of the log-distance model

that explicitly takes into account the attenuations due to

walls. The received signal strength indicator is then given

by the following:

ρi = ρ0 − 10nP log10
di

d0
−Nwi

Lwi
+ ǫi, (21)

where ρi (in dB) is the power received from the stationary

sensor at position s by the sensor at position xi, ρ0 is the

power at the reference distance d0 set to 1dB, while the

path-loss exponent nP is set to 4. As for the quantities Lwi

and Nwi
, they denote respectively the loss due to walls and

the number of penetrated walls. The quantity Lwi
is taken

equal to 6.9dB, since we consider the case of heavy thick

walls [11]. Finally, the quantity ǫi is a zero mean additive

white noise, whose standard deviation is taken equal to 1%
of the standard deviation of the RSSIs.

Now consider the 25m× 5m area given in Fig. 2, where

2 fixed stationary sensors and 45 known positions for the

training phase are considered. This figure shows that there

are 5 rooms in the area; therefore, the signal penetrates a

maximum of 4 walls during its propagation, i.e., Nwi
∈

{0 . . . 4}. As for the test phase, 100 positions are randomly
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Fig. 2: Topology of the simulated area, where ∆ represents the stationary sensors and + represents the training positions.

TABLE III: Comparison between models (error in meters) for simulated data

Physical Polynomial Polynomial Polynomial Proposed

model model (n = 2) model (n = 3) model (n = 4) model

Model 1
Training error 1.36 0.55 0.51 0.52 0.21

Test error 1.25 0.60 0.57 0.57 0.23

Model 2
Training error 1.13 0.57 0.55 0.55 0.17

Test error 1.17 0.58 0.57 0.58 0.22

Mean error
Training error 1.25 0.56 0.53 0.54 0.19

Test error 1.21 0.59 0.57 0.58 0.23
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Fig. 3: RSSIs measured at the training positions as a

function of the distances separating these positions from

the stationary sensor 1 of Fig. 2 - Simulated data.

generated in the studied area, and their RSSIs are obtained

using (21). Fig. 3 shows the RSSIs measured at the 45
training positions along with the distances separating these

positions from the stationary sensor 1 of Fig. 2. One can

see that the signal decreases with the traveled distances, and

that the loss gets higher every time the signal penetrates a

wall.

We now have to determine the two signal propagation

models’ parameters. As we previously explained, the RSSIs

of the signals and the distances are used to estimate these

parameters. The Gaussian kernel from Table I is used here

as well. Table III shows the errors on the distances that

are estimated using the proposed model, the physical log-

distance propagation model, and the polynomial model.

Compared to the estimation error obtained using the state-

of-the-art models, the estimation error is reduced by half

or more when using the proposed model, proving that the

latter outperforms the other models in terms of accuracy.

V. CONCLUSION

In this paper, we proposed a semiparametric regression

model that combines the well-known log-distance propa-

gation model with a nonlinear fluctuation term, estimated

within the framework of kernel-based machines. Evaluation

on real and simulated data showed that the proposed model

outperforms state-of-the-art models in terms of accuracy.

Future works will handle improvements of the quality of the

RSSIs; for instance, a filtering process can be considered

to reduce the noise on the RSSIs in the case of real data

before finding the signal propagation model.
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