
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2021 1

Self-Supervised Light Field Depth Estimation Using
Epipolar Plane Images
Kunyuan Li , Jun Zhang , Jun Gao , Meibin Qi

Hefei University of Technology
Hefei, Anhui, China

lkyhfut@gmail.com, zhangjun@hfut.edu.cn, gaojun@hfut.edu.cn, qimeibin@hfut.edu.cn

Abstract—Exploiting light field data makes it possible to obtain
dense and accurate depth map. However, synthetic scenes with
limited disparity range cannot contain the diversity of real scenes.
By training in synthetic data, current learning-based methods do
not perform well in real scenes. In this paper, we propose a self-
supervised learning framework for light field depth estimation.
Different from the existing end-to-end training methods using
disparity label per pixel, our approach implements network
training by estimating EPI disparity shift after refocusing, which
extends the disparity range of epipolar lines. To reduce the
sensitivity of EPI to noise, we propose a new input mode called
EPI-Stack, which stacks EPIs in the view dimension. This method
is less sensitive to noise scenes than traditional input mode and
improves the efficiency of estimation. Compared with other state-
of-the-art methods, the proposed method can also obtain higher
quality results in real-world scenarios, especially in the complex
occlusion and depth discontinuity.

Index Terms—Light Field, EPI, Depth Estimation.

I. INTRODUCTION

L IGHT field (LF) cameras [1] enable dense sampling
of the viewpoints, which can collect both 2D spatial

and angular information of the observed scene. Sub-aperture
images and Epipolar Plane Images (EPIs) [2] are common
visualization ways of captured 4D light field data. Compared
to the traditional 2D images, the 4D light field data provides
information about multi-view and epipolar geometry, which
makes it possible to estimate a dense and accurate depth map.
In recent years, with the rapid development of deep learning
technology, the performance of 4D light field depth estimation
has been greatly improved. Generally, sub-aperture images
and EPIs serve as the input of the CNNs, and multi-view
and epipolar features are extracted to compute scene depth.
Many works [3], [4], [5], [6] exploiting these data patterns
have been proposed. However, with the increase of input cost,
the network also shows higher complexity and more training
parameters. Moreover, existing datasets [7], [8] with per-pixel
ground truth are difficult to support training for large networks.
Synthetic scenes are usually limited to a small disparity range.
Training networks on synthetic datasets does not perform well
in real-world scenes [5].

Classical methods often use refocusing cues [9] for scenes
to calculate scene depth. These methods can obtain high esti-
mation accuracy even for real scenes with different disparity
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Fig. 1. Depth estimation based on Self-supervised learning. This is illustrated
with the EPI in the horizontal direction. The EPIs before and after refocusing
are input to the network sharing weight. The difference between D and Dref

is the disparity shift determined by the EPI shift. Depth labels are not used
here.

ranges. As a unique property of light field data, refocusing
can change the depth plane of the scene, so that a single
scene point contains different disparity maps, which shows the
varying focus depth levels. Light field refocusing in depth esti-
mation is mainly limited to traditional methods [10], [11], [12]
containing handcrafted parameters. It has less been explored
that how to combine light field refocusing [13] and existing
networks for depth estimation. Light field refocusing enables
slicing of different depth planes in the same scene, which
allows the limited number of datasets to provide rich focus
cues. Consequently, in order to make full use of the existing
datasets, it is necessary to fuse CNNs and refocusing principle
to achieve more accurate depth estimation from light field,
especially for real scenes. We prefer to implement network
training without per-pixel ground truth. In this case, we expect
that the network can still learn effective feature representation
according to the changes of light field 2D slices before and
after refocusing. Hence, inspired by [14], [15], we consider
the use of self-supervised learning to improve the training
of network for depth estimation. The main idea (see Fig. 1)
is that refocusing shifts can be directly estimated compared
to the depth value calculated per pixel. By using appropriate
auxiliary tasks, self-supervised learning can implicitly provide
effective information for the original task. No annotation is
required for auxiliary tasks. In this paper, we make full use
of the existing dataset to improve the accuracy of depth
estimation by computing the refocusing shifts. Considering the
advantages of EPIs in complex texture and occluded regions,
we use refocused EPIs as input. The light field refocusing
extends the slope of epipolar line, which makes the network
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Fig. 2. Refocused EPIs in occlusions.

more suitable for various real scenes.
In addition, to solve the problem of insufficient spatial

information in perspective dimension of traditional 2D EPIs,
this paper proposes to use EPI-Stack as input. Current EPI-
based depth estimation methods usually only compute a single
pixel [6], [16], which is inefficient. This is mainly because
when using multi-directional EPI for estimation, the common
region of these input data contains only one pixel from the
central view [3]. This also makes depth estimation using EPIs
susceptible to noise in the scene, and it is difficult to extract
effective linear structure features. EPI is the sampling of a
certain space and perspective dimension. Due to the limitation
of a single spatial dimension, it is easy to be affected by the
local spatial position. Although using sub-aperture image as
input can extend the common region [17], it is not effective to
estimate some details and occlusions. In this paper, the input
of EPI-Stack is used to increase the common region of EPIs in
different directions. Our approach improves the performance
of EPI in noisy scenes.

The contributions of the paper are summarized as follows:
• In this paper, a depth estimation framework based on

self-supervised learning is presented. We build the corre-
sponding auxiliary task, which is to estimate the refocus-
ing shifts and improve the network training. This method
has advantages over occlusions in complex real scenes.

• We propose an input mode for EPI-Stack, which enables
EPIs in different directions to have the same spatial
resolution, higher efficiency of depth estimation, and
better robustness to noise.

• Compared with the existing state-of-the-art methods, the
proposed method performs favorably on the synthetic and
real scenes.

II. RELATED WORKS

In this paper, the related work is briefly introduced from
two aspects of light field depth estimation and self-supervised
learning.

A. Depth Estimation from Light Field

Depending on the types and depth clues of the input
data, current methods of light field depth estimation can be
divided into sub-aperture image-based, EPI-based and refocus-
ing cues-based depth estimation. Traditional methods [10],
[11], [12], [18], [19]focus on the structural characteristics

of the light field and obtain the depth map from the hand-
crafted features. These methods are generally accompanied by
complex calculation and subsequent optimization, and need
to be manually tuned for different scenarios. Recently, by
building an end-to-end network, deep learning technology has
made a breakthrough in the application of pixel level light
field, such as depth estimation, saliency detection [20], super-
resolution reconstruction [21] and so forth.

Methods based on Sub-aperture Images. Inspired by
the multi-view and stereo algorithms, Jeon et al [18], [22]
use the sub-aperture images to estimate the multi-view stereo
correspondences with a sub-pixel accuracy shift. These meth-
ods show good performance in the real scene captured by
the lenslet-based camera, but suffer from noise at the occlu-
sion boundary. Considering the narrow baseline between sub-
aperture images, some methods [4], [5], [17] use it as the input
of CNN to estimate the disparity of the central view. On the
basis of U-net [23], Heber et al [4] propose the concept of EPI-
Volume, using stacked sub-aperture images as input, which
are located in the same horizontal or vertical perspective.
Shin et al [17] extract four directional sub-aperture images
in the epipolar plane and stacked them into the network
to achieve the state-of-the-art performance. Using the input
method in [17], Leistner et al [5] shift the stack of sub-
apertures to make the network better adapt to the small- and
wide- baseline light field. However, it is difficult to estimate
the detail features in scenarios with this method.

Methods based on EPI. Previous EPI-based depth estima-
tion methods [11], [24], [25], [26] prefer to design complex
operation algorithms to calculate slope according to the struc-
ture of epipolar line. Although high estimation accuracy can
be obtained, especially for occlusions, hand-crafted parameters
and optimization are unavoidable, like most traditional meth-
ods. To overcome this, recent works [3], [6], [16], [27], [28],
[29], [30], [31] have treated EPI as the input of CNNs for
end-to-end estimation. Luo et al [16] designed a two-stream
CNNs to estimate the depth of a single pixel from each patch.
Zhou et al [31] explore the estimation effect of different scale
EPI patches and fused multi-directional features. In [6], Li
et alpropose a relation network to extract orientation relation
features between EPI center view and neighboring pixels,
which can further improve the estimation accuracy. However,
the current CNN-based method uses a single spatial dimension
of EPI image and only one common pixel point in different
directions, which makes it sensitive to noise.

Methods based on Refocusing cues. Light field refocusing
cues are widely used in traditional depth estimation methods.
Most researches focus on exploiting different depth features,
such as defocus, correspondence, shade and occlusion. Tao et
al [9], [10], [32] propose a depth estimation that combines
defocus and correspondence features. Based on their works,
Wang et al [19] create occlusion-aware depth-maps via a
modified angular photo-consistency. Lin et al [13] synthesize
the symmetry of focal stack and data consistency measure,
which is more robust to noise and under-sampling. William et
al [12] also propose a data cost based on an angular entropy
metric and adaptive defocus responses. These methods, which
utilize the unique refocusing capability of the light field, can be
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Fig. 3. Illustration of the proposed EPI-Stack.

adapted to complex and diverse real scenes, but also introduce
a large number of hand-crafted features that are more complex.
Current methods that combine refocusing with CNNs have
rarely been studied, and the existing works usually only use
the focused central view image as input, failing to learn the
data changes before and after refocusing. For example, Zhou
et al [33] estimate the disparity label of each pixel from a set
of focal stack with the continuous disparity range.

Overall, compared with traditional depth estimation meth-
ods, CNN-based ones can significantly improve the estimation
accuracy. However, refocused 2D slices (sub-aperture images
or EPIs) of light field data in different depth planes provide
abundant refocusing cues, which cannot be effectively used by
the existing CNN-based methods. This also makes it perform
poorly in complex scenes, especially real scenes. In order to
effectively use the light field focusing clue, in this paper we
focus on building a unified training framework to fuse CNN
with refocusing.

B. Self-Supervised Learning

In recent years, self-supervised learning has attracted ex-
tensive attention because it provides an alternative method to
label existing datasets. By constructing auxiliary tasks, self-
supervised learning extracts corresponding supervised infor-
mation from a large number of unlabeled data. This enables
better training of deep neural networks. Liu et al [14], [15]
propose image ranking as an auxiliary task for some regression
problems. Through the training of this task, the network can
learn different semantic features. Then the network parameters
are transferred to the original task for fine-tuning, which allows
for deeper and wider training of the network. Other self-
supervised tasks include predicting the relative position [34] of
patches in images, restoring the entire image from surrounding
pixels [35], and generating color images from gray-scale
images [36]. In the field of monocular depth estimation, stereo
matching clues are usually used to implement self-supervised
training of network according to scene disparity and view
position [37], [38], [39], [40]. This shows high estimation
accuracy in both image and video sequences.

Inspired by these works, we propose a self-supervised
depth estimation framework based on light field refocusing,

which can be considered as the first work of light field depth
estimation exploiting self-supervised learning. Different from
the task of depth regression, this paper estimates the disparity
shifts of scenes before and after focusing to get the refocusing
cues, so as to learn the effective feature representation of 2D
slices of light field data. Our approach not only improves
network training, but also enables the network to better adapt
to complex scenarios.

III. LEARNING DISPARITY SHIFTS FROM REFOCUSED
EPIS

Objects with different depths have different disparity cor-
responding to multi-view images. Based on this, light field
refocusing can obtain images with different refocused depths.
EPI is a visualization method for two-dimensional slices
of light field data. The slope of the epipolar line contains
the disparity information of the scene. Compared with sub-
aperture images, EPI has more significant structural changes
before and after refocusing. As shown in Figure 2, for the same
scene point, the slope of the epipolar line varies depending on
the refocused depth. Due to the different depth of foreground
and background, the polar slope in the occlusion also shows
a significant difference. The unique linear structure of EPI
can provide more effective refocusing cues, and it has advan-
tages for complex occlusions to achieve more accurate depth
estimation. Therefore, this paper designs the corresponding
CNN to capture the change of epipolar slope before and after
refocusing. Unlike the current method of directly using the
refocused EPI as input, we fuse the light field refocusing
with CNN in a self-supervised learning manner. As shown in
Figure 1, each pair of EPI images before and after refocusing
is input into the same CNN separately, and the weights are
shared for feature extraction. Within the disparity range of a
scene, the same scene point can be refocused multiple times
to obtain different EPI pairs, which expands the number of
samples. Thus, this self-supervised learning method can learn
more effective feature representations from a limited set of
dataset and promote network convergence. Then we can get
the disparity D and Dref , which are the disparity values before
and after refocusing, respectively. According to the mapping
relationship between the polar slope and disparity [11], the
disparity value is shown in formula 1. Here, we use the
u0 central perspective as a reference and assume the same
baseline ∆u between adjacent views. Z and f represent scene
depth and focal length, respectively. The difference between
the output disparities should be consistent with the EPI shifts
after refocusing. The EPI shift Es can be predefined as
the Ground Truth of the network for end-to-end estimation.
Therefore, the loss function between the Es and the difference
of output disparity is shown in formula 2.

Dref −D = (u0 − u)
∆u

Z
f (1)

Loss =
1

m

m∑
i=1

∣∣(Di
ref −Di)− Ei

s

∣∣ (2)

Through the above auxiliary task, i.e. estimating the dispar-
ity of EPI corresponding to scene point after refocusing, the
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feature representation of EPI can be learned, so as to achieve
self-supervised network training. Finally, the obtained self-
supervised model is fine-tuned on the original depth estimation
dataset to get the final depth estimation model. In addition,
refocusing also extends the range of epipolar slope, which
makes the network adapt to complex scenes and perform better
in real scenarios, especially in occlusions.

IV. EPI-STACK BASED CNN ARCHITECTURE

EPIs can achieve high estimation accuracy because of their
special linear structure. However, traditional EPIs are limited
by a single spatial dimension and are susceptible to noise
when estimating scene depth. In this section, we focus on
how to improve the original EPI input mode, build EPI-
Stack, and improve the anti-noise performance. Then, based
on the current input, we propose the corresponding network
to process EPI-Stack.

A. EPI-Stack Pairs
The EPI is the 2D slice from 4D light field. We use

(u, v, x, y) to represent the 4D light field coordinates shown
in Figure 3, where (u, v) represents the directional dimension
and (x, y) represents the spatial dimension. Here, by fixing
v and y, or u and x, respectively, the EPI in the horizontal
or vertical direction can be obtained. Due to the limitation
of a single space dimension, it is easily affected by the
local spatial position. Therefore, extracting depth from EPI
is easily disturbed by noise in the scene, and it is difficult
to extract effective linear structure features [27]. Existing
methods generally use different directions of EPI as input to
improve the robustness of depth estimation. However, due to
the limitation of spatial dimension, EPI in different directions
only has a single common spatial pixel point, which not only
reduces the estimation efficiency (EPI in different directions
can only estimate the depth of the central pixel point), but also
makes it difficult for different directions of input to effectively
complement each other, resulting in redundant information.
Moreover, the estimation accuracy of noise scenes cannot be
improved effectively. To solve these problems, we propose
to increase the common spatial location points of EPI in
different directions. Here we use the classical horizontal and
vertical input modes. No matter horizontal or vertical EPI,
there is only a sample of a single spatial location in its
perspective dimension, so EPI in different directions has only
a single common intersection. Therefore, our method is to
increase the spatial resolution of horizontal and vertical EPI
by increasing the sampling of spatial pixel points in the
perspective dimension, so that the common area of EPI in
both directions is maximized. As shown in Figure 3, in order
to increase the spatial location points common to EPIs in
different directions, EPIs with different spatial sampling points
are stacked in the directional dimension, that is, from (u, x)
to (u · y, x), and from (v, y) to (v · x, y). This representation
is called EPI-Stack in this paper. In this way, we improve the
spatial resolution of the polar plane image, and it provides
more common space locations for the horizontal and vertical
EPI in the perspective dimension, which increases the spatial
constraint of EPI and is robust to noise.

Fig. 4. An overview of the proposed network architecture based on EPI-Stack.

B. Our CNN Architecture

For this stacked EPI image, the corresponding network
structure is designed for feature extraction. As shown in Fig-
ure 4, the stacked EPI images in both horizontal and vertical
directions are input into the Siamese network, where ’Conv-
ReLU-Conv’ is used as the basic module for feature extraction.
Since the spatial location sampling points of EPI-Stack are the
same in both horizontal and vertical directions, the weight
of the two-branch network is shared here. Compared with
traditional EPI, the size of EPI-Stack proposed in this paper
is too large. In order to quickly extract the spatial structure
of EPI and learn the subtle changes of polar slope, we add
feature extraction modules with different scales at the front
of the network, using convolution layers with dimensions of
5× 5 and 3× 3 respectively, and set the convolution stride of
stacked perspective dimension to 3 and the spatial dimension
to 1. Several residual modules are used to extract the deep
structure features of the scene, and then the disparity features
of the scene are obtained by concatenating the outputs of the
two-branch network. Here, except for the first basic module,
all are convolution filters with size of 2× 2 and stride 1.

V. EXPERIMENTS

A. Implementation Details

According to the self-supervised learning method in Sec-
tion III, we use the Siamese network based on EPI-Stack to
estimate the disparity values of the scene before and after
focusing and compute the disparity shifts. Using the loss
function in Eq. 2, we can achieve the self-supervised training
of the network. Then we use mean absolute error as the loss
function to fine tune the Siamese network, as shown in Eq. 3.

L(yi, ŷi) =
1

M

M∑
i=1

|yi − ŷi| (3)

Given M EPI-Stack pairs in mini-batch, we denote the
ground truth disparity of the i-th image as yi, and the predicted
value from the network is ŷi. The above networks are trained
on the 4D HCI dataset [7], which provides 24 well-designed
scenarios and corresponding disparity maps for quantitative
evaluation. Each scene has 512 × 512 spatial resolutions and
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Fig. 5. Validation curve of self-supervised learning.

9 × 9 angular resolutions. In this experiment, 16 scenarios
were used for training and the rest for testing. Considering
the limited number of training samples, we randomly extracted
EPI-Stack samples of size (9 · 25) × 25 × 3 from Horizontal
and vertical views for training. We still use (9 ·512)×512×3
as the input size for testing. In this way, we not only get
enough samples for training, but also use the whole scene for
testing, which significantly improves the estimation efficiency
compared to the existing EPI-based methods. In addition, we
use the Keras framework to implement the network with a
Nvidia 1080 Ti GPU. We set the batch size to 80, use the
RMSprop optimizer, and set the weight decay rate to 10−5.
Note that the proposed network is end-to-end trained and does
not use subsequent complex processing measures.

We use the bad pixel ratio (BadPix), which denotes the
percentage of pixels with 0.07 error value, the Mean Square
Error (MSE), and Peak Signal to Noise Ratio (PSNR(dB)) to
evaluate the performance of our approach. For the predicted
disparity map d, the ground truth gt, and the scene region N ,
its BadPix is defined as,

BadPix =
|{x ∈ N : |d(x)− gt(x)| > 0.07}|

|N |
(4)

and MSE is defined as,

MSE =

∑
x∈N

(d(x)− gt(x))
2

|N |
× 100 (5)

Lower scores are better for BadPix and MSE.
To evaluate the effectiveness of our approach in real-

world scenarios, this paper conducts a qualitative experimental
analysis using the Stanford Light Field Archive real-world
dataset [41]. These data are captured with the Lytro Illum
handheld camera and contain a variety of complex real scenes,
which can be used to better evaluate the performance of depth
estimation.

(a)

(b)

Fig. 6. Comparison of network visualization filters. (a) Random initialization.
(b) Self-supervised learning.

Fig. 7. Comparison of self-supervised depth estimation results. (a) Scene. (b)
Random initialization. (c) Self-supervised learning.

B. Ablation Analysis

The effect of self-supervised learning on depth esti-
mation. We illustrate the validation of the proposed self-
supervised depth estimation by comparing the loss curves.
From the validation of the loss curve in Fig 5, it can be
seen that the self-supervised depth estimation method can
accelerate the convergence of the original network compared
with the randomly initialized network model. At the same
time, we visualize the network convolution kernel before and
after self-supervised learning, which is illustrated with a single
EPI. Compared with the randomly initialized model (Fig 6(a),
the self-supervised depth estimation method can compute the
disparity shift according to the slight change of EPI slope
before and after refocusing, which enables the network filter
to learn a more efficient linear representation of the EPI
(Fig 6(b)). These visual filters are extracted from the last layer
of a single network branch.

We use the self-supervised method to estimate the disparity
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Fig. 8. Comparison of disparity maps on noisy scenes. (a) Scene. (b) EPI ORM [6]. (c) EPI ORM (noise). (d) EPI-Stack. (e) EPI-Stack (noise).

map in Stanford real scene. In the experiment, we select
some complex occlusion scenes for qualitative comparison.
As shown in Figure 7, it can be found from the first row
that compared with random initialization, the self-supervised
method can effectively estimate the depth discontinuities and
obtain leaves with clear boundaries. Similarly, in the complex
scene of the second row, our method is robust to the inter-
ference of complex background and recovers the branches
in the foreground. The last row is a challenging scene with
multiple occlusion. The wire meshes in the fore- and back-
ground overlap each other and contain a lot of details at the
intersection of the meshes. We can find that before using
self-monitoring training, our network can recover the scene
contour, but in the detail region, such as the region marked
by yellow line, the fore- and back-ground interfere with each
other. So it is difficult to extract effective depth features. After
training with self-supervised learning, the details of the scene
are restored. In addition, in the region marked by red line, our
approach not only restores foreground information, but also
enables more accurate estimates of backgrounds at different
depths.

The effect of EPI-Stack input mode. To verify the
advantage of EPI-Stack input mode in noisy scenes, we add
extra Gaussian noise to the original scene and compare it
with the disparity before adding noise. Here we compare
the recent method EPI ORM [6] based on traditional EPI
input mode, which achieves the state-of-the-art in multiple
scenarios through the relation network. In this experiment, to

compare the effect of different input modes on performance,
we implement end-to-end training on the original network
without self-supervised training. By comparing the estimation
results of two input modes in Fig 8, we find that the traditional
EPI input mode can achieve high estimation accuracy in the
original scene. However the disparity map estimated after
adding noise is accompanied by obvious blurring, which is
also the shortage of the current traditional EPI input mode.
By contrast, our proposed approach with EPI-Stack still yields
clear results. This is because the EPI-Stack input method
increases the sampling of spatial pixel points, which enables
EPI in different directions to have larger public areas and
introduces stronger spatial constraints. Therefore, this input
mode can improve the robustness of depth estimation for noise
scenes.

C. Comparison with the state-of-the-art

We compare our approach with state-of-the-art methods:
CAE [12], SPO [25], EPN [16], EPINET [17], EPI-Shift [5],
and EPI ORM [6]. We use the training scene (boxes, cotton,
dino, and sideboard) from 4D HCI Benchmark for quantitative
comparison. Table I shows quantitative results for these state-
of-the-art methods averaged on synthetic scenes. It can be seen
that our method achieves second best result with BadPix metric
and the best performance with MSE and PSNR metrics. This
is because our method can not only get effective refocusing
cues, but also this special EPI-Stack input mode increases
the number of common spatial sampling points, improves the



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2021 7

Fig. 9. Qualitative results on Stanford Light Field Data. (a) Scene. (b) CAE [12]. (c) EPINET [17]. (d) EPI-Shift [5]. (e) EPI ORM [6]. (f) Ours.

TABLE I
QUANTITATIVE RESULTS FOR CURRENT STATE-OF-THE-ART METHODS AVERAGED ON SYNTHETIC DATA. THE BEST RESULTS ARE IN BOLD AND

UNDERLINED.

Metric CAE [12] SPO [25] EPN [16] EPINET [17] EPI-Shift [5] EPI ORM [6] Ours

BadPix 9.016 7.475 7.060 6.057 11.471 5.660 5.793
MSE 2.797 2.939 3.257 2.105 2.979 1.393 1.320
PSNR(dB) 29.387 29.503 26.462 31.892 29.345 31.906 32.209
Time 13min 52s 34min 5s 2min 58s 2.6s 22.6s 54.2s 2.1s
GPU % % " " " " "

robustness of depth estimation, and makes the disparity map
smoother. In addition, we provide a comparison of average
runtimes and an indication of whether the GPU implemen-
tation is used. Compared with other methods, our approach
achieves higher estimation accuracy and efficiency.

Figure 9 provides a qualitative comparison of the current
method on Stanford light field data. Note that we extract the
light field data of 9×9 viewing angle from the real data to test.
We set the parameter label of the traditional method CAE [12]
to 75. The real scene parallax range is [-1, 1] by default.
Qualitative comparison shows that the traditional CAE method
is susceptible to noise interference in the real scene, which

reduces the estimation accuracy. This method also takes a long
time to compute. Methods EPINET [17] and EPI-Shift [5] both
use sub-aperture images as input. Although the scene contour
is recovered, the local details are not well estimated and are
obviously blurred. EPI ORM [6] method uses the traditional
EPI input mode and restores the details of the scene better.
However, due to the limitations of synthetic scene training,
this method does not adapt to complex disparity changes
in real scenes. Therefore the occlusion boundaries of scenes
cannot be restored in Figure 9. Our method is not trained
in a real scene and still obtains high disparity map. Through
self-supervised learning based on refocusing, our approach
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extends the disparity range of EPI, extracts effective refocusing
cues, and achieves higher estimation accuracy. Especially in
discontinuous and multi-occluded regions, our method obtains
clear contours and preserves the foreground and background
boundaries.

VI. CONCLUSION

In this paper, we propose a self-supervised learning frame-
work for light field depth estimation by analyzing EPI disparity
shift. In this way, we combine the light field refocusing
with CNN to get better estimation performance, especially in
occlusions. In addition, we also propose the EPI-Stack input
mode, which increases the spatial sampling points of EPI in
different directions. This input mode can further improve the
estimation efficiency and performance of EPI in noise scenes.
Experimental results on synthetic and real scenes show that
our approach obtains more accurate disparity map than those
produced by competing the state-of-the-arts. And contours and
occluded boundaries of real scenes are restored better.
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