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Abstract—We consider a cognitive radio system, consisting

of a primary transmitter (PUtx), a primary receiver (PUrx), a

secondary transmitter (SUtx), and a secondary receiver (SUrx).

The secondary users (SUs) are equipped with steerable direc-

tional antennas. We assume the SUs and primary users (PUs)

coexist and the SUtx knows the geometry of network. We find

the ergodic capacity of the channel between SUtx and SUrx, and

study how spectrum sensing errors affect the capacity. In our

system, the SUtx first senses the spectrum and then transmits

data at two power levels, according to the result of sensing. The

optimal SUtx transmit power levels and the optimal directions

of SUtx transmit antenna and SUrx receive antenna are obtained

by maximizing the ergodic capacity, subject to average transmit

power and average interference power constraints. To study

the effect of fading channel, we considered three scenarios:

1) when SUtx knows fading channels between SUtx and PUrx,

PUtx and SUrx, SUtx and SUrx, 2) when SUtx knows only the

channel between SUtx and SUrx, and statistics of the other two

channels, and, 3) when SUtx only knows the statistics of these

three fading channels. For each scenario, we explore the optimal

SUtx transmit power levels and the optimal directions of SUtx and

SUrx antennas, such that the ergodic capacity is maximized, while

the power constraints are satisfied.

I. INTRODUCTION

Cognitive radio (CR) systems can alleviate spectrum

scarcity problem by allowing an unlicensed user to access li-

censed bands under the condition that its imposed interference

on the licensed users are limited [1]. Optimizing the transmis-

sion strategies of secondary users (SUs) in the presence of

a primary user (PU) has attracted much research interests in

industry and academia [2]–[10], where most of these works

assume the SUs are equipped with omni-directional anten-

nas and the result of spectrum sensing is perfect. However,

spectrum sensing methods are prone to errors and their false

alarm and detection probabilities should be incorporated in

the design and performance analysis. Different from the bulk

of the literature, in this paper we assume the SUs and PUs

can coexist, the SUtx knows the geometry of network. Also,

SUs are equipped with steerable directional antennas and can

use spatial spectrum holes [11]–[13] to increase spectrum

utilization.

In this work, the SU transmitter (SUtx) first senses the

spectrum and then adapts its transmit power, according to

the result of spectrum sensing, i.e., SUtx transmits signal

to secondary receiver (SUrx) with power levels P0 and P1

when spectrum is sensed idle and busy, respectively. To study

Fig. 1: Our cognitive radio system with directional antennas.

the effect of fading channels, we consider three scenarios:

1) when SUtx has channel state information (CSI) of links

between SUtx and PUrx, PUtx and SUrx, SUtx and SUrx, 2)

when SUtx knows only the CSI of link between SUtx and SUrx,

and the statistics of the other two links, and, 3) when SUtx only

knows the statistics of these three fading channels. For each

scenario, we establish the ergodic capacity of the channel

between SUtx and SUrx, when spectrum sensing is imperfect

and find the optimal directions of SUtx and SUrx antennas

and optimal SUtx power levels such that the ergodic capacity

is maximized, subject to average transmit power and average

interference power constraints.

II. SYSTEM MODEL

Our CR system model is shown in Fig. 1. The SUs are

equipped with steerable directional antennas. The orientation

of PUrx and SUrx with respect to SUtx are denoted by θp and θ,

receptively, and the orientation of PUtx with respect to SUrx is

denoted by θ′p. The boresight of SUtx and SUrx antennas in

their local coordination are denoted by φt and φr, respectively.

We assume θp, θ and θ′p are known or can be estimated [14].

The antenna gain is given by A(φ)=A1+A0 exp
(
−B
(

φ
φ3dB

)2)

where B = ln(2), φ3dB is the half-power beam-width, A1 and

A0 are two constant parameters [12], [13]. Let dps, dsp and

dss be the distances between PUtx and SUrx, PUrx and SUtx,

and SUtx and SUrx, respectively.
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Spectrum sensing at the SUtx can be formulated as a binary

hypothesis testing problem in which H0 and H1 with prior

probabilities π0 and π1 = 1 − π0 denote the spectrum is

truly idle and truly busy, respectively. When the spectrum is

truly busy, the average transmit power of PUtx is Pp and we

assume SUtx knows Pp. Let Ĥ1 and Ĥ0 with probabilities

π̂0 = Pr{Ĥ0} and π̂1 = Pr{Ĥ1} denote that the result of

spectrum sensing is busy and idle, respectively. When the

spectrum is sensed idle and busy, SUtx uses two power levels

P0 and P1, respectively to transmit signal to SUrx. The

accuracy of spectrum sensing method is characterized by false

alarm probability Pf = Pr{Ĥ1|H0} and detection probability

Pd=Pr{Ĥ1|H1}. We assume π0, Pd, Pf are known.

The fading from SUtx to SUrx, and PUtx to SUrx are denoted

by gss and gps, respectively, and gsp is the fading from SUtx to

PUrx. We assume gss, gps and gsp are three independent

exponentially distributed random variables with mean γss, γps
and γsp, respectively. The path-loss is L = (d0/d)

ν , where d0
is the reference distance, d is the distance between users, and

ν is the path loss exponent. Our goal is to find the ergodic

capacity of the channel between SUtx and SUrx and explore the

optimal SU transmit power levels and the optimal directions

of SUtx and SUrx antennas, such that this capacity maximized,

subject to average transmit power and average interference

power constraints.

III. CONSTRAINED ERGODIC CAPACITY MAXIMIZATION

When spectrum sensing is imperfect, depending on the true

status of the PU and the spectrum sensing result, the ergodic

capacity can be written as C = Eg

{∑1
i=0

(
αi c0,i+βi c1,i

)}
,

where Eg{.} is the expectation operator over random fading

coefficients g =
(
gss, gsp, gps

)
and ci,j is instantaneous ca-

pacity corresponding to Hi and Ĥj with probability αi =

Pr{H0, Ĥi} and βi = Pr{H1, Ĥi} for i∈{0, 1}, given as

c0,i = log2

(
1 +

gssLss G(θ, φt, φr)Pi(g)

σ2
n

)
(1)

c1,i = log2

(
1 +

gssLss G(θ, φt, φr)Pi(g)

σ2
n + Pp gpsLps A(φr − θ′p)

)
. (2)

In (1) and (2), G(θ, φt, φr) = A(φt−θ)A(φr−π−θ) is the

product of SUtx and SUrx antennas’ gain and σ2
n is the variance

of additive zero-mean Gaussian noise at SUrx. It is easy to

verify
α0 = π0(1−Pf ), α1 = π0Pf ,

β0 = π1(1− Pd), β1 = π1Pd.

Note that the optimal antenna directions φt and φr are

expected to be functions of fading g and for simplicity, we

dropped parameter g. Also, for simplicity of presentation, we

drop the parameters θ, φt and φr from G(θ, φt, φr) and define

a= gssLssG and σ2
p = Pp gpsLpsA(φr − θ′p). The term σ2

p

captures the interference on SUrx due to PU activities. Then,

we can rewrite (1) and (2) as c0,i = log2

(
1 + aPi(g)

σ2
n

)
and

c1,i = log2

(
1 + aPi(g)

σ2
n+σ2

p

)
, respectively.

Let Īav indicate the maximum allowed interference power of

PUrx and P̄av denote the maximum allowed average transmit

power of SUtx. To satisfy the average interference power

constraint, we have

Eg

{(
β0P0(g) + β1P1(g)

)
gspLsp A(φt − θp)

}
≤ Īav. (3)

By defining bi = βigspLspA(φt − θp), (3) can be written as

Eg

{
b0P0(g) + b1P1(g)

}
≤ Īav. (4)

In (4), b0P0(g) and b1P1(g) denote the imposed interference

to PUrx from SUtx when channel is sensed idle and busy,

respectively. To satisfy the average transmit power constraint,

we have

Eg

{
π̂0P0(g) + π̂1P1(g)

}
≤ P̄av. (5)

The problem we consider is maximizing the ergodic capac-

ity C over P0(g), P1(g), φt and φr subject to constraints (4)

and (5). The expression C is concave with respect to P0(g),
P1(g) and φr. However, it is not concave with respect to

φt. The optimal φt can be obtained using one-dimensional

search, i.e., we consider an initial value for φt and find

P0(g), P1(g) and φr. Then, we find the value of φt which

maximizes C. Given φt, we can solve this problem using the

Lagrange multipliers method to find P0(g), P1(g) and φr. The

Lagrangian is given as

L=−Eg

{ 1∑

i=0

(
αi c0,i+βi c1,i

)}
+λ
(
Eg

{
π̂0P0(g)+π̂1P1(g)

}

− P̄av

)
+ µ

(
Eg

{
b0P0(g) + b1P1(g)

}
− Īav

)
(6)

where λ and µ are nonnegative Lagrange multipliers. In the

following subsections, we address this constrained maximiza-

tion problem when 1) SUtx knows perfect CSI of g, 2) when

SUtx knows only gss, and statistics of gps and gsp, 3) when

SUtx only knows the statistics of g.

A. Perfect CSI for Three Fading Channels

In the first scenario, we assume SUtx has perfect knowledge

of gss, gps and gsp and it maximizes the capacity for each

realization of fading coefficients. Taking the derivative of

Lagrangian in (6) with respect to Pi(g) and equaling it to

zero gives

∂L

∂Pi(g)
=

−a
σ2
n ln(2)

wi(x, y) + λπ̂i + µbi = 0 (7)

where y , σ2
n/σ

2
p, xi , σ2

n/aPi(g) and

wi(x, y) = x

(
αi

x+ 1
+

βiy

xy + x+ y

)
.

Also, x−1 and y−1 are the received signal-to-noise-ratio (SNR)

and interference-to-noise-ratio (INR) at SUrx. By solving (7),

the optimal transmit power levels can be written as

Pi(g) =

[
Fi +

√
∆i

2

]+
for i = 0, 1 (8)

where [x]+ denotes max(x, 0) and

Fi =
π̂i

ln(2) (λπ̂i + µbi)
− 2σ2

n + σ2
p

a



(a) when |θp − θ| > ψp (b) when |θp − θ| < ψp

Fig. 2: Illustration of φ
opt
t for 0 < Z ≤ 1

∆i = F 2
i −

4

a

(
σ2
n(σ

2
n + σ2

p)

a
− π̂iσ

2
n + βiσ

2
p

ln(2) (λπ̂i + µbi)

)
.

The Lagrange multipliers λ and µ can be updated using

subgradient method as follows [5]

λ(n+1)=
[
λ(n)+t0

(
Eg

{
π̂0P0(g)+π̂1P1(g)

}
−P̄av

)]+
(9a)

µ(n+1)=
[
µ(n)+t0

(
Eg

{
b0P0(g)+b1P1(g)

}
−Īav

)]+
(9b)

where t0 is the step size and λ and µ converge when for a

small number δ we get

λ(n)
(
Eg

{
π̂0P0(g) + π̂1P1(g)

}
− P̄av

)
≤ δ (10a)

µ(n)
(
Eg

{
b0P0(g) + b1P1(g)

}
− Īav

)
≤ δ. (10b)

The optimal φr can be obtained by solving ∂L/∂φr = 0.

There is no closed form solution for φopt
r , but, one can

verify that when transmit power of PUtx is zero (Pp = 0),

φopt
r = π+ θ. We can reduce the computational complexity of

one-dimensional search for finding φopt
t by finding a narrower

interval to which φopt
t belongs to [13]. We define

Z =
Īav

π1gspA0P̄av

− A1

A0
. (11)

If Z > 1, it means that PUrx can tolerate an interference power

that is larger than the interference power imposed by SUtx,

constraint (4) is loose and φopt
t = θ. When 0 < Z ≤ 1, we

define ψp = φ3dB

√
−1
B ln(Z) and consider two cases. When

|θp − θ| > ψp, φopt
t has to lie outside the shaded area shown

in Fig. 2a. Since the unshaded area in Fig. 2a includes the

line of sight (LOS) between SUtx and SUrx, φopt
t = θ. When

|θp − θ| < ψp, which is shown in Fig. 2b, φopt
t lies in the

{
φopt
t ∈ [θp − ψp, θ] , if θp > θ

φopt
t ∈ [θ, θp + ψp] , if θp < θ.

If Z ≤ 0, we cannot find a narrower interval. Algorithm

1 summarizes our proposed approach to find the optimal

solutions φopt
t , φopt

r , P opt
0 and P opt

1 .

B. Perfect CSI for gss and Statistical CSI for Other Channels

For the second scenario, we assume that SUs cannot coop-

erate with PUs and as a result, SUtx and SUrx cannot estimate

the fading coefficients gsp and gps, respectively and they only

Algorithm 1: Optimization Algorithm

k ← 0
φ
(0)
r = π + θ

repeat

λ(0) = λinit, µ
(0) = µinit

n← 0
repeat

calculate P
(k)
0 and P

(k)
1 using (8).

update λ and µ using (9).

n← n+ 1
until (10) is satisfied;

solve ∂L/∂φr = 0 and update φ
(k+1)
r .

k ← k + 1
until the differences of φ

(k)
r , P

(k)
0 and P

(k)
1 in two

consecutive iterations is less than some pre-determined

values;

φopt
t = argmax {C} using bisection search

P opt
i = [Pi]φt=φopt

t

φopt
r = [φr]φt=φopt

t

know the statistics of fading coefficients gsp and gps. On the

other hand, we assume that SUtx has perfect knowledge of

fading coefficient gss. Therefore, at first we take expectation

with respect to gsp and gps in ergodic capacity expression and

then maximize the capacity. In this case the optimal transmit

power levels and the optimal antenna directions are functions

of gss. The instantaneous capacity c0,i is independent of gsp
and gps and Egps,gsp{c0,i} = c0,i. The expectation of c1,i can

be written as

Egps,gsp{c1,i} = Egps

{
log2

(
1+

gssLssGPi(gss)

σ2
n+Pp gpsLpsA(φr − θ′p)

)}

=
1

ln(2)

[
ln
(
1 +

1

xi

)
+ T (ȳ)− T

(
ȳ +

ȳ

xi

)]
(12)

where T (z) = ezEi (−z) and Ei(z) = −
∫∞
−z
e−t t−1dt is

the exponential integration [15]. In (12), xi = σ2
n/aPi(gss),

ȳ = σ2
n/σ̄

2
p and σ̄2

p = Egps{σ2
p} = PpγpsLpsA(φr − θ′p).

Finally, the ergodic capacity in this scenario is

C=Egss

{
1∑

i=0

[
π̂i log2

(
1+

1

xi

)
+

βi
ln(2)

(
T (ȳ)−T

(
ȳ+

ȳ

xi

))]
}

Moreover, the constraints in (4) and (5) can be written as

Egss

{
b̄0P0(gss) + b̄1P1(gss)

}
≤ Īav (13a)

Egss{π̂0P0(gss) + π̂1P1(gss)} ≤ P̄av (13b)

where b̄i = Egsp{bi} = βiγspLspA(φt − θp). The optimal

transmit power levels Pi(gss) can be obtained by solving the

following equation

∂L

∂Pi(gss)
=

−a
σ2
n ln(2)

fi(xi, ȳ) + λπ̂i + µb̄i = 0

where

fi(x, ȳ) =
αix

x+ 1
− βiȳ T

(
ȳ +

ȳ

x

)
.



This equation has no closed form solution and has to be solved

numerically. Furthermore, the parameter Z in (11) for this

scenario is modified to

Z̄ =
Īav

π1γspA0P̄av

− A1

A0
. (14)

Algorithm 1 can be used for this scenario with some modifi-

cations.

C. Statistical CSI for All Fading Channels

In the third scenario we assume that SUtx cannot estimate

gss and it knows only the statistical CSI of all fading channels.

Even if SUtx can estimate gss, when we maximize the capacity

for each realization of gss, the optimal φt and φr will be a

function of gss and as a result they may change very fast

in a fast fading environment. In some cases where antennas

are steered mechanically, their rotation speeds are limited

and cannot adapt themselves according to channel variations.

Thus, in this scenario we wish the optimal directions to be

independent of the realizations of fading coefficients. Hence,

we take expectation with respect to all fading coefficients

and then maximize capacity. The expectation of c0,i is equal

to Egss{c0,i} = −T (x̄i)/ ln(2), where x̄i = σ2
n/āPi and

ā = E{a} = γssLssG. Similar to previous section, we can

write Eg {c1,i} = −U(x̄i, ȳ)/ ln(2) where

U(x̄i, ȳ) =

{ −ȳ
ȳ−x̄i

[T (ȳ)− T (x̄i)] , if x̄i 6= ȳ

−x̄iT (x̄i)− 1. if x̄i = ȳ

The ergodic capacity is

C =
−1
ln(2)

1∑

i=0

[
αiT (x̄i) + βiU(x̄i, ȳ)

]

and the constraints in (4) and (5) can be written as

b̄0P0 + b̄1P1 ≤ Īav (15a)

π̂0P0 + π̂1P1 ≤ P̄av. (15b)

The optimal transmit power levels can be obtained by solving

the following equation numerically

∂L

∂Pi
=

−ā
σ2
n ln(2)

hi(x̄i, ȳ) + λπ̂i + µb̄i = 0

where

hi(x̄, ȳ) = x̄2
(
αi
∂T (x̄)

∂x
+ βi

∂U(x̄, ȳ)

∂x

)
.

Algorithm 1 can be used for this scenario.

IV. NUMERICAL RESULTS

We numerically show the effect of using directional anten-

nas on the ergodic capacity of the considered CR system when

spectrum sensing is imperfect. Assume σ2
n = 1, φ3dB = 45°,

A0=9.8, A1=0.2, γss=γsp=γps=1, π1=0.3, θp=90° and

θ′p=130°. For fair comparisons, we consider a fixed spectrum

sensing method with Pd=0.9 and Pf =0.1.

Suppose CDir
opt denote the optimal capacity when we use di-

rectional antennas. Fig. 3 shows CDir
opt versus θ for Pp = 0.4, 3
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Fig. 3: CDir
opt versus θ for three scenarios when P̄av = 12 dB.
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Fig. 4: CDir
opt versus θ for three scenarios when P̄av = 15 dB.

watts for all three scenarios when P̄av = 12 dB. When θ
increases from 0° to 40°, SUrx receives less interference from

PUtx and SUtx can increase transmit power and as a result the

capacity increases. However, when θ increases from 40° to

80°, SUtx imposes more interference on PUrx and the optimal

capacity decreases. Furthermore, we observe that the capacity

for scenario 3 is always smaller than that of scenarios 1

and 2. Increasing Pp doesn’t have any impact on constraints,

however, the capacity expression depends on Pp and as it can

be seen in Fig. 3, increasing Pp decreases the capacity. Fig.

4 shows the optimal capacity for all three scenarios when

P̄av=15 dB. Comparing Figs. 3 and 4, we can see that when

the maximum allowed average transmit power of SUtx (P̄av)

increases, the capacity increases as well, provided that the

constraint (4) is not violated. Fig. 5 which plots CDir
opt versus

P̄av when θ=50° and Īav=0 dB also shows the similar fact.

Let COmn
opt denote the capacity when SUtx and SUrx have

omni-directional antennas and only transmit power levels P0

and P1 are optimized subject to constraints (4) and (5).

Note that P opt
0 and P opt

1 are constant for all θ when SUs

use omni-directional antennas and COmn
opt is independent of

θ. Furthermore, let CLOS
opt be the capacity when directional

antennas of SUtx and SUrx are exactly pointed at each other

(φt=θ, φr=π+θ) and only P0 and P1 are optimized subject

to constraints (4) and (5). We compare CDir
opt , C

Omn
opt and CLOS

opt .

We define three capacity ratios ΓD2O =CDir
opt /C

Omn
opt , ΓL2O =

CLOS
opt /C

Omn
opt and ΓD2L=C

Dir
opt /C

LOS
opt . Fig. 6 plots ΓD2O and ΓL2O

versus θ when P̄av = 12, 15 dB. We observe that when θ ≈
θp, CDir

opt ≈CLOS
opt and as |θ − θp| increases, the capacity gain

increases. When PUrx and SUrx are close, using directional
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Fig. 7: ΓD2L versus θ when Īav =0 dB.

antennas does not enhance the ergodic capacity (with respect

to using omni-directional antennas). The capacity gain in Fig.

6 finally saturates, since the direction of SUtx goes sufficiently

away from PUrx and directional antenna of SUtx reduces the

interference imposed on PUrx. In addition, we can see that

when P̄av of SUtx increases , the ergodic capacity increases,

while constraints (4) and (5) still hold true.

The effect of optimizing the orientation of directional an-

tennas on ergodic capacity is illustrated in Fig. 7, where the

capacity gain ΓD2L versus θ is plotted for P̄av = 12, 15 dB. We

note that when we optimize the angles φt and φr, SUtx can use

more power for transmission (i.e., use higher power levels P0

and P1) without violating constraints (4) and (5) and, hence,

the capacity increases.

V. CONCLUSION

In this paper, we considered a CR system, where the SUs

are equipped with steerable directional antennas. The SUtx first

senses the spectrum (with error) and then transmits data at

two power levels, according to the result of sensing. The

optimal SUtx transmit power levels and the optimal directions

of SUtx transmit antenna and SUrx receive antenna are obtained

by maximizing the ergodic capacity, subject to average trans-

mit power and average interference power constraints. To study

the effect of fading channels, we considered three scenarios:

1) when SUtx knows fading channels between SUtx and PUrx,

PUtx and SUrx, SUtx and SUrx, 2) when SUtx knows only the

channel between SUtx and SUrx, and statistics of the other two

channels, and, 3) when SUtx only knows the statistics of these

three fading channels. Through simulations, we showed that

directional antennas significantly enhance the ergodic capacity,

without violating the power constraints.
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