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Abstract 

In this paper we present an algorithm for computationally effi- 
cient digital implementation of linear time invariant controllers. 
The algorithm transforms a linear time invariant controller into 
a periodically time varying system, which can be digitally imple- 
mented in a computationally efficient manner. This is achieved 
hy first decomposing the controller into a dual rate system. A 
scheduling policy is adopted that spreads the computation, re- 
quired to update the states of the slower system, over a time 
horizon. This reduces the total number of states updated at a 
given time step and hence the computational overhead. A t h e e  
retical framework is also developed t o  analyse the effect of this 
transformation on the closed-loop stability performance. The 
theoretical analysis framework relies on multi-rate filter hank 
theory and lifting techinique used in the analysis of multi-rate 

.control systems. 

1 Introduction 

Most control algorithms today are implemented in digital com- 
puters. The popularity is due t o  the versatility of implementing 
control algorithms in software and the drop in the cost of com- 
putation. Increasingly complex control systems are now being 
designed because implementation can he entirely software based. 
Therefore control systems today, are essentially a composite of 
computational tasks. Since most control systems interact with 
the real world, the constituting computational elements of the 
control system need to execute in real-time. Therefore control al- 
gorithms are realised as real-time computational systems during 
implementation. 

For economic reasons, the hardware lrsed to realise a control 
system, usually executes several computational tasks, each with 
its own deadline. Several scheduling algorithms that guarantee 
on-time completion of these computational tasks have been pro- 
posed and studied in the past three decades. In 1973, Liu and 
Layland [l] published a seminal paper that addressed schedul- 
ing algorithms for inultiprograinming in a hard real-time system. 
Since then, a vast amount of work has been done by both the 
operation research and computer science communities. Ramam- 
ritham and Stankovic in [Z] summarises the current state of the 
real-time scheduling algorithms. 

The  execution time or run-time of the coniputational tasks, 
that  constitute a real-time control system, plays a vital role in 
any real-time scheduling algorithm. Depending an  the task set 
and their run-limes, a scheduling algorithm may or may not he 
feasible. A scheduling algorithm is said to he feasible for a task 
set, if it  guarantees on-time completion of all t h e  tasks. There- 
fore, if the run-time of the computational tasks can he reduced, 
then more tasks could be feasibly scheduled in a hardware with a 
given clock speed or dually, a task set can be feasibly realiscd in a 
hardware with slower clock speed. In addition t o  this, reduction 
in t h e  run-times of the scheduled tasks increase the guarantee- 
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ability of tasks with timing constraints. The motivation for the 
research work presented in this paper stems from these facts. 

In this paper we present an algorithm t.hat transforms linear 
time invariant controllers to periodically time varying systems, 
which can be digitally implemented in a computationally efficient 
manner. Controllers designed in continuous time are discretised 
when implemented in digital computers. The sampling frequency 
of the discrete-time controller is typically chosen to be ten times 
faster than the cutoff frequency of the closed-loop system. If the 
natural frequencies of the controller are sparsely s p z e d ,  then 
the states corresponding to the slow modes are updated at a rate 
more than necessary. This results in unneccesary computation. 

The computational overhead or execution lime can he reduced 
if the states corresponding to the slow modes of the controller 
are updated a t  a slower rate. The simplest transformation would 
be t o  decompose the controller into two subsystems (or compu- 
tational tasks), one containing the fa t  modes and the other the 
slow modes. Reduction in computational overhead can then he 
achieved by simply operating the two subsystems at different 
rates. With such a scheme however, there will be a periodic in- 
crease in computational requirement a t  lime instants when both 
the subsystems need t o  be updated, which is not desirable. One 
of the salient features of the proposed algorithm is the distrihu- 
tion of the computation, required t o  update the slowly varying 
states, over time to achieve a uniform reduction in the computa- 
tional overhead. From the point. of view of real-time tasks, this 
algorithm decomposes the original task into two tasks, each with 
reduced run-time hut different periodicity. 

The paper is organised as follows. We first define the lifting 
operator, a technique commonly used in the analysis of multi- 
rate systems. This is followed hy details of the transformation 
of a linear time invariant (LTI) controller to a multi-rate system 
and the scheduling policy used to update the states to reduce the 
computational overhead. A framework to analyse of the effect 
of such a transformation on the closed-loop performance and 
stability is developed. In the end, this approach is applied to 
a B737-100 TSRV ('Ransport System Research Vehicle) linear 
longitudinal motion model and simulation results are presented. 
A sunirnary section concludes the paper. 

2 L i f t i n g  Operator 

Lifting is a commonly used technique in the analysis of multi- 
rate systenis [5, GI. An inter-connection of multi-rate sys tem 
can be analysed, using tools developed for single-rate systems, 
by lifting the faster systems to match the rate of the slowest 
system. The lifting operator is defined both in continuous timc 
(Ch.10 in [4]) and in discrete time (Ch.8 in 141). Discrete-time 
lifting techniques are used in this paper, the basics of which are 
described in the following sections. 
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2.1 Lifting of Discrete-Time Signals 
Suppose v ( k )  = (u(O),v( l ) ,  . . . } is a discretetime signal. If we 
rewrite the signal as 

then the mapping of v(k) Y v ( k )  is denoted by g(k )  = 
LMli(k). The operator LM is called the lifting operator and 
the signal u(k )  is called the lifted signal. The subscript in L M  
denotes the factor by which the dimension of the signal has 
been increased or lifted. The inverse operation, i.e the m a p  
ping ~ ( k )  c v ( k ) ,  is the reconstrnction of v ( k )  from g(k) .  This 
is denoted hy v(k) = L-,'u(k). In general we will drop the sub- 
script from L. The factor by which the dimension of the signal 
is lifted will he clear from context. 

The operator L,  as a system is non-causal and time-varying, 
however it is norm-preserving (pg.204 in 141). Therefore 

I IL4z  = l l ~ I l 2  
The inverse operator L-' is causal hut timevarying 

2.2 Lifting Discrete-Time Systems 

Consider the system shown in Fig.l, where G is a discrete-time, 

Figure 1: Lifting of discrete-time LTI system 

I ]  1 C A M - '  _ ^ I  1 C A M - 3 6  I CAM-$& , , ,  D 

If A is stable then AM is also stable. Since lifting preserve: 
norms, it follows that the norms of the two transfer functions G 
and G satisfy (pg.206 in [4]): 

1 1 a 2  = 11elI2/M (3) 

Ili.llm = IlCllm (4) 

3 Transformation of LTI Controllers to 
Multi-Rate Systems 

In this section we present a computationally efficient way 01 
implementing discrete-time LTI controller. The cornputationai 
overhead is measured in terms of the number of states being u p  
dated a t  a given time step. The proposed algorithm updates the 
states of the controller a t  a rate based on their natural frequen- 
cies. This results in a multi-rate system. Since all the states of 
the controller are not updated a t  the same time, the computa- 
tianal requirements for digital implementation is reduced. The 
effect of such a transformation on system behaviour is analysed 
using tools from multi-rate filter banks and lifting techniques. 

Let us assume that the linear controller, denoted by K, has 
the following form, 

where u( t )  denotes the controller output, y ( t )  the plant output 
fed into the controller and z,(t) the controller states. Let us 
also decompose controller K into two subsystems K j  and K,, 
such that K ( s )  = K , ( s ) +  K , ( s ) ,  where K ,  and K ,  contains the 
fast and slow modes, respectively. The system decomposition is 
shown in Fig.2. 

Yir1 - 

Figure 2; Transformation of LTI controllers to multi-rate 
systems. 

In a typical digital implementation of K ,  the sampling rate 
ws is chosen to be ten times faster than the cutoff frequency 
of the closed-loop system. All the states of the controller are 
updated at this rate. If the modes of K are sparsely distributed 
in frequency, then this update rate is more than sufficient for 
the states of K,. We identify this as unnecessary computation, 
which can be avoided if the states of K, are updated a t  a slower 
rate. 

Let us assume that h = l / w ,  is the time step used to discretise 
the original controller K .  Let us also assume that K, is such 
that is suffices to update its states every M time steps, where 
M is a positive integer. For digital implementation, K f  and 
K ,  are transformed to  discrete-time systems K, and K,! with 
time-step h and hM, respectively. Therefore the states of K ,  are 
updated a t  every time step, denoted by k ,  and the states of Ka 
are updated every k M  time step. 

From table(l), we see that the computational requirement a t  
time steps k # n M ,  n E 2' is lower than that a t  time steps 
k = n M .  This is so because a t  k # nM only the states of K ,  
are being updated. At time steps k = nM, all the states of 
the controller are being updated and hence the computational 
requirement at these time steps is equal to  the overhead en- 
countered in conventional digital implementation. Conventional 
digital implementation implies that  all states of the controller 
are updated at every time step. 

Table 1: State updation pat tern of a dual-rate linear con- 
troller 

Therefore, by simply implementing K as a multi-rate s y s  
tem, we can reduce the computational overhead a t  time-steps 
k # nM. However the periodic increase in the CPU require- 
ment is undesirable and we wish to  reduce the computational 
requirement uniformly at all time steps. 

The key idea presented in this paper is the scheduling alg- 
rithm for updating the states of Ka, so that the computational 
overhead is reduced at all timesteps. 

3.1 Scheduling Algorithm for Uniform Reduction 
in CPU Overhead 

Uniform reduction in computational overhead is achieved by dis- 
tributing the computation, required to  update the states of K,, 
over time. If the state space of K3 can be partitioned into M 
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subset,s, then the distribution of computation can be achieved by 
updating these subsets one after another. With such a update 
policy, all the states of K, are updated every M time steps as 
required. system 4 as follows, 

Since the subsets will contain fewer states than K,, updat- 
ine them alone with those of K, will reduce the soikes in com- 

At this point we are ready t o  formally define the transforma- 
tion of a given continuous-time linear time invariant controller 
K to a multi-rate, linear periodically time varying, discrete-time 

'T(K) is  the transformation from K - @, Definition 5 .  
defined by the following steps 

~ - 
putational overhead at times k = n M  but a t  the same time 
will increase the computational requirements at times k f nM. 
Clearly, the uniformity of CPU overhead depends on the unifor- 
mity of the number of states in each partition. 

The process of updating partial states of Ks can be achieved 
quite easily, if K, is decomposed into modal form. Let us ac 
sume that  8, has M distinct eigen-values. Therefore modal 
decomposition of Ka will yield M sub-systems, denoted by 
K, = {K,,,K,, , . . . . ,KSM->} .  The computation required to u p  
date the states of K ,  is spread over time by updating these modal 
sub-systems one after another. In this manner, all the states of 
K3 are updated in M time-steps. 

From table(2), we see that  at any given time-step k, systems 
K J  and K*, are  being updated, where i is the remainder of the in- 
teger division k l M .  Note that this round-robin scheduling of &< 
has transformed the controller into a periodically time-varying 
system. Let us denote the controller with dynamics shown in 
table(2) as @ and the transformation of K to 6 as $ = 'T(K).  

Table 2: Scheduling algorithm for uniform reduction in  
CPU overhead. 

3.2 Formal Definition of the ll-ansformation 
In this section we formally define the transformation T ( K )  that 
achieves uniform reduction of computational overhead. Before 
we formally define 7 ( K )  some definitions are necessary 

Defini t ion 1. Let a(K) denote the maximum number of dis- 
tinct eigen-values of K ,  where K is a LTI system. 

Definition 2. Let $ ( K ,  h j  denote the continuous to discrete 
lime transformation 01 LTl system K ,  with discretisation time- 
step h. The discrete time system is denoted by  K = d(K ,  h ) .  IJ 
K E ( A ,  B,  C )  then K E (A, E ,  C). We assume that 4 is such 
that foT k = $ ( K ,  h ) ,  s(k)  = ?r(K).  

Defini t ion 3. Define p ( i , j )  as 

p ( i , j )  = i - j  x i i / j J  ; i , j  E z,j # O  

This function simply retunis the remainder of the integer division 

Defini t ion 4. Define M ( K )  such that. M ( K )  decomposes 
a LTI system K ,  into modal form and generates a set of modal 
sub-systems {K,} where i t 2', i < x ( K ) .  Each of the modal 
systems K, has associated 

Wii. 

stale vector I, 
0 output vector U ,  

input vector g, which ZS common to all the modal sub- 

and  dynamics defined b y  (d<,B, ,C, j .  
systems 

It is assumed that K has no direct feedthrough, therefore G also 
does not have any direct feedthmugh. 

1. 

2. 

3. 

4 .  
5. 

6 

Decompose K into K ,  and K J ,  where K f  and K. contain 
the fast and the slow modes of K ,  respectiuely. 

Obtain K f  = $ ( K j , h ) ,  where h is the time-period of the 
base clock. 

Obtain 2, = $(K , ,hs (K , ) ) .  

Obtain {&} = M ( k s ) ,  i = {O, 1,. . . ,7r(Ks) - 1). 

Define dynamics of @ ns 

p 1  I = LIZ$ +Ely* 
; J i = u ( k , n ( F a ) )  
; V i #  I* lk ,n(K, ) )  

= k t l  = 
8' 

f5) , ,  
In eqn.(5), the controller input yf can be one of the Jollow- 
ing three 

The first definition of y: means that the states of K,, are 
updated using the same value of the plant output. The sec- 
ond definition uses the most recent plant output to update 
xs,, and the last definition uses the running auemge of the 
plant output overn(Ks; )  time-steps, to update the states of 

Define output of 6 as 
R., . 

U* = U: t u :  (9) 

where U )  = dfx) and xt is one of the following 

niK.)-1 , 
ua k = Cs,x,",; k =  k / r ( K s ) J  (10) 

,=a 

The difference between the two definitions of ut i s  that in 
eqn.(10), the updated states of the modal systems do  not 
affect the controller output untzl all the modal systems have 
been updated. Whereas in eqn.(Il), the updated states of 
Rai immediately aoect U:. 

Since the input and output of 6 has been defined in more than 
one way, the definition of 6 as a dynamical system is dependent 
on the combination of the input and output definitions. In this 
paper, we only analyse the frequency domain characteristics of 
@ as defined by the following two combinations. We define, 

$1 to be the dynamics of @ with y t  given by eqn.(6j and 

$2 to he the dynamics of 6 with y: given by eqn.(d) and 

U: given by eqn.(lO). 

U: given by eqn.(lO). 
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3.3 

n o m  control system point of view, it is important to analyse the 
dynamics of $ = 7 ( K )  in the frequency domain. To determine 
the relationship between the norms lly(k)llz and llu(k)l12, it is 
necessary to  represent the mapping y(k) Y u(k)  in terms of LTI 
systems. In the following subsection, we transform the multi- 
rate systems $$, defined in section 3.2, to LTI systems [XI and 
define transfer function for y(k) t) U ( & ) .  

3.3.1 lkansfer Function for 

From the definition of $1, we see that all the modal systems are 
updated by the same value of the plant output, which is obtained 
at  every kM time-steps, where M = r (Kr ) .  Also, the states 
of K,, do not affect U:  until all the modal systems have been 
updated. Therefore, from system point of view $1 is identical 
t o  the dual-rate system shown in table(1). It only differs from 
the point of view of computation. Therefore the dynamics of 6, 
can he represented by Fig.3. 

Figure 3 represents the mapping y(k) - u(k)  in terms of 
samplers and holds. The subscripts s and f in the samplers and 
holds denote slow and fast sampling and hold respectively. The 
signal y(k) is sampled at the rate required by K, and the filter 
F is the anti-aliasing filter for the slow sampler S,. 

Frequency Response of G = I(K) 

.,l*l 

Figure 3: &I a a linear periodically t ime varying system. 
d 

. ~ ~ .  
The multi-rate system in Fig.3 can be transformed into a sin- 

gle rate system with the help of lifting operators as shown in 
Fig.4. 

. 

Figure 4: Ql as a linear t ime invariant system. 

I 

Assuming (pg. 211-213, [4]) S,H, = L-' [:I, s* = 

S , H J S ~ ,  S.HJ = [ I 0 . . '  0 ] L a n d  d = SGH,  the trans- 
fer function between y(k) and g(k), denoted by &, can therefore 
be written as 

Y1 " = LK,L-' + LS~H,K,S ,FH~L- '  
= L ~ , L - '  + L(s~H.)K,(s,H~)(s,FH~)L-~ 
= LK?L-'+ 

01 

3.3.2 Tkansfer Function for $2  

The definition of $2 requires the most recent running average of 
the plant output over, M = a(K,) ,  time-steps. The camputa- 
tion of the running average is assumed to be a separate process, 
as is often the case, and hence its overhead is not accounted for 
in the controller implementation. 

The sequence y: as defined by eqn.(8) can be written as 

Therefore, in terms of z transforms, 

V,(XI = v * l " l + ~ * ( ~ l / z +  ' . + " " * I / ' * + ' ' '  
y l o l + ~ + .  +O) + ( r(ll+u("l+o+...+") + , , , 

' 1  =+...) + , ,  + ( " l " ~ ~ z l u ~ z + . . .  

Therefore the running average can be computed by a digital 
filter defined by, 

where I,, is a n ,  x ny identity matrix and ny is the dimension of 
the signal y ( k ) .  Figure 5 shows the frequency response of 
with sampling interval h = 0.01. The dashed line in Fig.5 is 
a first order LTI system with cut-off 2 n / ( M h ) .  Comparing the 

1. I,.-*-, 
. ~ .  

Figure 5: Frequency response of @a,,,(solid), first-order LTI 
system with cut-off %(dashed). 

two plots, we see that  Favg acts similar to a lowpass filter with 
the desired cutoff of 2ii / (Mh).  

The dynamics of $2 in the lifted input-output space is shown 
in Fig.6, and the transfer function is given by 

^ ^  

g2 = E, + K s L g  (14) 

where K, is given by eqn.(l5) 
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distortion is reduced if a running average of the input is used 

To the study the frequency domain effect of the transformation 
7 ( K )  on the closed-loop system, we need t o  define the closed- 
loop system in the lifted input-output space. This is shown in 
Fie.8. Note that we have used discrete-time representation of the 

(*Z). 

Figure 6: %z as a LTI system. 
p l k t  for performance analysis. The discretetime plant, sampled 
a t  100 H z  is sufficiently close to the continilous-time plant and 
hence can be used for performance analysis [IO]. The  clased- 

M k l  
YgfU 

ufkl 

4 Example 

In this section we study the effect of the transformation 7 ( K )  
on a controller designed for a B737-100 TSRV(TYansport System 
Research Vehicle) linear longitudinal motion model. The aircraft 
model has four states: longitudinal velocity V, angle-of-attack a, 
pitch rate p and pitch angle 8 ;  two control inputs: thrust T(lh) 
and elevator deflection 6.. The elevator actuator and the engine 
are modelled as 16/ (s  + 16) and ZO/(s' + 12s + 20) respectively. 
The  control objective is t o  achieve decoupled response of V and Figure 8: Closed-loop system in lifted I/O space. 
flight-path-angle y reference signals. The controller was designed 
mine H, theorv and has 18 states. Details of the controller ~- 
design can be obtained from reference [9]. 

~h~ sampling rate ,,f 100 H~ is suficiently fast to implement 
this controller in a digital computer. From table(4), we see that 

loop performance with controllers &,, i = I ,? are compared with 
that of the original controller B. For the purpose of discussion - "  

the natural frequencies of the Eontroller are vary from 4.4039 x 
lo-"' rad/s to 169.87 rad/s. Clearly, updating all the states of 
this system at 100 H t  will result in unnecessary computation. 

let us represent the closed-loop system with K as 8) and the 
closed loop system with &, as for i = 1,2.  Figure 9(a), plots 
the maximum singular ,,dues of the four dosed-loop transfer 

multi-variable systems in the lifted input-output space. 
From the plots in Fig.S(a), we see that systems 2, do not differ 

from & significantly, in terms of the largest singular values. At 
low frequencies, the tracking response ofk, is identical to that of 
&, and satisfactory decoupling of y and V response is retained. 
There is however deviation a t  around 1 rad/s in the four transfer 

Table 3: Natural  frequencies of t h e  controller designed in 
reference [SI. 

For this example, we decomposed the controller K by assign- 
ing the fastest two modes to K ,  and the rest t o  K,. Modal 
decomposition of K ,  will yield eleven modal sub-systems, there- 
fore M = ?r(K,) = 11. Note that the maximum multiplicity of 
the eigen-values is two, hence we can expect a substantial reduc- 
tion in the computational overhead. The largest singular value 
plots of gl and g2, along with that of the original controller 
- K, are shown in Fig. 7. R o m  the singular value plots we o b  

functions. 
To investigate the robustness of the transformed controllers 

we analysed the nominal performance and robust stability of the 
two closed-loop systems. From our analysis we observed that 
neither of the two transformed controllers achieved the desired 
robust performance. This is  expected since we did not consider 
robustness when we decomposed K into K f  and K,. 

To study the effect of 7 ( K )  in time domain, the step response 
of the closed-loop system to velocity command are shown in 
Fig.S(b). Step responses of the systems are quite close t o  
that of $. We also observed, from plots not included in this 
paper, that the closed-loop respose t o  a step command in y ,  for 
- Pi  are also close to that of PO. Therefore, in time domain also, 
there is no significant change in the behaviour of the closed-loop 
due to the transformatian. 

Therefore, from the plots of the largest singular values of 
2, and the step-responses, we observe that the transformation 
7 ( K )  causes degradation in the respose of the closed-loop sys- 
tem to the reference commands. The degradation, however, is 
not significant for this example. 

The reduction in the computational overhead t o  implement 
the transformed controller is quite substantial. In a conven- 
tional implementation, where all the stales of the controller are 
updated at every time s tep and assuming the A matrix of the 
controller is dense, the number of FLOPS (floating point op- 
erations) required for this exampie is 1000 MATLAB flops. If 

~i~~~~ 7: ~~i~~~ singular value plots of 
- ( d a h - d o t )  and &(dashed). 

the controller is transformed in t i  modal form, the A matrix of 
the controller is block-diagonal and the flop count in that case 
is 720. With the transformed controller 7 ( K ) ,  a maximum of 
only 132 MATLAB flops are required. Therefore, for this exam- 
ple, it  is possible t o  reduce the required computational overhead 
by 81.66% if A is block-diagonal and 86.8% if A is dense. This 
reduction in computational overhead is quite significant. 

serve that reduct.ion in the sampling rate of K,, with latched 
input(*,), causes distortion at high frequencies. However, this 
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5 Conclusion 

In this paper we have presented an algorithm for computation- 
ally efficient digital implementation of linear time invariant con- 
trollers. A theoretical framework, built on the multi-rate filter 
bank theory and lifting techniques, was developed to analyse 
the effect of the transformation on the closed-loop system per- 
formance and stability. We applied this idea on a flight control 
problem based on the B737-100 TSRV linear longitudinal mo- 
tion model. From time and frequency domain analysis, we could 
conclude that, for this example, the transformation did not alter 
the behaviour of the closed-loop system significantly. However, 
the reduction in computational overhead is quite significant 

From the point of view of computation, the transiormation 
7 ( K )  can be considered to be a model reduction technique for 
LTI systems. Model reduction is achieved by partitioning the 
state space of the LTI system into two subspaces, corresponding 
to the slow and fast modes of the system. The states correspond- 
ing t o  the fast modes are updated as fast as  the base clock. The 
states corresponding to the slow modes are updated one after 
another in a round-robin manner. Thus the system composed 
of the slower modes operates slower than the base clock. This 
results in a periodically time varying system. Since the number 
of states required t o  be updated at a given time instant reduces, 
the order of the system from the point of view of computation 
also reduces. Note that  instead of partitioning the state space 
of the LTI system into just two subspaces, we could extend this 
idea to N partitions in general. In  such a scenario, distribution 
of the computation required t o  updated the states of those N 
subspaces will be more complicated. 

The theoretical framework developed in this paper, to anal- 
yse the effect of the round-robin state updation policy on the 
closed-loop system, can also be used t o  analyse control systems 
in an environment of priority based scheduling of computational 
resources. In such an environment, the computational tasks 
are alloted CPU resources based on their assigned priorities, 
which could be static or dynamic. Consequently, the order in 
which these tasks are executed depends on the assigned prior- 
ities. Therefore, if a control system is a composite of several 
computational tasks, the effect of the sequence of execution of 
these tasks, on the dynamical behaviour of the controller, can 
be analysed under the framework presented in this paper. 

In  the context of software driven distributed control systems, 
operating in real or simulated-time, few researchers have studied 
the effect of the sequence of execution on the dynamics of the 
overall system. Analysis of the effect of the model of computa- 
tion, used to realise the control algorithm, is crucial, especially 
since the paradigm of control system design and implementation 
is shifting from a centralised, singleprocessor framework t o  a 
decentralised, distributed computing framework. The analysis 
framework developed in this paper has potential t o  contribute 
towards the development of a systematic approach to analyse 
these issues. 
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