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Abstract—Batch-normalization (BN) layers are thought to be
an integrally important layer type in today’s state-of-the-art
deep convolutional neural networks for computer vision tasks
such as classification and detection. However, BN layers intro-
duce complexity and computational overheads that are highly
undesirable for training and/or inference on low-power custom
hardware implementations of real-time embedded vision systems
such as UAVs, robots and Internet of Things (IoT) devices. They
are also problematic when batch sizes need to be very small
during training, and innovations such as residual connections
introduced more recently than BN layers could potentially have
lessened their impact. In this paper we aim to quantify the
benefits BN layers offer in image classification networks, in
comparison with alternative choices. In particular, we study
networks that use shifted-ReLU layers instead of BN layers. We
found, following experiments with wide residual networks applied
to the ImageNet, CIFAR 10 and CIFAR 100 image classification
datasets, that BN layers do not consistently offer a significant
advantage. We found that the accuracy margin offered by BN
layers depends on the data set, the network size, and the bit-depth
of weights. We conclude that in situations where BN layers are
undesirable due to speed, memory or complexity costs, that using
shifted-ReL.U layers instead should be considered; we found they
can offer advantages in all these areas, and often do not impose
a significant accuracy cost.

[. INTRODUCTION

Following its introduction in 2015 [1]], Batch Normalization
(BN) layers rapidly became a default layer type in state-of-the-
art deep convolutional neural networks (CNNs). In particular
for CNNs designed as image classifiers, batch-nomalization is
essential for state of the art accuracy on difficult datasets like
Imagenet [2]]. However, BN layers have several disadvantages
such as:

o BN layers typically increase the GPU memory require-
ments and computational load during training, due to by-
default storage of feature maps for every layer, for use in
gradient calculation additional multiplications needed
for BN layers also slows down inference;

o BN layers and the computation of their parameters are
implemented slightly differently in different popular deep

IThis extra storage can be avoided by recomputing BN layer outputs from
its input feature map, but this slows down training slightly.
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learning libraries, resulting in difficulty replicating results
and in model portability;

o BN layers are not well-suited to custom-hardware imple-
mentations of training, such as those that use a pipeline
approach where all processing needs to be done on one
sample independently of all other samples.

e BN layers create challenges for efficient training when
batches are split across multiple GPUs, and as a result
sometimes non-exact approximations are used [3[];

o BN layers can be less effective for models that have to
be trained using small batches [4], such as when input
images or model sizes are large enough to fill up GPU
RAM;

o BN layers can be problematic for datasets with high
class-imbalance or when samples in a minibatch are not
independent [5].

The last four disadvantages are due to the fact that BN layers
require calculation of batch-wise statistics, namely the mean
and variance of every channel, calculated over all locations
in the channel’s feature map and all samples in a minibatch,
at each point in a network where a BN layer is used. These
statistics are less robust for both smaller numbers of samples
in a minibatch, and if a batch includes rarely chosen or non-
independent samples [J]].

Some of the potential challenges of BN layers are not as
frequently of importance for inference, such as minibatch size.
However in the near future, it has been predicted that there will
be many applications where it will be desirable to train deep
neural networks on low-power custom hardware, such as when
networks need to be updated frequently using new data, and
communication to a data center is too slow or unavailable [6]].

For all these reasons, it is desirable to know whether BN
layers really are generally necessary for best performance, or
whether for particular datasets state-of-the-art accuracy can
be achieved without them. However, our main motivation is
drawn from seeking to design deep CNN classifiers imple-
mented in custom hardware, that run as fast and efficiently as
possible in an embedded system. It is already well-established
that convolutional layers can be implemented without use of



multipliers, by reducing representation precision of weights or
feature maps to 1 bit, hence potentially saving large amounts
of chip space and power usage [7], [8], [6], [9], [10]. However,
existing investigations in this area often still use BN layers,
which if implemented exactly introduce significant complexity,
including mandating the use of minibatches, and the need for
multipliers, and it is desirable to know whether they can be
removed or replaced.

In this paper, we train deep CNNs with and without BN
layers, and analyze the resulting accuracy changes.

The paper is structured as follows. In Section [[I] we review
the BN layer definition, and discuss relevant prior research
related to the goals of this paper. Then, in Section [lII] we
describe the CNN architectures we chose to use for this study,
how we vary the use of BN layers in this architecture, and
adaptations we need to introduce to enable them to work
effectively. Next, Section [IV] contains our results. Finally, we
discuss the implications and significance of our results in
Section [V]

II. RELEVANT PREVIOUS RESEARCH

Depth is crucial for effective learning [11] in modern
neural networks as it allows a network to learn a hierarchical
representation of the data by successively composing simpler
features into more complex features. Depth, however, poses a
number of challenges when training neural networks. The large
number of parameters in deep networks typically restricts the
optimization methods that could be feasibly used to first order
methods like stochastic gradient descent. The loss surface of a
deep neural network, however, is highly non-convex and there
is no guarantee that starting from an initial parameter point and
traversing this loss surface using gradient descent will land in
a good local minimum that allows the network to generalize
well on unseen data [12], [13]. A considerable number of
techniques and tricks have been developed to allow gradient
descent to practically succeed in training deep networks,
ranging from random parameter initialization strategies [14],
[L5], unsupervised pre-training [[16], [17], [18], or augmenting
gradient descent with gradient history information to more
effectively traverse the loss surface [19], [20].

The performance of gradient descent is highly dependent on
the way in which the optimization problem is parameterized.
For example, by re-parameterizing a deep neural network, i.e,
by changing the scale and shift of the network’s parameters,
we can drastically change the curvature of the loss surface [21]]
and the behavior of gradient descent. One of the famous
deleterious effects of bad parameterization is the vanishing
and exploding gradients problem that plagued early neural
networks [22]. To combat such problems, and to yield a more
favorable parameterization for gradient descent in general,
a broad class of techniques attempt to re-parameterize deep
neural networks through various forms of normalization. Such
normalization techniques operate on various quantities in the
network, such as activations or weights.

Perhaps the most popular normalization technique is batch-
normalization [1]], which is described in more detail in the next

subsection. Batch-normalization not only accelerates gradient
descent learning, it also has a beneficial regularization ef-
fect [23]]. Batch-normalization operates on pre-activations (the
inputs to neurons before the activation function is applied); it
rescales and shifts the pre-activations of each single neuron so
that they have zero mean and unity variance across the mini-
batch samples, in each channel. During training, the network’s
response to an example thus depends on the other examples
that accompany it in a mini-batch. This dependence, how-
ever, could prove undesirable in some situations [24]. Batch-
normalization requires the use of a mini-batch that is large
enough to yield reliable pre-activation statistics. Increasing
mini-batch size, however, often leads to a decrease in the
network’s generalization performance [25].

A related normalization technique that does not depend on
mini-batch statistics is layer normalization [26]. Layer normal-
ization normalizes the pre-activations of neurons in a layer so
that they have zero mean and unity variance. These statistics
are calculated across all pre-activations in a layer, unlike
batch-normalization which calculates them for each neuron
individually across the mini-batch. One downside, however, is
that different neurons, especially in convolutional layers, can
have widely different input statistics, so normalizing all of
them using the same coefficients is poorly motivated. Instead
of normalizing the activations, ref [27] normalizes by the
norm of the input weight vector of each neuron. An extra
parameter is introduced for each weight vector to explicitly
control its length. The performance of weight normalization
closely matches that of batch-normalization while avoiding
its major downside: the dependence on mini-batch statistics.
Another innovation introduced by [27] is the “mean-only BN”
layer, in which layer inputs are centered according to the mean
of a batch, in conjunction with weight normalization.

Recently, yet another method was introduced and shown to
outperform BN: group normalization [4] while avoiding some
of its downsides.

The choice of activation function has a large impact on the
performance of gradient descent or backpropagation. When
errors are backpropagated through a layer, they are scaled
by the derivative of the activation function of the neurons
in that layer. If these derivatives are small, then errors are
effectively blocked from propagating backwards. Saturating
activation functions such as the logistic sigmoid, or hyperbolic
tan, are particularly vulnerable to this effect as their derivatives
are very small when their input is far from zero [28|]. The
use of non-saturating activation functions such as Rectified
Linear Units (ReLUs) has partially alleviated this problem.
A ReLU activation is zero for negative inputs and the iden-
tity for positive inputs. ReLUs, however, cannot have an
output that is zero mean across the training examples as
they do not produce negative outputs. Exponential Linear
Units (ELUs) [29] address this issue by having a saturating
negative output if the input is less than zero. ELUs have been
shown to perform extremely well without any form of explicit
normalization suggesting that they intrinsically normalize the
levels of activation in the network.



However, shifted Rectified Linear Units (sReLUs) offer
nearly all the same benefits as ELUs, but without the need to
calculate exponentials, and given our motivation of minimizing
computational load, they are our focus here instead of ELUs.
Indeed, our results in Figures 5 and 6 show that networks using
sReLU and ELU activations do not have significant differences
in accuracy.

For similar reasons, we aim to establish if we can avoid
alternatives to BN like group normalization [4], where com-
plexity and additional computation is introduced for comput-
ing statistics and carrying out normalizations by non-constant
factors.

A. Review of BN layers

Batch-normalization (BN) layers have been shown to help
deep neural networks produce better accuracy following train-
ing. The usual explanation for this is that they help “reduce
internal covariate shift” [[L]. This view has been recently
challenged [30]. However it is clear that the use of BN layers
enables higher learning rates, and hence faster convergence
during training, and diminishes the importance of good initial
conditions for convolutional layers [1], [5].

BN layers are applied to a minibatch of feature maps, which
typically can be represented as a 4-axis tensor, x € RIHW.C
where K 1is the size of the minibatch, H and W are the
height and width of the feature maps, and C' is the number
of channels. BN layers operate on a per-channel basis, with
channel-specific gain and shift parameters, and make use of
channel-specific calculations of the mean and variance of
the inputs to the channel in a minibatch. Mathematically, if
Zk,h,w,c 15 the value of the feature map at location h,w in the
c-th channel of the k-th sample, then BN layers transform that
value according to
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The remaining parameters are:

e gain, g., and shift o., which are usually learned in the
same manner as weights in convolutional layers;

e ¢, which ensures division by zero cannot happen in the
event of zero variance, and can also act like a regularizer;
it is not widely appreciated that accuracy can depend on
the exact choice of € and that inference performance is
sensitive to inadvertent changes in e compared to training.
It is also noteworthy that some popular deep learning li-
braries define e differently, by taking it outside the square
root, which changes subtely but sometimes significantly
the performance of otherwise identical models.

There are two major differences between BN layers and
other layers:

1) calculation of layer outputs depend on all samples in
a minibatch and cannot be computed independently for
each sample;

2) During training, minibatch means and variances are
calculated. For inference, each mean and variance is
an additional parameter that forms part of the trained
model, but unlike most parameters derived from training
data, these are not learned, but rather are computed.
Most popular libraries compute these values during
training by calculating exponential moving averages
over batches as training progresses. We have found
that this can sometimes give misleading and sub-par
performance during monitoring on a validation set as
training progresses, because parameters change over the
window in which averages are created. Instead, we
favour calculation of batch means and variances using
multiple training batches while training is frozen, as
described in Algorithm 2 in the original BN paper [1].

B. BN layer scale and shift can be detrimental

Recent work demonstrated the surprising result that not
learning BN scale and shift parameters can actually be benefi-
cial, leading to reduced error rates for CIFAR 10 and CIFAR
100 in a wide residual network [10]]. This result was found to
be the case for both full-precision networks, and for “I-bit-
per-weight” versions of the same networks.

C. Shifted Rectified Linear Unit and Exponential Linear Unit

It has already been shown that removal of BN layers can
somewhat be compensated for by using exponential linear
units (ELUs) [29] instead of the combination of BN and ReLLU.
The mathematical definition of these two activation functions
are

ELU(z) = 2Z(x) + (exp(z) — 1)(1 — Z(x)), 4)

where Z(z) is the Heaviside step function, and
sReLU(x) = max(—1,x). %)

Both can be generalized to a different minimum output value,
but we consider only the case of —1. See Figure |1| for plots
of the sReLU and ELU characteristics, in comparison with
ReLU.

When ELUs were introduced, it was shown that they out-
perform shifted rectified linear units (sReLUs) [29]]. However,
in our experiments with more recently advanced networks
and training methods not available at the time of [29], we
did not observe any significant difference between ELUs
and sReLUs. Moreover, ELUs are computationally expensive
compared with sReL.U, both because sReL.Us do not require
calculations of exponentials in the forward pass, nor storage
of their values for use in the backward pass during training.
We show here that shifted ReLUs are an effective and efficient
alternative to ELUs, and seek to quantify how much accuracy
penalty is incurred by replacing BN layers.
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Fig. 1. Shifted Rectified Linear Unit (sReLU) activation function. The
sReLU activation function lets negative inputs pass through, between 0 and
some negative constant, in this case equal to —1. While the Exponential
Linear Unit (ELU) is more popular, we have found sReLU to be equally
effective, and less computationally demanding, due to avoiding calculation of
an exponential.

III. METHODS
A. Baseline network architecture and training

Our experiments are based on wide residual networks [31]]
(see Figure [2) that use the post-activation architecture [32].
Using the nomenclature of [31], for CIFAR 10 and CIFAR
100 we used depth 20 and widths of 4x and 10x and for
ImageNet depth 18 and widths 1x and 2.5, meaning in both
cases that the first layer of convolutional weights had either
64 or 160 output channels. The design we used has a few
differences to [31], such as that the final weights layer is a
1 x 1 convolutional layer applied before the global average
pooling layer—see Figure [2] which illustrates this aspect, and
the overall design. More details are described in [10]. Note
also that in the design of [10] a BN layer was applied to the
RGB input channels prior to the first convolution layer. Here
we do the same for all variations, including the sReLU one.
Provided that the shift and scale factors are not learned, this
BN layer is equivalent to preprocessing raw data, and does not
need to be considered to form a network layer.

Training was carried out similarly to [10], i.e. we used
backpropagation and stochastic gradient descent, with mini-
batches of size 125 samples, momentum of 0.9 and weight
decay with a value of 0.0005. No biases are used. Weights
were initialized using the method of [15], while BN gains
were initialized to 1 and shifts to 0. No convolutional layer
biases were used. Unlike [10]], we did not use a warm restart
learning rate schedule, as we found this could sometimes lead
to divergence following a restart with the sReLU networks.
However, we did use a cosine learning-rate decay schedule,
starting at an initial value of 0.1 and finishing at 10~° after 300
epochs (CIFAR) or 60 epochs (ImageNet). For networks where
BN layers were used, we computed the mean and variance
statistics following the end of training, by calculating averages
over all minibatches in 1 epoch, with learning turned off.

During training, each image selected for a minibatch was
augmented using standard methods as in [10]. In addition,

cutout augmentation [33]] was used for CIFAR 10 and CIFAR
100, with the same design as in [10], with a patch size of 18
pixels.

B. 1-bit-per-weight networks

As well as training networks with the usual 32 bit floating
point precision for all variables, including learned weights, we
also trained networks using a method for enabling storage of
learned weights and inference to take place using 1-bit values.
We followed the method of [10Q]; differences in training are
summarised for the case of sReLUs in Figure [3]

We emphasize that the main motivation of this paper is
to examine whether methods for enabling reduced-precision
representations in deep neural networks, such as [10]], still
work effectively when batch-normalization layers are removed.

C. Shifted ReLUs

We conducted experiments using the same architecture as in
Fig. 2] but where (i) all BN layers except the final one closest
to the output are replaced by shifted ReLLUs and (ii) where all
BN layers are replaced by shifted ReLUs. The architecture for
the latter case is shown in Figure

D. Training innovations for networks with BN layers removed

For the model where all BN layers but the final one were
removed, we found we did not need to change any aspect of
training relative to our baseline models.

However, without any BN layers, we found that training
diverged, or converged very slowly. A partial remedy to this
problem is to simply reduce the learning rate, a fact consistent
with one of the advantages of using BN layers, i.e. that the
initial learning rate can be set higher [1] than in networks
without BNs. However, this leads to slow convergence and
increased error rates.

We investigated why this was the case. We found, surpris-
ingly, that using just a single BN layer between the final
convolutional layer and the global average pooling layer was
sufficient to enable the network to be trained exactly like the
baseline models.

Based on this observation, we hypothesized that the main
reason that networks with BN layers enable a larger learning
rate is due to the standarized scaling the final BN layer
imparts on gradients from the output prior to backpropagation
to weight layers. Indeed, we observed that without a final
BN layer, the distribution of gradients at the output early in
training have a longer tail then when BN is included.

We therefore introduced in our shifted ReLU networks a
constant scaling layer to replace the BN layer between the
final convolutional layer and global average pooling layer. For
simplicity we have set the constant scaling identically for all
channels (which in our design at this point in the network is
equal to the number of classes).

Due to the linearity of the global average pooling layer,
changing this scaling is equivalent to changing the temperature
in the softmax layer, from its default value of 1. That is, our
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Fig. 2. Wide ResNet architecture for Baseline CIFAR models where BN layers are used. This architecture is nearly identical to that of [10], except
here there is no optional ReLU applied to the input. Note the ordering of the final layers, where global average pooling (GAP) is used after a final 1x1
convolutional layer, that reduces the number of channels to equal the number of classes, and then feeds directly to the softmax output (SM).
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Fig. 3. Changes when training for 1-bit-per-weight. When we train 1-bit-
per-weight networks following the method of [10], we apply the sign operator
to full-precision copies of weights during training, and then scale by a constant
equal to the initial standard deviation of the weights according to the method
of [15].

approach corresponds to employing a final softmax layer of
the form

exp (%)
> j=1XP (T)

where 7' is the temperature—see, e.g. [34], [35].

We found a value for the temperature between approxi-
mately 30 and 100 to enable training to take place identically
to the baseline models, including the same high initial learning
rate. Lower values of 7" tended to result in failure to converge
shortly after training commenced.

Note that although the gradient propagated back is linearly
scaled by 1/T, changing from the default of 7' = 1 is not
equivalent to simply changing the learning rate by a factor
of T. This is due to the nonlinearity in the softmax layer.
Increasing 7" has the effect of moving softmax outputs away
from O or 1, thereby increasing the entropy of the output
vector. In turn, this means gradients propagating backwards
early in training have a distribution with lower standard
deviation.

That this temperature scaling is all that is needed to ensure
a high learning rate suggests that the main problem with

SM; () := (6)

larger learning rate for models without BN layers is simply
that early in training, the gradients calculated at the output of
the network are too high for high learning rates, and that the
normalization of the final BN layer compensates for this.

IV. EXPERIMENTS AND RESULTS

We trained the following variations of our wide residual
networks on both CIFAR 10 and CIFAR 100, all for both
width 4 and width 10.

1) Baseline 1: networks as in Figure |2} with conventional
BN layers where scales and shifts are learned.
Baseline 2: the same as Baseline 1, but without any
scales and shifts learned, as in [10].

A single BN layer at the end of the networks only
(no scale and shift learned), with all other BN-ReLU
combinations replaced by sReLU.

No BN layers — all replaced by sReLU, as in Figure ]
No BN layers — all replaced by ELU [29].

No BN layers — all replaced by sReLU, except for a
‘mean-only BN’ layer at the end of the network [27],
without a learned bias.

2)

3)

4)
5)
0)

Our results for width-4 and width-10 ResNets are summa-
rized in Tables I and II, while Figures [5| and [6] show the mean
and spread of accuracies for width-4 ResNets for CIFAR 10
and CIFAR 100 over 10 runs.

For ImageNet, we compared width-1 and width-2.5 net-
works, and an ensemble of 3 width-1 networks, for the case
of Baseline 1, and case 3 in the above list. The results are
summarised in Table III.

Our conclusions drawn from the results are left for Sec-

tion [V]

V. DISCUSSION

A. The impact of removing BN layers

Our results indicate the following:
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Fig. 4. Wide ResNet architecture for CIFAR when all BN layers are replaced by sReLUs. The architecture is identical to that of Figure [2| except that
(i) all BNs have been removed and ReLUs have been replaced by shifted ReLUs (sSRELU); (ii) a scale layer (multiplies all inputs by a constant) has been
inserted before the global average pooling (GAP) layer; and (iii) the input is now normalized using pre-preprocessing applied to each of the RGB channels.

TABLE I
CIFAR 10: Test-set error-rates. THE ENTRIES FOR RESNET 20-4 NETWORKS ARE THE MEAN VALUE FROM 10 REPEATS. THE ENTRIES FOR RESNET
20-10 NETWORKS ARE FOR SINGLE RUNS. THE FINAL COLUMN SHOWS THE DIFFERENCE BETWEEN THE ERRORS FOR SRELU ONLY NETWORKS
COMPARED WITH THE BEST RESULT IN EACH ROW, AS INDICATED IN BOLD FONT.

Model Baseline 1 | Baseline 2 | Final BN only | sReLU only | sReLU gap
ResNet 20-4, 32 bit weights 3.97% 3.80% 442 % 4.67% 0.87%
ResNet 20-10, 32 bit weights 3.29% 3.57% 3.79% 4.36% 1.07%
ResNet 20-4, 1 bit weights 4.51% 4.65% 4.47 % 4.66% 0.19%
ResNet 20-10, 1 bit weights 3.83% 3.65% 4.00% 3.74% 0.09%
TABLE II

CIFAR 100: Test-set error-rates. THE ENTRIES FOR RESNET 20-4 NETWORKS ARE THE MEAN VALUE FROM 10 REPEATS. THE ENTRIES FOR RESNET
20-10 NETWORKS ARE FOR SINGLE RUNS. THE FINAL COLUMN SHOWS THE DIFFERENCE BETWEEN THE ERRORS FOR SRELU ONLY NETWORKS
COMPARED WITH THE BEST RESULT IN EACH ROW, AS INDICATED IN BOLD FONT.

Model Baseline 1 | Baseline 2 | Final BN only | sReLU only | sReLU gap
ResNet 20-4, 32 bit weights 22.10% 19.53% 20.18% 22.24% 2.69%
ResNet 20-10, 32 bit weights 20.99% 17.05% 18.25% 20.97% 3.92%
ResNet 20-4, 1 bit weights 22.82% 22.07% 22.31% 23.69% 1.60%
ResNet 20-10, 1 bit weights 20.61% 18.22% 19.42% 20.74% 2.52%

o The importance of BN layers is data-set and model-size
dependent. Our findings show that the accuracy loss when
replacing all BN layers with shifted ReLUs is larger on
CIFAR 100 than on CIFAR 10. For all three datasets, and
especially ImageNet, the accuracy loss is very large for
width-1 (non-wide), but not for wide variants, indicating
BN is much more important for smaller models.

For CIFAR, there is no clear advantage in using ELU
layers rather than sReLU.

The impact of removing BN is larger for full-precision
weights compared with 1-bit-per weight.

Baseline 1, where gains and shifts are learned is about
as good for CIFAR 10 as Baseline 2 where they are not,
but Baseline 2 is clearly better for CIFAR 100.

Using a single BN-layer at the end of networks was
mostly markedly better than using all sReLUs, and in

some cases nearly as good as the best baseline.

For width 4 networks, the variations within models across
runs for CIFAR 10 and I-bit-per-weight indicated that
any model could produce best results. For CIFAR 100,
the first three models exhibited this effect, but the sReLU
network clearly had a small gap in performance compared
to other models. For 32-bit-per-weight models, gaps were
larger, but the top two models for CIFAR 10 were the two
baselines, while for CIFAR 100 they were Baseline 2 and
the final BN only model.

The mean-only-BN model outperforms the All ReLU and
All ELU networks for CIFAR 100 and 1-bit per weight,
halving the error rate gap to Baseline 2.

Consistent with [10]], for CIFAR 100, Baseline 1 where
scales and shifts are learned causes a dramatic drop in
accuracy relative to Baseline 2. Unlike [10], this is no



TABLE III
ImageNet: Validation-set top-5 error-rates. CENTRE CROP MEANS A SINGLE 224 X 224 CROP FROM THE CENTRE OF THE VALIDATION IMAGE WAS
USED. MULTICROP MEANS 25 DIFFERENT CROPS WERE RUN USED AND THEIR PREDICTIONS AVERAGED BEFORE CLASSIFYING, SIMILAR TO [32].

Bits per weight Model # Learned parameters | Test mode | Baseline 1 | Final BN only Gap
32 ResNet 18-1 11.5M centre crop 12.41% 15.50% 3.01%
32 ResNet 18-1 11.5M multi crop 9.03% 14.70% 5.67%
32 Ensemble of 3 ResNet 18-1 34.5M centre crop 10.70% 14.00% 3.30%
32 Ensemble of 3 ResNet 18-1 34.5M multi crop 7.95% 12.30% 4.35%
32 ResNet 18-2.5 70M centre crop 9.20% 9.51% 0.3%
32 ResNet 18-2.5 70M multi crop 6.91% 8.83% 1.92%
1 ResNet 18-1 11.5M centre crop 17.55% 23.66% 6.11%
1 ResNet 18-1 11.5M multi crop 12.80% 19.94% 7.14%
1 Ensemble of 3 ResNet 18-1 34.5M centre crop 15.48% 22.18% 6.70%
1 Ensemble of 3 ResNet 18-1 34.5M multi crop 11.38% 18.85% 7.47%
1 ResNet 18-2.5 70M centre crop 11.51% 11.81% 0.3%
1 ResNet 18-2.5 70M multi crop 8.48% 10.03% 1.58%
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Fig. 5. Spread of results: CIFAR 10, Width 4. The circle markers show
the mean from 10 repeated runs for each of the 4 model types, using different
random seeds for each repeat, but the same seed for each model. The error
bars indicate the maximum and minimum errors over the 10 repeated runs.
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Fig. 6. Spread of results: CIFAR 100, Width 4. The circle markers show
the mean from 10 repeated runs for each of the 4 model types, using different
random seeds for each repeat, but the same seed for each model. The error
bars indicate the maximum and minimum errors over the 10 repeated runs.

longer the case for CIFAR 10, which might be because
here we do not use a ReLLU applied to the input.

From these observations, we propose the following:

¢ Conclusion 1: Removing all BN layers can be expected
to cause an accuracy penalty, but this penalty is po-

a potentially viable option for getting the benefits of
removing most BN layers, but without as much accuracy
loss as removing all.

o Conclusion 3: There is no consistently best way to design
networks with BNs; in some cases learning scales and
shifts is beneficial, but in other cases it causes a big drop
in performance.

o Conclusion 4: There is less impact on accuracy in the
case of I-bit-per-weight compared with full precision
weights. Indeed, for CIFAR 10, sReLU networks and
1-bit-per-weight had an accuracy gap no larger than
0.2%, and only 0.3% for width-2.5 ImageNet with centre
cropping, suggesting sReLLU as a viable option when 1-
bit-per-weight is used.

B. Significance for custom hardware implementations

Hardware acceleration of CNNs is necessary to provide real-
time embedded vision systems, e.g., UAVs and Internet of
Things (IoT) devices, because existing systems using CPUs are
too slow. To increase speed, most software-based CNNs use
GPUs. However, it is difficult to deploy GPUs in embedded
systems, since they consume a significant amount of power.
Thus, custom rather than general-purpose hardware-based
CNNs are desired for low-power and real-time embedded
vision systems.

In hardware-based acceleration systems, most power con-
sumption comes from the computation modules, e.g., the
multipliers and adders, and from accessing of the data, partic-
ularly the weights. By using binary weights, the multiplier
can be replaced by a multiplexer, which consumes orders
of magnitude less power. In modern CMOS technologies,
e.g., 28nm, a binary convolutional operation with multiplexers
achieves a power efficiency up to 230 1b-TOPS/W [36]. More
importantly, using binary weights enables use of only on-chip
memories, e.g., SRAMs, to store these weights. Accessing
data stored in external memories would consume an order of
magnitude more power (10x) than the computation itself [37].



The use of batch-normalization layers might maintain max-
imum classification accuracy but at the cost of extra silicon
area and computation and thus more power consumption.
Particularly, it will require significant amount of silicon area
to implement the nonlinear square and square-root operations
in the conventional batch-normalization. What makes it worse
is that these operations impede low bit-width quantization
techniques [38]]. One can easily implement the shifted ReLU
activation function with a tiny silicon area, while achieving
comparable accuracies to networks with BN layers.

C. Future work

In future, it will be valuable to try to devise new low-
complexity methods that narrow the accuracy gap between
networks that use BN layers, and the ones outlined here.
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