
ar
X

iv
:1

20
8.

21
12

v2
 [

cs
.L

G
]

21
 J

an
 2

01
3

Inverse Reinforcement Learning with Gaussian Process

Qifeng Qiao and Peter A. Beling
Department of Systems and Information Engineering

University of Virginia
Charlottesville, Virginia 22904
Email: qq2r, pb3a@virginia.edu

Abstract— We present new algorithms for inverse reinforce-
ment learning (IRL, or inverse optimal control) in convex
optimization settings. We argue that finite-space IRL can
be posed as a convex quadratic program under a Bayesian
inference framework with the objective of maximum a posterior
estimation. To deal with problems in large or even infinite state
space, we propose a Gaussian process model and use preference
graphs to represent observations of decision trajectories. Our
method is distinguished from other approaches to IRL in
that it makes no assumptions about the form of the reward
function and yet it retains the promise of computationally
manageable implementations for potential real-world applica-
tions. In comparison with an establish algorithm on small-scale
numerical problems, our method demonstrated better accuracy
in apprenticeship learning and a more robust dependence on
the number of observations.

I. I NTRODUCTION

Imitation learning is a subfield of machine learning in
which the objective is to learn to mimic human behavior
solely through observation of the actions taken by the subject.
Technical approaches to imitation learning generally fallinto
two broad categories [1]. One category contains behavioral
cloning approaches that attempt to use supervised learningto
predict actions directly from observations of features of the
environment. The other category consists of IRL approaches,
first introduced in [2], use training examples in the form of
decision trajectories defined in terms of a Markov decision
process (MDP) model of the underlying sequential decision
task. IRL algorithms attempt to discover the reward function
for the MDP solely on the basis of observations of a decision-
maker’s solution to that problem. This approach is appealing
because knowledge of the reward function offers the promise
that behavior can be predicted in domains unseen during the
period of observation.

A variety of approaches have been proposed for IRL. In
early work, Ng and Russel [2] advance the key idea of
choosing the reward function to maximize the difference
between the optimal and suboptimal policies, under the as-
sumption that the reward function can be approximated by a
linear combination of basis functions. A principal motivation
for considering IRL problems is the idea of apprenticeship
learning, in which observations of state-action pairs are used
to learn the policies followed by experts for the purpose of
mimicking or cloning behavior. By its nature, apprenticeship
learning problems arise in situations where it is not possible
or desirable to observe all state-action pairs for the deci-

sion maker’s policy. In recent approaches to apprenticeship
learning, partial policy observation is dealt with by searching
mixed solutions in a space of learned policies with the goal
that the accumulative feature expectation is near that of the
expert [3], [4]. In such approaches, the reward function is
approximated by a linear combination of features, which
in turn allows for linear approximation of value functions
with consequent simplification of the learning problem. In
such methods, algorithm performance is strongly influenced
by the modeler’s choice of features. Another algorithm for
IRL is policy matching in which the loss function penalizing
deviations from expert’s policy is minimized by tuning the
parameters of reward functions [5].

The assumption that the reward function can be linearly
approximated, which underlies a number of IRL approaches,
may not be reasonable for many problems of practical
interest. The ill-posed nature of the inverse learning problem
also presents difficulties. Multiple reward functions may
yield the same optimal policy, and there may be multiple
observations at a state given the true reward function. To
deal with these problems, we design algorithms that do
not assume linear structure for reward function, but yet
remain computationally efficient. In particular, we propose
new IRL models and algorithms that assign a Gaussian prior
on the reward function or treat the reward function as a
Gaussian process. This approach is similar in perspective to
that Ramachandran and Eyal [6], who view the state-action
samples from the expert as the evidence that will be used
to update a prior on the reward function, under a Bayesian
framework. Other approaches to IRL include game-theoretic
methods [7] and algorithms derived from linearly-solvable
stochastic optimal control [8].

The main contributions of our work are as follows. First,
we model the reward function in a finite state space using a
Bayesian framework with known Gaussian priors. We show
that this problem is a convex quadratic program, and hence
that it can be efficiently solved. Second, for the general
case that allows noisy observation of incomplete policies,
representation of the reward function is challenging and
requires more computation. We show that Gaussian process
is appropriate in that case. Our model constructs a preference
graph in action space to represent the multiple observations
at a state. Even in cases where the state space is much larger
than the number of observations, IRL via Gaussian processes
has the promise of offering robust predictions and results that

http://arxiv.org/abs/1208.2112v2

are relatively insensitive to number of observations.
It is worth mentioning here that the preference graph we

use in IRL is based on an understanding of the agent’s
preferences over action space. In the machine learning lit-
erature, there has been study of a learning scenario called
learning label preference that focuses on finding the latent
function that predicts preference relations among a finite set
of labels. This scenario is a generalization of some stan-
dard problems, such as classification and label ranking [9].
Considering the latent function values as a Gaussian process,
Chu and Ghahramani [10] observed that Bayesian framework
is an efficient and competitive method for learning label
preferences, and they proposed a novel likelihood function
to capture preference relations and the use of a Gaussian
process model for learning label preferences. We also use
Bayesian inference and build off several of the ideas in
[10] and related work, but our method differs from label
preference learning for classification and label ranking. Our
input data depends on states and actions in the context of an
MDP. Moreover, we are learning the reward that indirectly
determines how actions are chosen during the sequential
evolution of an MDP, while preference learning studies the
latent functions preserving preferences.

The rest of this paper is organized as follows: In Section
II, we introduce IRL preliminaries. In Sections III and IV,
we propose our principal models and algorithms. In Section
V, we describe the results of two small-scale numerical ex-
periments. Finally, in Section VI, we offer some concluding
remarks.

II. PRELIMINARIES

A finite-state, infinite horizonMarkov decision process

(MDP) is defined as a tupleM = (S,A,P , γ, r), whereS =
{s1, s2, · · · , sn} is a set ofn states;A = {a1, a2, · · · , am} is
a set ofm actions;P =

{
Paj

}m

j=1
is a set of state transition

probabilities;γ is a discount factor; andr is the reward
function which can be written asr(s, a), if we define it as
depending on states and actiona. For anya ∈ A andPa is
a n × n matrix, each row of which, denoted asPas, is the
transition probabilities upon taking actiona in states.

Consider a decision maker who selects actions according
to a policy π : S → A that maps states to actions. Define
the value function at states with respect to policyπ to be
V π(s) = E[

∑∞
t=0 γ

tr(st, π(st))|π], where the expectation
is over the distribution of the state sequence

{
s0, s1, . . .

}

given policy π, where superscripts index time. A decision
maker who aims to maximize expected reward will, at every
states, choose the action that maximizesV π(s). Similarly,
define theQ-factor for states and actiona under policy
π, Qπ(s, a), to be the expected return from states, taking
actiona and thereafter following policyπ. Given a policyπ,
∀s ∈ S, a ∈ A, V π(s) andQπ(s, a) satisfy

V π(s) = r(s, π(s)) + γ
∑

s′

Pπ(s)s(s
′)V π(s′)

Qπ(s, a) = r(s, a) + γ
∑

s′

Pas(s
′)V π(s′)

The well-known Bellman optimality conditions state that
π is optimal if and only if, ∀s ∈ S, we haveπ(s) ∈
argmaxa∈A Qπ(s, a) [11].

Given an MDP M = (S,A,P , γ, r), let us de-
fine the inverse Markov decision process (IMDP) MI =
(S,A,P , γ,O). The processMI includes the states, actions,
and dynamics ofM , but lacks a specification of the reward
vector, r. By way of compensation,MI includes a set of
observationsO that consists of state-action pairs generated
through the observation of a decision maker. We can define
the inverse reinforcement learning (IRL) problem associated
with MI = (S,A,P , γ,O) to be that of finding the reward
function r such that the observationsO could have come
from an optimal policy forM = (S,A,P , γ, r). The IRL
problem is, in general, highly underspecified, which has
led researchers to consider various models for restricting
the set of reward vectors under consideration. In a seminal
consideration of IMDPs and associated IRL problems, Ng
and Russel [2] observe that, by the optimality equations, the
only reward vectors consistent with an optimal policyπ are
those that satisfy the set of inequalities

(Pπ − Pa)(In − γPπ)
−1r ≥ 0, ∀a ∈ A, (1)

where Pπ is the transition probability matrix relating to
observed policyπ, Pa denotes the transition probability
matrix for other actions,In is a n× n identity matrix, and
r is a reward vector that depends only on state. Note that
the trivial solutionr = 0 satisfies these constraints, which
highlights the underspecified nature of the problem and
the need for reward selection mechanisms. Ng and Russel
[2] choose the reward function to maximize the difference
between the optimal and suboptimal policies, which can be
done using a linear programming formulation. In the sections
that follow, we propose the idea of selecting reward on
the basis of Maximum a posterior (MAP) estimation in a
Bayesian framework.

III. B AYESIAN IRL WITH GAUSSIAN DISTRIBUTION

Suppose that we have a prior distributionp(r) for the
rewards in an IMDPMI , along with a likelihood function
p(O|r). Then we can define the associated Bayesian IRL
problem to be that of finding the MAP estimate ofr. In this
section we consider this problem for priors with a Gaussian
distribution, showing that the MAP estimation problem can
be formulated as a convex optimization problem. We assume
all the states, value functions, and transition probabilities can
be stored in the memory of a computer.

Specifically, letr ∈ ℜn be a random vector only depending
on state. The entryr(si) denotes the reward at i-th state.
We assign a Gaussian prior on ther: r ∼ N (µr,Σr). This
is a subjective distribution; before anything is known about
optimal policies for the MDP, the learner has characterized
a prior belief byµr with confidence byΣr.

One can envision two principal types of experiments for
collecting a set of observationsO:

1) Decision Mapping: the observations are obtained by
finding a mapping between state and action; e.g., we

−3

−2

−1

0

1

2

−4

−3

−2

−1

0

1

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r1

r2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−3

−2

−1

0

1

2

−4
−3

−2
−1

0
1

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r1

r2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Fig. 1. An example showing the Bayesian IRL given full observation of
the decision maker’s policy.

ask the expert which action he, she, or it would choose
at states, and then repeat the process. Ultimately, we
will have a set of independent state-action pairs,O1 =
{
(sh, ah)

}t

h=1
.

2) Decision Trajectory: Given an initial state, we simulate
the decision problem and record the history of the
expert’s behavior,O2 =

{
s1, a1, s2, a2, · · · , st, at

}
.

Formally, we define an experimentE to be a triple
(O, r, {p(O|r)}), whereO is a random vector with probabil-
ity mass functionp(O|r) for somer in the function space.
Given what experiment E was performed and a particular
observation ofO, the experimenter is able to make inference
and draw some evidence aboutr arising fromE andO. This
evidence we denote byEv(E,O). Consider observations
made using decision mappingO1 and decision trajectoryO2,
with corresponding experimentsE1 = (O1, r, {p(O1|r)})
andE2 = (O2, r, {p(O2|r)}). We would like to show that
Ev(E1,O1) = Ev(E2,O2), if the states inO1 andO2 are
the same. This fact implies that inference conclusions drawn
from O1 andO2 should be identical.

Making use of independence of state-action pairs in deci-
sion mapping, we calculate the joint probability density as

p(O1|r) =
t∏

h=1

p(sh, ah|r) =
t∏

h=1

p(sh)p(ah|sh, r).

Considering Markov transition in decision trajectory, we
write the joint probability density as

p(O2|r) = p(s1)p(a1|s1, r)

t∏

h=2

p(sh|sh−1, ah−1)p(ah|sh, r).

Finally, we get p(O1|r) = c(O1,O2)p(O2|r), where
c(O1,O2) is a constant. The above equation implies an
equivalence of evidence for inference ofr between the use
of a decision map or a decision trajectory.

To simplify computation, we eliminate the elements in
likelihood functionp(O|r) that do not containr, which yields
p(O|r) =

∏t
h=1 p(a

h|sh, r). Further, we modelp(ah|sh, r)
by

p(ah|sh, r) =

{

1, if Q(sh, ah) ≥ Q(sh, a), ∀a ∈ A

0, otherwise.
(2)

This form for the likelihood function is based on the assump-
tion each observed action is an optimal choice on the part
of the expert. Note that the set of reward values that make
p(ah|sh, r) equal to one is given by Eq. 1.

Proposition 1: Assume a countable state and control
space and a stationary policy. Then IRL using Bayesian MAP
inference is a quadratic convex programming problem.

Proof: By Bayes rule, the posterior distribution of
reward

p(r|O) =
1

(2π)n/2|Σr|1/2
exp

(

−
1

2
(r − µr)

TΣ−1
r (r − µr)

)

.

This posterior probabilityp(r|O) quantifies the evidence that
r is the reward for the observations inO. Using Eq. 1, we
formulate the IRL problem as

min
r

1

2
(r − µr)

TΣ−1
r (r − µr)

s.t. (Pa∗ − Pa)(In − γPa∗)−1r > 0, ∀a ∈ A (3)

rmin < r < rmax

Since the objective is convex quadratic and constraints are
affine, Problem 3 is a convex quadratic program.

Fig. 1 shows a Gaussian prior on reward and its posterior
after truncation by accounting for the linear constraints on
reward implied by observationO. Note the shift in mode.

The development above assumes the availability of a
complete set of observations, giving the optimal action at
every state. If necessary, it may be possible to expand
observations of partial policies to fit the framework. A naive
approach would be to state transition probabilities averaged
over all possible actions at unobserved states.

IV. GAUSSIAN PROCESSES FOR GENERALIZEDIRL

In this section, we introduce a Gaussian process IRL
model. Our model involves the construction of a preference
graph, defined below, that is used to record the actions of
the expert under observation. The choice of one action over
the others at any given state will be governed by Q-function
values, if the expert acts optimally. Hence, these values may
be used to define preference relations among actions.

Definition 1 At state si ∈ S, ∀â, ǎ ∈ A, we define the
preference relationas: ifQ(si, â) ≥ Q(si, ǎ), the action̂a is
weakly preferred tǒa, denoted aŝa �si ǎ; strictly preferred,
denoted aŝa ≻si ǎ,if and only if Q(si, â) > Q(si, ǎ); â is
equivalent toǎ, denoted aŝa ∼si ǎ, if and only if â �si ǎ
and ǎ �si â.

Definition 2 A preference graphover action space is
a directed graph showing preference relations among the
countable actions at a given state. At statesi, a preference
graphǫi consists of the node setVi and edge setEi. Each
node represents an action inA. Define a one-to-one mapping
ϕ : Vi → A. Each edge indicates the preference relation
between two nodes.

Suppose we are given a dataset of observations, denoted
as O = {S,G} = {si, ǫi}

n̂
i=1. Each pair(si, ǫi) consists

of two components: one is the inputsi that is a feature
vector constructed by a mappingφ : S → [0, 1]d; the other,

denoted asǫi = (Vi, Ei), is a two layer preference graph over
actions observed atsi. As shown in Figure 2, the node set
Vi can be divided into two subsets: a set of nodes in the top
layer to represent optimal actions, denoted asV+

i ; a set of
nodes in the bottom layer to represent other actions, denoted
asV−

i . The graphǫi =
{
(u → v)ni

l=1, u ∈ V+
i , v ∈ V−

i

}
∪

{
(u ↔ v)mi

k=1, u, v ∈ V+
i

}
, whereni is the number of edges

denoting strict preference relations andmi is the number
of edges denoting equivalent relations. Consider action’s

(a) (b)

Fig. 2. Examples of preference graph

influence on the reward function. Here we definer as follows.

r = (ra1
(s1), ..., ra1

(sn̂)
︸ ︷︷ ︸

, . . . , ram
(s1), . . . , ram

(sn̂)
︸ ︷︷ ︸

)

= (ra1
, · · · , ram

) (4)

where raj
, ∀j ∈ {1, 2, · · · ,m}, denotes the reward only

associated with j-th action. Givenr, a ranking function can be
naturally formulated as arrangement of the nodes in sorting
of the values of Q-functions. We write the ranking function
with respect to a nodeu at states asQ(s, ϕ(u)).

A. Bayesian inference

Below we describe our models for prior information,
likelihood functions, and inference.

1) Gaussian prior: Considerraj
as a stochastic process.

Thenraj
is a Gaussian process if, for any{s1, · · · , sn̂} ∈ S,

the random variables
{

raj
(s1), · · · , raj

(sn̂)
}

are normally
distributed. We denote bykaj

(sc, sd) the function generating
the value of entry(c, d) for covariance matrixKaj

, which
leads toraj

∼ N(0,Kaj
). Then the joint prior probability

of the reward is a product of multivariate Gaussian, namely
p(r|S) =

∏m
j=1 p(raj

|S) and r ∼ N(0,K). Thus r

is completely specified by the positive definite covariance
matrix K. As we assume them latent processes are un-
correlated, the covariance matrixK is block diagonal in
the covariance matrices{K1, ...,Km}. In practice, we use a
squared exponential kernel function, written askaj

(sc, sd) =

e
1

2
(sc−sd)

TMa(sc−sd)+σ2
aj
δ(sc, sd) whereMaj

= κaj
In̂ and

In̂ is an identity matrix of sizên. The functionδ(.) is the
Kronecker delta.

2) Likelihood: Given an edgeu → v, we adopt a variant
of the likelihood function proposed by Chu and Ghahramani
in [10] to capture the preference relation in that edge.
Specifically,

pideal(u → v|rϕ(u)(s), rϕ(v)(s))

=

{

1 if Q(s, ϕ(u)) > Q(s, ϕ(v))

0 otherwise,
(5)

whereu and v are two nodes in the preference graph. By
Definition 2, these nodes can be mapped to two actionsϕ(u)
andϕ(v) in spaceA. We write the Q-function as,

Q(s, a) = ra(s) + γP̂as(In̂ − γP̂a∗)−1Îr (6)

where P̂as and P̂a∗ are transition probabilities for the
observedn̂ states, andÎ is a matrix with n̂ rows and
n̂ × m columns. The production of̂I and r is a n̂ × 1
vector containing the reward for taking the optimal action
at each state. After assuming that the latent functions are
contaminated with Gaussian noise that has zero mean and
unknown varianceσ2 [10], the likelihood function forl-th
strict preference edge in graphǫi becomes

p(ul → vl)|rϕ(ul)(si) + δul
, rϕ(vl)(si) + δvl)

=

∫ ∫

pideal(ϕ(ul) ≻ ϕ(vl)|rϕ(ul)(si), rϕ(vl)(si))

N(δu, 0, σ
2)N(δv, 0, σ

2)dδudδv = Φ(zli) (7)

where zli = Q(si,ϕ(ul))−Q(si,ϕ(vl))√
2σ

, N(δu, 0, σ
2) denotes a

Gaussian distribution forδu, andΦ(z) =
∫ z

−∞ N(γ, 0, 1)dγ.
The l-th edge(ul → vl) in preference graphǫi denotes
the strict preference relationϕ(ul) ≻ ϕ(vl). Consequently,
we havep(ϕ(ul) ≻si ϕ(vl)|r) = Φ(zli). With a two-layer
preference graph, we are only interested in the directed edges
between two layers as well as the equivalent relation in the
top layer. We propose a new likelihood function for thek-th
equivalent preference edge as follows,

p(uk ↔ vk|r) ∝ e−
1

2
(Q(si,ϕ(uk))−Q(si,ϕ(vk)))

2

(8)

whereuk, vk ∈ V + and the k-th edge(uk ↔ vk) denotes the
equivalent relationϕ(uk) ∼si ϕ(vk). We havep(ϕ(uk) ∼si

ϕ(vk)|r) = p(uk ↔ vk|r) that is shown in Eq.8. Then we
compute the likelihood function for all observed preference
graphs using the following equation,

p(G|S, r, θ) =

n̂∏

i=1

p(ǫi|si, r) =

n̂∏

i=1

ni∏

l=1

Φ(zli)

exp(

n̂∑

i=1

mi∑

k=1

−
1

2
(Q(si, ϕ(uk))−Q(si, ϕ(vk)))

2). (9)

We put all the unknown parameters into a hyper-parameter
vector θ =

{
κaj

, σaj
, σ

}
, and then adjust the hyper-

parameters on the basis of maximum a posterior estimation.
3) Posterior inference: Here we adopt a hierarchical

model. At the lowest level are function values encoded as a
parameter vectorr. At the top level are hyper-parameters in
θ controlling the distribution of the parameters at the bottom
level. Inference takes place one level at a time. At the bottom
level, the posterior over function values are given by Bayes’
rule asp(r|S,G, θ) = p(G|S, θ, r)p(r|S, θ)/p(G|S, θ).

The posterior combines the information from the prior
and the data, which reflects the updated belief aboutr after
observing the decisions. By Eq. 4, our task is to minimize

the negative log posterior equationU(r), which is

U(r) =
1

2

m∑

j=1

rTaj
K−1

aj
raj

+

n̂∑

i=1

mi∑

k=1

1

2
(

m∑

j=1

ρikaj
raj

)2

−
n̂∑

i=1

ni∑

l=1

lnΦ(zli). (10)

Given the k-th equivalent relationϕ(uk) ∼ ϕ(vk), let ∆k ,

γ(P̂φ(uk)si − P̂φ(vk)si)(In̂ − γP̂a∗)−1, then we have

ρikaj
= αi[1(aj = φ(uk))− 1(aj = φ(vk))] +∆kÎaj

where Îaj
is a block matrix ofÎ = [Îa1

, Îa2
, · · · , Îam

] and
αi is a1× n̂ vector whose entryαi(i) = 1, andαi(−i) = 0.
The notation1(.) is an indicator function.

Remark Minimizing Eq.10 is a convex optimization prob-
lem. The proof can be found in our supplemental report [12].

At the minimum ofU(r) we have

∂U

∂raj

= 0 ⇒ r̂aj
= Kaj

(∇ logP (G|S, r̂, θ)), (11)

where r̂ = (r̂1, · · · , r̂aj
, · · · , r̂m). In Eq.11, we can use

Newton’s method to find the maximum ofU with the
iteration

rnewaj
= raj

− (
∂2U

∂raj
∂raj

)−1 ∂U

∂raj

.

B. Model selection

Model selection is the process of choosing a covariance
function for a Gaussian process. The process can be consid-
ered to be training of a Gaussian process [13]. At the top
level, we can optimize the hyper-parameters by maximizing
the posterior over these hyper-parameters. The posterior
p(θ|G,S) is given by p(θ|G,S) = p(G|S, θ)p(θ)/p(G|S),
where the normalizing constant can be omitted for sim-
plifying the optimization problem. If the prior distribution
of hyper-parameters has no population basis, we assign
the non-informative prior density toθ. Optimization overθ
becomes the problem of maximizing the marginal likelihood
p(G|S, θ). We approximate the integral of the marginal
likelihood p(G|S, θ) using a Laplace approximation local
expansion around the maximum, which is written as

p(G|S, θ) ≈ p(G|S, r̂, θ)× p(r̂|θ)δr|S . (12)

where δr|S = | − ∇∇ lnP (r|G,S, θ)|−
1

2 is the posterior
uncertainty in r, which is known as the Occam factor,
automatically incorporating a trade-off between model fit
and model complexity. As the number of data increases, the
approximation is expected to become increasingly accurate.
The marginal likelihood can be further written as

log p(G|S, θ) = −U(r̂)−
1

2
log |In̂ +KΠ| , (13)

wherer̂ is the MAP estimation in Eq.11 andΠ is the second
derivative matrix of the sum of the second and third part in
Eq. 10. Now we can find the optimal hyper-parameters by
maximizing Eq.13.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 (number of observed trajectories)/5

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(a) GPIRL accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(number of observed trajectories)/5

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

(b) LIRL accuracy

Fig. 3. Average accuracy as a function of the number of observed decision
trajectories, for GridWorld experiments.

C. Posterior predictive reward

When the observed state-action pairs are limited, e.g.
in the large state space or infinite state space, how to
predict the reward at new state is desirable. Our IRL with
Gaussian process provides a probabilistic model to predict
reward on new coming states∗, which is a Gaussian model
p(r∗|G,S, s∗, θ) with the following mean function

E(r∗aj
|G,S, s∗, θ) = kaj

(S, s∗)T (Kaj
+ σ2In̂)

−1r̂aj

and covariance function

cov(r∗aj
|G,S, s∗, θ) = kaj

(s∗, s∗)

−kaj
(S, s∗)T (Kaj

+ σ2In̂)
−1kaj

(S, s∗),

wherekaj
(S, s∗) is the vector of covariance between the test

point and training points for the covariance function relating
to the actionaj ∈ A.

V. EXPERIMENTS

In this section, we report on a simple GridWorld exper-
iment in which an agent starts from the a square of the
grid and attempts to navigate to the goal square, with the
possibility of encountering obstacles that block movement
to certain squares. The agent is able to take five actions:
remaining in the current square or moving in one of the
four cardinal directions. Each movement action results in
movement in the intended direction with probability 0.65,
movement in an unintended direction with probability 0.2,
and failure to move with probability 0.15.

We compared three algorithms: our convex programming
method from Section III (CPIRL), our Gaussian process
method from Section IV (GPIRL), and the linear approxima-
tion method in [2] (LIRL). Given observation of a complete
policy, each of the algorithms was successful in finding a
reward vector that yields an optimal policy identical to that
observed. For each of the reward vectors returned by the
algorithms, we recorded the amount of computation time
needed to find a best policy using reinforcement learning.
Table I shows the average of these time over 50 simulations.
Notably, reinforcement learning converges more quickly with
reward vectors returned by CPIRL and GPIRL than with
those returned by LIRL. We hypothesize our methods tend
to shape reward, providing additional feedback to the agent
and leading to an improvement in learning rate.

0 50 100 150 200 250 300
100

200

300

400

500

600

700

800

900

1000

s
te

p
s
 t
o
 g

o
a
l

episode

true reward

predicted reward

(a) 60-state discretization

0 50 100 150 200 250 300
100

200

300

400

500

600

700

800

900

1000

episode

s
te

p
s
 t
o
 g

o
a
l

true reward

predicted reward

(b) 120-state discretization

Fig. 4. Solutions to the hill climbing problem based off truereward (blue)
and reward recovered from GPIRL (red), for two levels of discretization.

Fig. 3 provides the basis for an accuracy comparison of
GPIRL and LIRL for experiments in which only partial
observations were available for reward learning. Accuracyis
calculated to be the fraction of runs in which the apprentice
is able to achieve the teacher’s goal state. The process of
computing accuracy includes: 1) generating some GridWorld
problems and sampling the decision trajectories from the
teacher’s demonstration; 2) inferring the reward function
using GPIRL and LIRL; 3) generating 1000 new GridWorld
problems with random initial state and solving these prob-
lems by applying reinforcement learning using the reward
output by IRL; 4) comparing the results of the GPIRL and
LIRL apprentices with the teacher. If the apprentice reaches
the teacher’s goal state, we consider that trial a success for
the apprentice. As can be seen in Fig. 3, the accuracy of
GPIRL is higher than that of LIRL, especially when the
number of observations is small. Additionally, GPIRL has
clearly lower variance in accuracy.

TABLE I

T IME(SEC) TO FIND THE APPRENTICE POLICY

GridWorld Size LIRL CPIRL GPIRL

10x10 2.61 2.06 1.20
20x20 20.05 15.75 9.32
30x30 75.12 64.30 35.11

We also performed an experiment based on a simulation
of an under-powered car attempting to drive out of a U-
shaped valley. In this simulation, the car lacks enough power
to climb the valley slopes from a standstill. Instead, it must
first reverse up a slope in order to accumulate energy that
will help it rush up the opposite slope. We choose the car’s
position and velocity as state features, discretizing those
naturally continuous quantities. To test GPIRL’s ability to
predict the reward on unseen states, we sampled only half the
discretized states as the observation data for GPIRL. Givena
state space with 120 states, for example, we would observe
behavior in only 60 states. Figure 4 shows the number of
steps needed to escape the valley for a range of starting
conditions, or episodes, for policies learned from the true
reward (blue) and from the reward returned by GPIRL (red).
The results in the figure suggest that GPIRL is able to
effectively recover the reward with incomplete observations,
since the solver, using the reward predicted by GPIRL, has

a performance on par with that of the teacher, using true
reward.

VI. CONCLUSIONS

We propose new IRL algorithms in the domain of convex
programming. To deal with the IRL problems with ill-posed
nature in large (or even infinite) state space, we model the
reward using Gaussian process and interpret the observation
of state-action space using preference graphs. Our posterior
prediction method can estimate the reward at unobserved
new coming states, which is promising for problems with
large state space. Numerical experiments suggest that our
method is able to find the reward approaching the true
underlying reward with fewer observations than are needed
with standard approaches. We will continue our research on
IRL with Gaussian process in continuous space.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. EEC-0827153.

REFERENCES

[1] Nathan Ratliff, Brian Ziebart, Kevin Peterson, J. Andrew Bagnell,
Martial Hebert, Anind K. Dey, and Siddhartha Srinivasa. Inverse
optimal heuristic control for imitation learning. InProc. AISTATS,
pages 424–431, 2009.

[2] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforce-
ment learning. InProc. 17th International Conf. on Machine Learning,
pages 663–670. Morgan Kaufmann, 2000.

[3] Peter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse
reinforcement learning. InProc. 21st International Conf. on Machine

learning, page 1. ACM, 2004.
[4] Umar Syed, Michael Bowling, and Robert E. Schapire. Apprenticeship

learning using linear programming. InProc. 25th international Conf.

on Machine learning, pages 1032–1039. ACM, 2008.
[5] Gergely Neu and Csaba Szepesvari. Apprenticeship learning using

inverse reinforcement learning and gradient methods. InProc. Uncer-

tainty in Artificial Intelligence, 2007.
[6] Ramachandran Deepak and Amir Eyal. Bayesian inverse reinforce-

ment learning. InProc. 20th International Joint Conf. on Artificial

Intelligence, 2007.
[7] Umar Syed and Robert E. Schapire. A game-theoretic approach to

apprenticeship learning. InAdvances in Neural Information Processing

Systems, pages 1449–1456. MIT Press, 2008.
[8] Krishnamurthy Dvijotham and Emanuel Todorov. Inverse optimal

control with linearly-solvable mdps. InProc. 27th International Conf.

on Machine learning. ACM, 2010.
[9] J. Fürnkranz and E. Ḧullermeier. Preference learning. InKünstliche

Intelligenz, 2005.
[10] Chu Wei and Ghahramani Zoubin. Preference learning with gaussian

processes. InProc. 22th Iinternational Conf. on Machine learning,
pages 137–144. ACM, 2005.

[11] Bellman R.Dynamic programming. Princeton University Press, 1957.
[12] Qifeng Qiao and Peter A. Beling. Inverse reinforcement

learning with gaussian process (supplemental materials),2010.
http://people.virginia.edu/∼qq2r/IRLACCsupplements.pdf.

[13] Carl Edward Rasmussen and Christopher K.I.Williams.Gaussian

Processes for Machine Learning. MIT Press, 2006.

	I Introduction
	II Preliminaries
	III Bayesian IRL with Gaussian Distribution
	IV Gaussian processes for generalized IRL
	IV-A Bayesian inference
	IV-A.1 Gaussian prior
	IV-A.2 Likelihood
	IV-A.3 Posterior inference

	IV-B Model selection
	IV-C Posterior predictive reward

	V Experiments
	VI Conclusions
	References

