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Abstract— This paper focuses on reactive power flow and

voltage stability in electrical grids. We provide novel analyt-

ical understanding of the solutions to the classic nonlinear

polynomial equations describing the decoupled reactive power

flow. As of today, solutions to these equations can be found

only via numerical methods. Yet an analytical understanding

would enable rigorous design of future electrical grids. This

paper has two main contributions. First, for sufficiently-high

reference voltages, we guarantee the existence of a high-voltage

solution for the reactive power flow equations and provide its

approximate analytical expression. The approximation error is

bounded in terms of network topology and parameters. Second,

we consider a recently-proposed droop control strategy for

voltage stabilization in a microgrid equipped with inverters.

For sufficiently-high reference voltages, we prove the existence

and the exponential stability of a high-voltage fixed point of the

closed-loop dynamics. We provide an approximate expression

for this fixed point and find the limiting value of the approxima-

tion error for high reference voltages. Finally, we validate the

accuracy of our approximations through numerical simulation

of the IEEE 37 standard test case.

I. INTRODUCTION

The power flow equations model the relationships among
bus power injections, power demands, and bus voltages
and angles in a power network. They are the heart of
most system-planning and operational studies and also the
starting point for transient and dynamic stability studies.
They constitute a set of coupled equations with trigonometric
and polynomial non-linearities, and the solution space admits
a rich and complex phenomenology [1], [2]. Conditions for
the existence and exact expression of the solutions have been
derived for the case of a radial grid [3], while for a general
network only conservative conditions have been proposed
[4]–[6]. This lack of sharp results has motivated approximate
solutions. Of particular interest is [7], where an approximate
solution to the reactive power flow equations was developed
for electrical networks connected to a larger parent grid
at a single Point of Common Coupling, such as typical
distribution networks. While this analytic approximation is
potentially powerful, its use is limited in more general
electrical networks due to the presence of multiple fixed-
voltage buses. Analytic results aside, the current standard
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for power flow solution is numerical simulation [8], and
the power industry invests considerable effort in simulating
thousands of power flow equations for large grids. This
motivates the importance of a deeper analytic insight into
the problem.

A classic approach [4], [5] to the analysis of the power
flow equations is to study the active and the reactive power
equations separately under mild decoupling assumptions
which are usually satisfied under regular system operation
[9]. After the decoupling, the phase angles become the only
variables appearing in the active power equations, while the
voltage magnitudes become the only variables in the reactive
ones. We focus our attention on the resulting reactive power
flow equations: these are a system of quadratic equations
in the voltage magnitudes at the buses. Despite the simpler
problem formulation, no sharp analytic answers pertaining
to the existence of solutions are known to date [4]–[6].

The first contribution of this paper is the extension of the
approximate load flow solution proposed in [7] to networks
with multiple fixed-voltage buses. In particular, we present
the result as an approximate solution to the decoupled
reactive power flow equations. The resulting solution can
be viewed as the reactive power counterpart of the DC
load flow approximation for the active power flow [10]. The
classic DC load flow approximation expresses the solution to
the non-linear active flow equations as a linear combination
of the active powers at the buses. The linear coefficients
only depends on the network parameters. The approximate
solution that we propose for the reactive power flow is the
sum of two main terms: the first one is similar to the DC
approximation, as it is a linear combination of the reactive
powers at the buses; the linear coefficients only depend
on the network parameters. The second term consists of a
constant high-voltage value for each bus, and it is related
to the general and well accepted idea that strongly-clustered
high-voltage solutions of the reactive flow equations are the
desired stable solutions [11].

In the second part of the paper we focus on the stabil-
ity of a droop control strategy in an islanded microgrid.
Microgrids are low-voltage electrical distribution networks,
heterogeneously composed of distributed generation, load,
and managed autonomously from the larger primary net-
work. Power sources in microgrids generate either variable
frequency AC power or DC power, and are interfaced with
a synchronous AC microgrid via power electronic DC/AC
inverters. In islanded operation, it is through these inverters
that actions must be taken to ensure synchronization, voltage
stability, power balance and load sharing in the network [12].
We consider the problem of voltage stabilization; that is,



keeping the average voltage level in the network high, and
keeping the total voltage profile roughly uniform. This is
a crucial aspect of microgrid control, as the relatively low
voltage levels and uncompensated loads in microgrids put
the network at risk for voltage instability and collapse [2].
In the last two decades the E �Q voltage-droop controller
has become the tool commonly used for these tasks [13].
Despite the wide-spread adoption of the E � Q voltage-
droop controller, few analytic results are available about
its closed-loop performance. Specifically, to the best of our
knowledge, no results are available on the existence and
locations of the equilibria of the closed-loop network. This
paper considers the quadratic droop controller proposed by
[14]. This modified version of the standard E�Q droop con-
troller reproduces the inherently quadratic and asymmetric
nature of the reactive power flow equations and facilitates an
analytic treatment. Our previous work [14] characterizes the
existence, stability and location of the equilibrium point for a
purely-inductive (lossless) network with parallel topology. In
this work, we consider networks with arbitrary topology and
with arbitrary heterogeneous (resistive and inductive) impe-
dences; by applying the approximation method proposed for
the reactive power flow equations, this paper establishes the
existence and the stability of a high-voltage fixed point and
provides an approximate expression for its location.

This paper is organized as follows. In what follows we
introduce the reactive power flow equations. Section II
defines the approximate solution to the reactive power flow
equations. Section III applies the approximation method to
droop-controlled microgrid. Section IV reports some numer-
ical studies. Section V contains our concluding remarks.

Notation and network model

Given a finite set V , let |V| denote its cardinality. Let 1
denote the vector of all ones, 0 a matrix of all zeros; their
dimension is not specified as it is understandable from the
context. Let [x

i

]

i2V be an alternative notation for the vector
x, with indices in the set V . Let diag(x) denote the diagonal
matrix whose main diagonal is the vector x and diag�1

(x)

its inverse, when defined. Given the vectors x and y, we
write x > y (resp. x � y) if x

i

> y

i

(resp. x
i

� y

i

), for all
i 2 I . For a 2 C, a⇤ denotes the complex-conjugate of a.

A power network in synchronous steady-state is modeled
as a connected, undirected and complex-weighted graph
G(V, E , Y ), where V = {1, . . . , n} is the set of nodes (or
buses) and E ⇢ V⇥V is the set of edges (or branches). Since
the graph is undirected, if (i, j) 2 E , then it is also (j, i) 2 E .
To each edge (i, j) we assign an admittance W

ij

= W

ji

2 C;
we define the off-diagonal elements of the complex-valued
Laplacian matrix Y by Y

ij

= �W

ij

, i 6= j, while the
diagonal elements are defined by Y

ii

= �

P
i 6=j

Y

ij

. To each
node i 2 V we assign a phasor voltage U

i

= E

i

e

j✓i
2 C,

a phasor current I

i

2 C, and a power injection S

i

=

P

i

+ jQ

i

2 C, whose real part P
i

2 R is the active power

and imaginary part Q
i

2 R is the reactive power. In vector
notation, Kirchoff’s current law and Ohm’s law give the
current-balance relation I = Y U . Moreover, power, voltage

and current at each node are related through: S

i

= U

i

I

⇤
i

.
Combining the last two equations in vector notation,

P + jQ = diag(U)(Y U)

⇤
, (1)

which in components reduces to the active and reactive power
equations, that is,

P

i

=

X
n

j=1

Im(Y

ij

)E

i

E

j

sin(✓

i

� ✓

j

)

+

X
n

j=1

Re(Y
ij

)E

i

E

j

cos(✓

i

� ✓

j

) , i 2 V , (2)

and

Q

i

=�

X
n

j=1

Im(Y

ij

)E

i

E

j

cos(✓

i

� ✓

j

)

+

X
n

j=1

Re(Y
ij

)E

i

E

j

sin(✓

i

� ✓

j

) , i 2 V. (3)

During regular power system operation the solutions to (1)
usually [9], [10] satisfy |✓

i

�✓

j

| ⌧ 1 for each (i, j) 2 E . We
assume from now on that ✓

i

= ✓

j

for each (i, j) 2 E . Under
this condition, the reactive power flow equations (RPFE) (3)
can be written in compact vector notation as

Q = diag(E)LE , (4)

where L = �Im(Y ) is a Laplacian matrix (with non-positive
off-diagonal terms and zero row sums) since the susceptance
of each resistive and inductive line is negative. As standard
in load flow studies and power system stability analysis, we
model loads as stiff constant-power demands [9].

II. APPROXIMATE SOLUTION TO THE REACTIVE POWER
FLOW EQUATIONS

In this section we partition the network nodes as V =

{V

L

,V

S

} corresponding to loads and sources (or generators).
We require that the voltage magnitudes at these sources
are regulated to constant and predetermined values. The
typical example of such a network is a transmission-level
grid consisting of loads and PE-generation sources such as
synchronous generators. The voltage magnitude vector and
the Laplacian L inherit the partitioning as

E =


E

L

E

S

�
, L =


L

LL

L

LS

L

SL

L

SS

�
.

With this in mind, equation (4) becomes

Q

L

Q

S

�
= diag(E

L

, E

S

)


L

LL

L

LS

L

SL

L

SS

� 
E

L

E

S

�
. (5)

We assume that the source voltages E

S

are fixed and no
constraints are imposed on the sources power injections Q

S

,
that is, the sources are PE-buses [9]. Hence, the second
block of equations in (5) can be thought of as determining
Q

S

as a function of the load voltages E
L

. Thus, the equations
(5) reduce to their first block:

Q

L

= diag(E
L

)

⇥
L

LL

L

LS

⇤ 
E

L

E

S

�
. (6)

The variables in these |V

L

| equations (6) are the |V

L

| load
voltages E

L

. In other words, these equations, if solvable,
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determine E

L

as a function of the remaining constant source
voltages and network parameters.

In general the system of quadratic equations (6) is not
solvable analytically. The classic example of a two node
network nicely illuminates some of the general features of
these equations and motivates our subsequent approximation.

Example II.1 (Two node network). Consider a network
with two nodes connected through an inductive line with
susceptance �`. One node is a load with reactive power
demand q, while the other node is a source with fixed voltage
magnitude E

N

> 0. Denoting by e the voltage magnitude at
the load, (6) reduces to

q = `e(e� E

N

) . (7)

If
q � �q

crit

:= �

1

4

`E

2

N

, (8)

then equation (7) admits two real-valued solutions, given by

e

1,2

= E

N

✓
1

2

±

1

2

r
1 +

q

q

crit

◆
.

If |q/q

crit

| ⌧ 1, the Taylor expansion (
p

1 + x ' 1 +

1

2

x)
leads to the approximate expressions:

e

1

' E

N

+

q

`E

N

, e

2

' �

q

`E

N

. (9)

The solution e

1

is the desired one in practice, as it corre-
sponds to a high-voltage low-current configuration for the
network, resulting in low power losses. In particular, the
solution can be interpreted as being roughly E

N

, with a
correction term linear in the power demand, scaled inversely
by both E

N

and the line susceptance. ⇤
We now build further on the motivation of Example II.1

and offer some intuitive derivations on how to generalize the
example. We set E

N

:= min

i2VS E

i

and define the vector ⌘
so that the voltages can be decomposed into E = E

N

(1+⌘).
As in the example, we are interested in the high-voltage
solution to the power flow equations and, moreover, we
are interested in solutions with uniform voltages. High and
uniform voltages correspond to the regime where E

N

� 1

and ⌘ ⌧ 1. In this regime, equation (6) becomes

Q

L

= E

N

diag(1+ ⌘

L

)

⇥
L

LL

L

LS

⇤
E

N

(1+ ⌘)

= E

2

N

⇣⇥
L

LL

L

LS

⇤
⌘ + diag(⌘

L

)

⇥
L

LL

L

LS

⇤
⌘

⌘

' E

2

N

(L

LL

⌘

L

+ L

LS

⌘

S

) , (10)

where the second equality holds because 1 is in the kernel of
L, and the last approximation neglects the quadratic term in
⌘. Solving (10) for ⌘

L

, we obtain the following approximate
solution

E

L

= E

N

(1+ ⌘

L

)

' E

N

1� E

N

L

�1

LL

L

LS

⌘

S

+

1

E

N

L

�1

LL

Q

L

. (11)

Looking back at Example II.1, we see how the first order
expansion that led to the solution e

1

in equation (9) corre-

sponds exactly to the approximation (11). Building on this
intuitive derivations, we now state our first rigorous result,
which extends the work carried out in [7] to transmission-
level networks with multiple generating sources. The proof
of the following theorem extends the proof strategy in [7]
and uses arguments of multivariate analysis along with the
implicit function theorem. Due to space constraints, the proof
is not be reported here.

Theorem II.2 (Approximate solution to the RPFE). Con-

sider the reactive power balance equations (6), define E

N

:=

min

i2VS E

i

as the source baseline voltage, and let ⌘

S

be

the source voltage spread E

S

= E

N

(1 + ⌘

S

). Define the

approximate load voltage

E

L,approx := E

N

1� E

N

L

�1

LL

L

LS

⌘

S

+

1

E

N

L

�1

LL

Q

L

.

Then there exists a minimum voltage E

min
N

such that, for all

E

N

> E

min
N

, a high-voltage solution of equation (6) exists

and is given by

E

L

= E

L,approx +
1

E

N

g

L

' E

L,approx , (12)

where the error term g

L

satisfies

kg

L

k

2

 ↵ k⌘

S

k

2

kQ

L

k

2

+ �

1

E

2

N

kQ

L

k

2

2

, (13)

where ↵ and � are functions of the network parameters:

↵ = 4

p

2

��
L

�1

LL

L

LS

��
2

��
L

�1

LL

��
2

, � = 4

p

2

��
L

�1

LL

��2
2

.

Remark II.3 From equation (13) one sees that asymptot-
ically, the error term g

L

vanishes as the source voltage
baseline E

N

becomes large and the source voltage spread
⌘

S

diminishes. Indeed, this regime is the practically relevant
case occurring in regular power system operation, and this
qualitative behavior of the error term agrees with classic
power systems intuition [6].

While the bound in (13) is quite conservative for any
given network, the numerical simulations reported Section IV
indicate that the error term g

L

is much smaller than the the-
oretical upper bound (13), and thus the approximation (12)
is extremely accurate. ⇤

III. APPLICATION TO THE QUADRATIC DROOP
CONTROLLER

In this section, we consider the problem of voltage stabi-
lization in an inverter-based microgrid. We partition the set
of nodes in the microgrid as V = {V

L

,V

I

}, where V

L

are
loads and V

I

are inverters with power injections governed by
the quadratic droop controller [14]. This recently proposed
controller adjusts the inverter voltage magnitude according to

⌧

i

˙

E

i

= �C

i

E

i

(E

i

� E

R

i

)�Q

i

, i 2 V

I

, (14)

where ⌧

i

, C

i

> 0 are fixed controller parameters, and E

R

i

is
a fixed reference voltage. If the inverter i injects no reactive
power, the equilibrium voltage of (14) is E

R

i

. By combining
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the reactive power flow equations at the load (6) and the
controller (14), we obtain the differential-algebraic system


0
⌧

˙

E

I

�
=


Q

L

Cdiag(E
I

)(E

R

� E

I

)

�
� diag(E)LE , (15)

where ⌧ = diag([⌧
i

]

i2VI ) and C = diag([C
i

]

i2VI ) are
diagonal matrices, while E

R

= [E

R

i

]

i2VR is the vector of
the reference voltages. We point out that while in Section II
the voltages E

S

were considered to be fixed, now due to the
introduction of the quadratic droop controller the voltages E

I

in (15) are variables of the system; hence the variables are
now E

L

and E

I

. The goal of this section is to study whether
the differential-algebraic system (15) possesses a fixed point,
to determine its stability, and find an approximate expression.

Remark III.1 (Network interpretation of quadratic

droop controller). Comparing (14) and the right-hand side
of (7), the term C

i

E

i

(E

i

� E

R

i

) in (14) can be interpreted
as the reactive power injected from inverter i to a fictitious
node of voltage E

R

i

through a line of susceptance �C

i

.
Guided by this intuition, we consider an extended network

(Figure 1) where we introduce the set of reference nodes
V

R

and we connect each node i 2 V

I

to the corresponding
reference node i 2 V

R

(with voltage E

R

i

) through a line of
susceptance �C

i

. The voltage vector and Laplacian matrix
of the extended network are

˜

E =

2

4
E

L

E

I

E

R

3

5
,

˜

L =

2

4
L

LL

L

LI

0
L

IL

L

II

+ C �C

0 �C C

3

5
, (16)

where the diagonal matrix C represents the new connections
established between inverters V

I

and reference nodes V

R

.

Fig. 1. The equivalence between the original network (top) which consists
of an inverter (blue square) feeding a load , and the extended network
(bottom) with an additional fictitious node held at constant voltage ER.

From (16) we can compute the reactive power at the
inverters in the extended network, which we denote by ˜

Q

I

:
˜

Q

I

= diag(E
I

)

⇥
L

IL

L

II

+ C �C

⇤
˜

E

= Cdiag(E
I

)(E

I

� E

R

) +Q

I

,

(17)

Comparing (17) and (14), the quadratic droop controller can
now be expressed as

⌧

˙

E

I

= �

˜

Q

I

. (18)

Using (18) we can write the differential-algebraic system
(15) on the extended network equivalently as

Q

L

˜

Q

I

�
= diag(E

L

, E

I

)


L

LL

L

LI

0
L

IL

L

II

+ C �C

�
˜

E (19a)

⌧

˙

E

I

= �

˜

Q

I

. (19b)

We emphasize that (19) and (15) are equivalent representa-
tions of the microgrid with quadratic droop control at the
inverters. ⇤

The equations (19a) have the same structure as the original
load reactive power flow equation (6), and in Theorem
II.2 we introduced an approximate solution to equation (6).
We can now follow a similar path and apply the same
approximation to equation (19a) to find an approximate
solution for the voltages E

L

and E

I

, while E

R

is considered
to be fixed. We can then use this solution to study the stability
of the unique equilibrium ˜

Q

I

= 0 of (19b). More precisely,
we perform a change of coordinates in equation (19), using
the approximation errors as the new system variables. In
doing so, we facilitate the analysis of the fixed points of
the system (19).

In order to state our main result, we define the reference

baseline voltage

˜

E

N

by

˜

E

N

:= min

i2VR

E

R

i

,

and the reference voltage spread ⌘̃ by

E

R

=

˜

E

N

(1+ ⌘̃).

Note that ⌘̃ � 0. We define the inverse X of the truncated
Laplacian matrix by

X =


X

LL

X

LI

X

IL

X

II

�
:=


L

LL

L

LI

L

IL

L

II

+ C

��1

, (20)

and the hybrid matrix

M =


M

L

M

I

�
:= �


L

LL

L

LI

L

IL

L

II

+ C

��1


0
�C

�
=


X

LI

X

II

�
C .

We are now ready to state the main result of this section.

Theorem III.2 (Existence and Stability of the Fixed

Point). There exists a minimum reference baseline voltage

˜

E

min

N

such that for all

˜

E

N

>

˜

E

min

N

the differential-algebraic

system (15) has a locally exponentially stable high-voltage

fixed point given by


E

eq

L

E

eq

I

�
= E

N

1+E

N

M ⌘̃+

1

E

N


X

LL

X

IL

�
Q

L

+

1

E

N

g

eq
, (21)

where the term g

eq
becomes constant as the source baseline

voltage E

N

increases, that is,

lim

EN!1
g

eq
= �


X

LL

X

IL

�
diag�1

(1+M

L

⌘̃) diag(M
I

⌘̃)Q

L

.

(22)

Theorem III.2 takes inspiration from Theorem II.2 but
addresses a different problem. While Theorem II.2 gives an
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approximate solution of the algebraic equation (6), Theorem
III.2 provides the approximate expression of a fixed point of
a differential-algebraic system, and studies its stability. The
proof of Theorem III.2 is considerably more complicated
than that of Theorem II.2, and we will present it shortly.
Note that the two theorems characterize differently the error
terms g: Theorem II.2 proposes a bound on the error term
g in terms of the network parameters, while Theorem III.2
determines the asymptotic behavior of the error term g

eq.
However, setting g

eq
= 0 in equation (21) gives an approx-

imate expression for the solution of (19a). The approximate
expression is the same we introduced in Theorem II.2, except
that here it is applied to an extended network with ˜

Q

I

= 0.
The close relationship between the two theorems allows us
to verify the accuracy of the approximation (12) of Theorem
II.2 by only performing a numerical analysis on the system
(19) (see Section IV).
Proof To streamline the presentation, we break the proof
into the following three parts:

1) change of variables and simplifications;
2) implicit function theorem for large ˜

E

N

;
3) local stability analysis of fixed point.

Part 1 (Change of variables and simplifications): Consider
the linear change of variables from E

L

and E

I

to g

L

and g

I

defined by

E

L

E

I

�
= E

N

1+ E

N


M

L

M

I

�
⌘̃ +

1

E

N

X


Q

L

˜

Q

I

�
+

1

E

N


g

L

g

I

�
.

Let us define the following quantities and shorthands:

" :=

1

˜

E

N

g :=


g

L

g

I

�
Q :=


Q

L

˜

Q

I

�
L :=


L

LL

L

LI

L

IL

L

II

+ C

�
.

The matrix L is a strictly diagonally dominant M -matrix, and
hence is positive definite (see [15, Corollary 6.2.27]). As a
consequence, X = L

�1 as defined by (20) — along with its
principal sub-block X

II

— are also positive definite. Since
L is a non-singular and irreducible M-matrix, its inverse X

is positive [16, Theorem A]. Since ⌘̃

i

> 0 and C

i

> 0, these
properties of X imply that

1+


M

L

M

I

�
⌘̃ = 1+


X

LI

X

II

�
C⌘̃ > 0 . (23)

Applying the change of variables in (19) and performing
some simple calculations, we compute that


L

LL

L

LI

0
L

IL

L

II

+ C �C

�
˜

E = "Q+ "Lg , (24)

Combining the change of variables (which are now
g

L

, g

I

,

˜

Q

I

) and the equality (24), we can reformulate the
differential-algebraic system (19) as

Q =

 
1

"

diag(1+M ⌘̃) + " diag(XQ+ g)

!⇣
"Q+ "Lg

⌘

�

˜

Q

I

=

d

dt

✓
1

"

(1+M

I

⌘̃) + "(X

IL

Q

L

+X

II

˜

Q

I

+ g

I

)

◆
,

where without loss of generality we assumed ⌧ = I .
Expanding the above equations and performing some simple
computations, we obtain the simplified system

0 = diag(1+M ⌘̃)Lg + diag(M ⌘̃)Q+ "

2

h (25a)

�

˜

Q

I

= "X

II

˙

˜

Q

I

+ "ġ

I

, (25b)

where we have used LX = I , the fact that ⌘̃ and Q

L

are
constant in time, and we have defined

h(g

L

, g

I

,

˜

Q

I

) := diag(XQ)(Q+ Lg) + diag(g)(Q+ Lg) .

Part 2 (Implicit function theorem for large ẼN ): The
algebraic equation (25a) has the form

0 = F (", g,

˜

Q

I

) .

Note that F is a polynomial (and hence, smooth) function of
each variable. One can verify that F (0, g

lim
,0) = 0, where

g

lim
:= �


X

LL

X

IL

�
diag�1

(1+M

L

⌘) diag(M
I

⌘)Q

L

.

Moreover, we compute the partial derivative

@F

@g

(0, g

lim
,0) = diag(1+M ⌘̃)L ,

which is nonsingular since L is positive definite and (23)
holds. By the implicit function theorem [17], there exist open
sets U

0

⇢ R and V

0

⇢ R|VI |, both containing the origin, and
a function G : U

0

⇥ V

0

! R|VL|+|VI | ,

(",

˜

Q

I

) 7! g = G(",

˜

Q

I

) =


G

L

(",

˜

Q

I

)

G

I

(",

˜

Q

I

)

�
,

such that F (", G(",

˜

Q

I

),

˜

Q

I

) = 0 for " 2 U

0

and ˜

Q

I

2 V

0

.
Substituting g

I

= G

I

(",

˜

Q

I

) into the dynamics (25b) we
obtain

�

˜

Q

I

= "X

II

˙

˜

Q

I

+ "

˙

G

I

(",

˜

Q

I

) (26)

= "

⇣
X

II

+

@G

I

@

˜

Q

I

(",

˜

Q

I

)

⌘
˙

˜

Q

I

. (27)

The matrix @G

I

/@

˜

Q

I

is a sub-matrix of @G/@

˜

Q

I

, whose
expression is provided by the implicit function theorem as

@G

@Q̃I

(", Q̃I) = �
✓
@F
@g

◆�1 @F

@Q̃I

,

which holds in U

0

⇥ V

0

and can be computed by means of
simple but lengthy linear algebra operations which we omit,
resulting in the expression

@G

@

˜

Q

I

(",

˜

Q

I

) =�

�
diag(1+M ⌘̃)L+ "

2

r

 �1

·

 
0

diag(M
I

⌘)

�
+ "

2

s

!
,

(28)

where r and s are polynomial functions in ", ˜

Q

I

, and
G(",

˜

Q

I

).

Part 3 (Fixed point and its stability): In U

0

⇥ V

0

we have
that ",

˜

Q

I

and G(",

˜

Q

I

) are bounded and so are r and s.
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Therefore, from (28) we have

lim

"!0

@G

I

@

˜

Q

I

= �X

II

diag�1

(1+X

II

C⌘̃) diag(X
II

C⌘̃) .

It follows that

lim

"!0

✓
X

II

+

@G

I

@

˜

Q

I

(",

˜

Q

I

)

◆
= X

II

diag�1

(1+X

II

C⌘) .

(29)
The right-hand side of (29) is invertible. Since the invertibil-
ity of the matrix depends continuously on the matrix entries,
there exists "̂ > 0 such that for all " < "̂ the matrix

X

II

+

@G

I

@

˜

Q

I

(",

˜

Q

I

) .

is also invertible. Thus, for " < "̂, we can now obtain from
(26) the explicit dynamical system

˙

˜

Q

I

= �

1

"

⇣
X

II

+

@G

I

@

˜

Q

I

(",

˜

Q

I

)

⌘�1

˜

Q

I

(30)

:= A(

˜

Q

I

)

˜

Q

I

:= f(

˜

Q

I

) , (31)

where we defined A and f to keep the notation compact.
Observe from (30) (or, from (18)) that ˜

Q

I

= 0 is the unique
fixed point of the dynamics. The Jacobian of the system (30)
around ˜

Q

I

= 0 is given by

@f(

˜

Q

I

)

@

˜

Q

I

�����
˜

QI=0

= A(

˜

Q

I

= 0)

= �

1

"

⇣
X

II

+

@G

I

@

˜

Q

I

(",

˜

Q

I

= 0)
⌘�1

. (32)

Since the inverse of a matrix is continuous with respect to
the matrix entries, (29) leads to

lim

"!0

✓
X

II

+

@G

I

@

˜

Q

I

(",0)

◆��1

= diag(1+X

II

C⌘) X

�1

II

.

The product between a diagonal positive definite matrix and
a positive definite matrix has all the eigenvalues with positive
real part (see [18] or [19, §6.2]).

As the eigenvalues of a matrix depend continuously on the
matrix entries, it is possible to find "

max

2]0, "̂[ such that, for
all " < "

max, the Jacobian (32) has all its eigenvalues with
negative real part. We can conclude that for such values of ",
the point ˜

Q

I

= 0 is a locally exponentially stable fixed point
for (26). It follows that the fixed point of (25) is ˜

Q

I

= 0,
along with

g

eq
= G(",

˜

Q

I

= 0) .

Since g = G(",

˜

Q

I

) is a continuous function of ˜

Q

I

, the
local exponential stability of ˜

Q

I

= 0 implies the local
exponential stability of geq. This in turn is equivalent to the
local exponential stability of the fixed point (21) expressed
in terms of the original varibles E

L

and E

I

. Finally, the limit
(22) follows from

lim

"!0

g

eq
= lim

"!0

G(",

˜

Q

I

= 0) = G(0,0) = g

lim
.

This completes the proof of Theorem III.2. ⇤

IV. NUMERICAL STUDY

In this section we test the results obtained in Theorem III.2
on an islanded version of the standard IEEE 37 distribution
network. The line susceptances for this network vary in the
range [�0.5 H,�10 H] with R/X ratios of approximately
one, while the reactive power demands vary for each load
in the interval [�30 kvar,�70 kvar]. The sources in this

Fig. 2. Islanded IEEE 37 bus distribution network containing loads and
inverters

network are DC/AC inverters, whose voltage magnitudes are
governed by the quadratic droop controller (14). We simulate
the resulting differential-algebraic system (19) for different
values of ˜

E

N

and study:
a) the threshold ˜

E

min

N

above which the fixed point (21)
exists and is stable, and

b) the accuracy of the approximated fixed point expression
(21). We consider two variations on the approximation
presented in (21):
B1: we set geq

= g

lim in (21);
B2: we set geq

= 0 in (21).
To quantify the error between the true fixed point
E

eq

nonlin

of the nonlinear system and the approximations
given by B1 and B2, we introduce the relative approx-

imation errors

�

i

:=

kE

eq

nonlin

� E

eq

approx,Bi

k1

E

N

, i 2 {1, 2} .

We note that, in studying the accuracy of Theorem III.2, we
will implicitly also study the accuracy of the preliminary
result Theorem II.2, as the former depends on the latter. The
threshold ˜

E

min

N

above which a stable high-voltage fixed point
exists was found by simulation to be roughly 860V, well
below the muli-kV range in which the system is operated.
Figure 3 reports the relative approximation errors �

1

and �

2

for the approximations B1 and B2 in the IEEE 37 network,
for different values of ˜

E

N

.
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Fig. 3. Relative approximation error for simulation of the IEEE 37 bus
distribution network as a function of the nominal network voltage. The
scales on both axes are logarithmic.

Note first that both relative approximation errors decreases
rapidly as ˜

E

N

grows. In particular at the 4.8kV nominal
operating voltage of the network, the relative error using both
approximations is below 0.1%, with the accuracy of B1 being
below 0.01%. For large values of ˜

E

N

the approximation B1

is more accurate, so exploiting the knowledge of glim leads to
a better approximation for practical operational region. The
curious and smooth behavior of the relative approximation
error — and the relation of this behavior to the bounds in
(13) — is a subject of future research.

V. CONCLUSIONS

In this work we have presented novel analytic expres-
sions for the approximate solution of the decoupled reactive
power flow equations. Aside from the clear application in
transmission networks, we have demonstrated the flexibility
of our result by using it to study the behavior of droop-
controlled inverters in an islanded microgrid. Through sim-
ulation, we have demonstrated that our results are practical
and extremely accurate in real power networks. Future work
in this direction seeks to examine analytically the results
of Figure 3, and to further relax the assumption of small
angular differences. We further envision an extensive set of
case studies, with the goal of demonstrating conclusively the
usefulness of this approximation in power system planning
and operation.
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