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Piet W. Verbeek and Lucas J. van Vliet 

Abstract-In our research, we study the location error of curved edges 
in two- and three-dimensional images after analog and digital low-pass 
filtering. The zero crossing of a second derivative filter is a well-known 
edge localization criterion. The second derivative in gradient direction 
(SDGD) produces a predictable bias in edge location towards the centers 
of curvature while the linear Laplace filter produces a shift in the opposite 
direction. Their sum called PLUS (PLUS = Laplace + SDGD) leads to 
an edge detector that finds curved edges one order more accurately than 
its constituents. This argument holds irrespective of the dimension. The 
influence of commonly used low-pass filters (such as the PSF originating 
from diffraction limited optics using incoherent light (2-D), the Gaussian 
filter with variable cutoff point (D-D), and the isotropic uniform filter 
(D-D)) has been studied. 

Index Terms-Edge detection, edge location, Laplace, second derivative 
in gradient direction, edge bias, low-pass filters, curved edges, edge 
accuracy, subpixel resolution, derivatives of Gaussian. 

I. INTRODUCTION 
In industrial and biomedical applications of digital image process- 

ing accurate determination of edge position is a key issue. Edge 
definitions based on zero crossings of some second derivative of 
the grey values are common. We have studied how edge locations 
according to such definitions are affected by low-pass filtering. 

The zero crossing of a second derivative is basically defined in 
the analog domain. The actual processing is digital (using a sampled 
version of the image) and is designed to approximate optimally the 
analog results. Our error analysis will be done in the analog domain. 
Only edge detectors that can be digitally implemented are considered. 

Low-pass filtering plays a role at two stages of image analysis. 
First, optical analog low-pass filtering produces the bandwidth limita- 
tion that allows sampling; second, digital low-pass filtering is applied 
to combat noise. As far as the edge location error is concemed, the 
second type of filtering can be reduced to the first: digital low-pass 
filtering on a sampled bandlimited signal is equivalent to analog low- 
pass filtering just before sampling. Therefore, we shall first investigate 
how analog low-pass filtering affects the accuracy of edge location. 
Fully aware of its insufficiency as a bandlimiting filter and its sub- 
optimality as a noise reducer, we shall start our analysis with the 
simple isotropic uniform filter, the pillball filter. At a later stage we 
shall build stacks of pillballs to form Gaussian filters. 

11. SECOND DERIVATIVE FILTERS 
Gradient based edge detectors use the fact that the modulus 

of the first derivative is maximal at the position of the steepest 
ascent or descent, defined to be the edge location. Seeking a max- 
imum of the gradient is equivalent to finding the zero crossing of 
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a second derivative. Both methods being very sensitive to noise 
they are usually accompanied by some kind of low-pass filtering 
which in its tum may introduce a localization error or “mixing” of 
neighboring edges. At the same time this low-pass filtering justifies 
digital implementation. Edge finding through Gaussian smoothing and 
second derivative filtering followed by zero crossings detection has 
become commonplace. Marr [l], [2], [3], based his filter choice upon 
Difference-of-Gaussians (DOG) functions hypothesized in low level 
human vision. Most authors have considered the problem of straight 
step edge detection, which is essentially 1-D and has edge confusion 
as the main problem. 

Gaussian Low-Pass Filtering: Canny [4], [5] has proven that 
based upon three criteria the derivative of a Gaussian is a very 
good approximation to the numerically optimal edge detector for 
1-D step edges disturbed by additive Gaussian noise. Lunscher [6] 
shows that according to the Dickey and Shanmugam criterion [7] 
the optimal filter is equal to the second derivative of a Gaussian up 
to a suitable cutoff frequency. Xu [8] studied the error probabilities 
of the same operator along a straight edge in the presence of noise. 
With a new localization criterion Tagare [9] shows that the derivative 
of a Gaussian is the optimal edge detector for 1-D step edges. 
Recently, Sarkar, and Boyer [lo], [ l l ]  presented optimal infinite 
impulse response filters for gradient and zero crossing based edge 
detectors that are similar to first and second derivatives of Gaussians. 
All these methods are similar to a second derivative with Gaussian 
low-pass filtering. We can easily understand the Gaussian optimality 
realizing that high SNR asks a narrow frequency width while edge 
confusion is prevented by a spatially narrow width. A Gaussian filter 
minimizes the product of spatial and frequency widths [12]. 

Extension of second derivative edge detection to two or higher 
dimensions offers the choice among different second derivatives 
such as the Laplace operator and the second derivative in gradient 
direction (SDGD, also called the second directional derivative). Due 
to its mathematical properties (linearity, simple Fourier description, 
intrinsic rotation invariance) and simple digital approximation, the 
Laplace is popular in image processing [13], [14]. 

Laplace: Berzins [15], considering the Laplace operator as a 
simple and practical approximation of the SDGD, has studied the 
accuracy of Laplacian-of-Gaussian edge detectors in relation to spatial 
features such as the size of the edge, the curvature of the edge and 
sharp comers. He remarks that the SDGD is robust with respect to 
second order illumination nonuniformity along the edge. 

Second Derivative in Gradient Direction: The SDGD, a nonlinear 
operator, can be expressed in first and second derivatives. Haralick 
[I61 approximated the SDGD using derivatives of a cubic polynomial 
model approximation of the underlying grey level surface. The cubic 
fit is equivalent to different low-pass filters for different derivatives, 
so that Haralick’s result cannot be interpreted as the SDGD of 
some linear shift-invariant low-pass filtered image. Clark [ 171 and 
Torre [18] used the SDGD in its analytical description. Very fast 
approximations of the SDGD can be obtained using local maximum 
and minimum filters (grey-scale dilation and grey-scale erosion) 
[ 191-[22]. A quantitative evaluation between an analytical SDGD, 
a nonanalytical SDGD and the Marr-Hildreth operator [22] shows 
comparable performance on synthetic test images heavily disturbed by 
Gaussian noise. To use the Laplace or the SDGD makes a difference 
in the edge position measured in the case of low-pass filtered curved 
edges [18] especially near comers [15]. 

PLUS Operator. We will show that both the SDGD and Laplace 
give off-edge (biased) zero crossings on low-pass filtered curved 
edges, but on opposite sides of the true edge such that the summed 
operator PLUS E SDGD + Laplace changes sign much closer to the 
true edge location. 

4 r  

j / = R  e-- ” /  r < R-1 r > R+l  

c=l+R-r < 
Fig. 1. Smoothing of a constant-curvature step edge by a single pillhall filter. 

We will derive estimates for the relative location error of the 
Laplace, the SDGD, and their sum “PLUS” as functions of the edge 
curvature and size of the smoothing filter. We give limits for the size 
of the smoothing filter with respect to the edge radius. Outside these 
limits (e.g. in the case of zero-radius comers) the accuracy cannot be 
guaranteed. Gaussian smoothing [ 151, and indeed any bandlimiting 
smoothing necessary for digital analysis always exceeds the zero- 
radius limit. For straight/planar edges SDGD, Laplace and PLUS all 
have on-edge zero crossing. 

111. SPHERICAL STEP EDGE OBJECTS IN HIGH-DIMENSIONAL SPACE 

We study the zero crossing position of step edge objects after 
low-pass filtering. Although the analysis will be camed out for the 
D-dimensional case, the figures will illustrate a two-dimensional 
example. In order to calculate the overlap area (volume in 3-D and 
hyper-volume in D-D) between a pillball filter and a step edge object 
we use the concept of integrated chord length (chord plane area in 3- 
D). The chord length c ( < .  2 ,  R )  is a function of the overlap thickness 
<, the radius of the pillball I ,  and the radius of the object R (see 
Fig. 1). For planar edges we write c(E.1. R )  = c ( t .1 .  x).  

To analyze spherical objects it is convenient to use spherical 
coordinates. Take a spherical object of radius R. -4( r ) = u (R’ - r 2  ) 
where U ( . )  denotes the unit step function, U ( . , . )  = 0 if .r < 0. 
U ( . )  = 1 if T > 0. A ( r )  describes the (ideally sharp) analog image 
before low-pass filtering and B ( r )  describes the image after low- 
pass filtering. The coordinate g is defined along the local gradient 
direction. The images that result from Laplace, SDGD, and PLUS 
operating on B are called Laplace. SDGD. and PLUS. 

A .  Smoothing by a Single Pillball 
Smoothing image ;I( r )  with a pillball of radius 1 and height 1 

gives a smoothed image B ( r )  where r is the distance between the 
pillball center and the object center. B ( r )  = b( r ) ;  if I’ > R + 1 
(pillball in 0-domain) b ( r )  = 0, if r < R - I (pillball in I-domain) 
b ( r )  = i i 1 2  (we assume the object larger than the pillball, R > I ) .  
If the pillball lies over the edge ( R  - I < r < R + I )  the smoothed 
edge follows the rising overlap volume O(  r.  I )  between object and 
pillball. In 2-D the two intersection points of object edge and pillball 
edge span a chord with length c. In 3-D the ring of intersection 
points spans a circle, the chord plane, with diameter c and chord 
plane area C. In 4-D the intersection points span a sphere, in higher 
dimensions a hyper-sphere. Irrespective of the dimensionality for a 
spherical pillball intersecting a spherical object the diameter (called 
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d 

Fig. 2. A geometric sketch of a pillball intersecting a spherical object. Using 
( f)’ + p z  = Z 2 ,  (5)’ + q2 = RZ, p + Q = T ,  we find an expression for 
the chord length as function of T ,  R, and 1. 

chord length) is given by 

c(<, 1,  R) = J412 - r -2 ( r z  - R2 + 1 2 ) 2  (1) 

with r = 1 + R - <. A geometric sketch that shows how to derive an 
expression of the chord length as a function of r ,  R,  and 2 is given 
in Fig. 2. The corresponding chord plane area depends on the chord 
length and the dimensionality 

C ( D , c )  = 21-DV(D - l)c”-‘ (2) 

and V(D)  is the (dimensionless) volume of the D-dimensional sphere 
of radius 1 .  

V(D)  = rD/’/r( i D  + 1) ( 3 )  

The overlap O(T,  1) between the object and the pillball filter can be 
written as the integrated chord plane area C ( D ,  c(E ,  1, R))  (cf. Fig. 1) 

(4) 

The gradient direction is independent of 1 and always points towards 
the object center. The gradient magnitude of B ( T )  is the chord plane 
area 

I+R-r 

B ( T )  = O(r ,  I )  = 1 C ( D ,  e(<,  I ,  R))d<. 

Hence the SDGD is 

S D G D  = By, = b,, = -C 7. (6)  

The SDGD crosses zero when the chord plane area C is maximal, 
when the pillball center lies in the chord plane. This occurs inside 
the curved object, thus off-edge. The Laplace is given by 

b c 
Laplncr = b , ,  + ( D  - 1)L = -C, - ( D  - 1)-. (7)  

For a planar step edge R + 35 and hence, r -+ 3c. For planar edges 
Laplace and SDGD are identical and yield the same edge position. 
They have a zero crossing where the chord plane area C is maximal, 
i.e., when the pillball is exactly on-edge. 

T T 

From (2 ) ,  we have 

C, = 2l-”(D - l ) I ‘ ( D  - 1)cDF2e , .  (8) 

Fig. 3. Edge shifts produced by single pillball smoothing of a con- 
stant-curvature step edge for k = 1/8. The SDGD yields a zero-crossing 
when the chord is maximal. The Laplace yields a zero-crossing when the 
pillball and object boundary intersect at right angles. 

To find the zero crossing of Laplace and SDGD, we could insert (l), 
(2), (8) for e,  C, and C, into (6) ,  (7) and solve for T ,  but it is simpler 
to use c’ and T’ instead. With cy = r / c  a ( e 2 ) / a ( r 2 )  

S D G D  = -2 lpD(D - l ) V ( D  - 1)rcDw3(%) (9) 

and 

Laplace = - 2 l P D ( D  - l ) V ( D  - l ) ~ c ~ - ~  (a0 + f) a(+) 

The zero crossing behavior of (9), (10) is govemed by the factors 
between brackets which are independent of the dimensionality. The 
SDGDfactoris~-~((R~--l~)~-l) andcrosseszeroifr’ = R2-lz .  
The Laplace factor is 2 F 2 ( R 2  + 1’ - r 2 )  and crosses zero for 
r 2  = R’ + l 2 ,  i.e., when pillball and circular object radii intersect 
at right angles (cf. Fig. 3). Hence the zero crossing of the SDGD 
is inside the object, on the center of the chord of length 21 (cf. 
Fig. 3), while the zero crossing of the Laplace is outside the object, 
on the intersection of the tangents at the ends of that chord. Both 
zero crossings are off-edge by a fraction of about (12/2R2) but in 
opposite directions. 

The deviations from the actual edge position T = R can be seen as 
relative errors in measured R of about ( lz /2R2)  k ;  for R + cc 
the edge is planar with zero error, as discussed above; for a small 
object with, say R = 21, the relative errors are 0.134 and 0.1 18 still 
well described by k = $. Due to the equal and opposite errors, a 
combination of SDGD and Laplace can be expected to give a more 
accurate location of the edge. The values of SDGD and Laplace at 
the edge are 

( D  - 1) 4kR 
SDGDI ,  =R = (1 - k) 

( D  - 1) 4kR 
Laplaeel,,R = -____- 2D-I c l -D’  

Consequently, the linear combination SDGD + ( 1  - k )  Laplace 
crosses zero on-edge. This is of little use in cases when R is not 
exactly known. We propose to replace SDGD and Laplace by their 
sum, to be called PLUS 

b C 
PLI’S = 2 b , ,  + ( D  - 1 ) l  = -2C, - ( D  - 1)- 

r 

. (13) - _  - 
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TABLE I 
RELATIVE LOCATION ERROR FOR SINGLE RLLBALL FILTERS 
SDGD Laplace PLUS 

U 

I ’  
We shall now show that PLUS locates the edge one order more 
accurately than its constituents. PLUS crosses zero for I ’  

I ‘  

I 

1 + 2 k  + 2 J 1 -  2 k  + 4k2 ) . (14) 

Expanded to third order in k this gives 

1 1  
R 2 2  
- = 1 + -IC2 + - k 3 .  

The relative location errors ( r o  - R ) / R  are compared in Table I. 
For a small object with R = 21 ( k  = f )  PLUS crosses zero at 

ro /R  = 1.00876, while 1 + f k ’  + i k 3  = 1.00879 and 1 + f k 2  = 
1.00781. The error is under 1%) of R and is well described by f I C z .  
This is one order more accurate than either SDGD or Laplace that 
give an error of k .  The absolute errors are &kR = $12/R = @l 
for Laplace and SDGD and $ k 2 R  = i14/R3 = ml for their 
sum PLUS (cf. Fig. 3). For a planar edge PLUS gives zero error, as 
expected from the behavior of SDGD and Laplace. 

B. Smoothing by  a Stack of Pillballs 

Isotropic filters h ~ ~ ( 1 )  other than pillball filters can be handled 
as a stack of concentric pillballs. The cross section h(1) will also be 
called the stack shape. Now consider a stack of concentric pillballs 
with height dh and monotonic radius distribution l (h) .  The inverse 
function h(1)  is the stack shape; there is an l,,, such that h(1) = 
0 for 1 > l,,,. When the stack of pillballs crosses the edge, a 
smoothed image B ( r )  results. In computing B ( r ) ,  we distinguish 
two situations: -1,,, < r - R 5 0 and 0 < r - R < I,,,. 
Extension of (4) leads to a sum of overlap volumes O(r,  1) belonging 
to pillballs of different radii 1. For an infinite number of pillballs this 
sum becomes an integral over h ,  or, with d h  = h i d ,  over filter radius 
1 (cf. Fig. 4). For 0 < r - R < l,,,, 

and for -1,,, < r - R < 740, 

Fig. 4. 
The smoothed image B equals the sum of the overlap area per pillball. 

Cross-section of a stack of pillballs partially overlapping a step edge. 

TABLE I1 
DERNITIONS 

1 - a( D + 4)s2 + Q ( 2 D  + 3)s4 - &Ds6 

Laplace 1 +a(.- 21S +g(o- 2)S4 

1 - i s ’  + & ( D  + 5)s4 + 6 Ds6 

with relative size s E l / R  and relative position p E r / R ,  with p 
and q according to Table I1 and 

The gradient direction is independent of 1 and the result of SDGD, 
Laplace, or PLUS for a stack of pillballs is given by an integral of 
single pillball results over radius I ;  in order to allow estimation of 
the zero crossing position we expand the integrand around T = R 

+ ( p  - 1)PP(p.q. 1. S ,  R ) ] d s  (20) 

where h ( s )  zi h ( l ) ,  with Taylor coefficients [23] 

P(p.  q ,  1, s. R )  E - 2 D R D - Z g l  f 3 - D ~ D - ’  

PP(prq. 1.s. R )  E 2 D R D - 2 g f 5 - D s D - 3  

and with correction factors f E (1 - ~ ~ / 4 ) - ” ~ .  gi E ( 2 q  - 
P)/4 + (P - q ) s 2 / 8  and 

The SDGD of the stack can be constructed from single pillball results, 
because the direction of grad O ( r , l )  is independent of 1 and the 
1-integrated gradient has that same direction As the position of the zero crossing at p = po lies outside the 

object for Laplace and PLUS, but inside the object for SDGD, 
Ipo - 11 = ( 2 q  - l ) ( p o  - 1) and po is the root of grad ( B ( r ) )  = lri:I, hi grad ( O ( ~ , l ) ) d .  (17) 

r s m a x  

h,P(p ,  q.  1, s. R)ds 
Due to (2), (5) the single pillball results of (9)-(13) can all be written J ( 2 q - 1 ) ( p o - 1 )  



TABLE 111 
CHECKING LINEAR EXTRAPOLATION FOR SINGLE PILLBALL 

ID K P o - l  P o -  I 
(a=2j (a=2j (a+-) 

SDGD 2 -+ -(025 to 1 O ) $  1 0f40% -(029 to 13); 

Laplace ~ 2 1 4 (0 35 f 30%) $1 0 8 f l5% (0 45 f 30%) $ 

relative location error 

Qs4(l + 4s') i k 2  + 3 k 3  

(a+-) 

1 Of40% 

0 95 +15% 

k = i , D = 2  
approximatior 
-0.1484 

0.1172 

0.00879 

I 

PLUS ~ 3 I 

TABLE IV 
BOUNDS FOR M IF 0 < S < 1 

0.l 04 
(0.41 f IO%),,, 1.35 f2% (1.1 f lo%), 1.72 f2% 

I 

4 .1340  

0.1180 

0.00876 

I 
2D 3D 

4 
1 
1.20 

;.5 1 
1.2 

The relative error of the zero crossing position is thus 

with I<, F ,  E and G defined according to Table 11. One is free to 
set the upper integration boundary to s,,,. 

For a check we apply this method to the single pillball case 
( h ,  E - 6 ( s  - S O ) )  and get for the approximate relative location 
error (indices 0 omitted) 

or, in both lowest orders in k the location errors given in Table 111. 

requires bounding of the two integrals in (22) [23] 
For the stack of pillballs prediction of the zero crossing position 

p o  - 1 % -\'fIi 1 t ~ s . ~ " - l + ~ c i s /  lSmax h,9sD-3ds (24) 

with M n n , , , , ,  < 31 < A%fcri~ing, under the condition h ,  5 0. For 
D = 2 and D = 3 the bounds Mflo,,,, .21ct.iling and their ratio are 
given in Table IV. The ratio Jfccei~i,,g/itf"our indicates that for PLUS 
our argument allows the most accurate estimation of location error, 
both in 2-D and in 3-D, while for the SDGD the integral bounding 
method followed seems hardly applicable to estimate the behavior 
of the SDGD. 

.qmsx 

C. Gaussian Stuck Shape 
In order to study the accuracy of PLUS for a simple example 

we take the Gaussian filter and describe it as a stack of concentric 
pillballs. When the stack is on-edge the largest pillball at the base 
must properly intersect the object. Therefore, the Gaussian filter 
(unlimited support) is truncated at a radius of a few sigma ( a g )  
to become a finite impulse response filter (FIR). 

We take O(T < R to guarantee proper intersection. 

U ( ~ C  - s R )  5 0. (26) 

As h ( l )  (see (25)) i y  monotonous decreasing, the relative error in 
zero crossing position is (cf. (26)), s,,,,, = .(./I?)) 

Z + F I ( D + E . n )  (i) I ( D - 2 . a )  
p o  - 1 ,N JIIi - 

PLUS 111 (0,21fl4%)51 1.13&3%1 (0.43f14%)51 l.36&3%1 

SDGD -- -(0.33 to 3.0) 1.6 f50% - (OS to 4.0) 7 1.9 +SO% 

Laplace 3 5 (0.57 f 20%) 1.05f10% (0.83 ? 20%) $ 1.29 f10% R- 

with I (  n. n )  the nth moment of a truncated Gaussian (truncated at 
na) 

n + l  a a / R  

I ( n , n )  (t) 1 exp ( - ~ R 2 s 2 C 2 ) s ' ' d ~  (28) 

and with M I I ~ ~ ~  < hf < hfre,llng, as long as au/R < 1. In [23] 
we derive the expressions for I ( 0 ,  a )  to 1 ( 5 ,  a ) .  The relative location 
errors for 2-D and 3-D Gaussian filters thus calculated are given in 
Table V. Also mentioned is the effective radius Z e ~ ,  the radius of the 
single pillball filter that yields the same error (see Table I ). Z e ~  is 
found to be slightly larger than CT in most cases. 

IV. SAMPLING 

A sampling-invariant operation (SIO) is an Analog Operation 
I o u t  = Oarraiog(I,n) for bandlimited I,, and Iout which has a Dis- 
crete Counterpart Operation (DCO) that satisfies Sampling(l,,t) = 
Odlscrete (Sampling(I,, ) )  for sufficient band limitation of I,, [24]. 
The Laplace is such an SI0 (I , ,  = B and IOut = Laplace are 
bandlimited). Its DCO produces Sampling (Laplace) from which 
Laplace could be reconstructed and from which the Laplace zero 
crossings at the edge positions of the original disk A can be (subpixel) 
interpolated. The step edges characteristic for industrial images are 
thus located. SDGD and PLUS are no SIO's [24]. However, Igrad(.)I2 
SDGD(.) and Igrad(.)I2 PLUS(.) are ,310's (for threefold bandwidth 
reduction). They shall be used instead, as Igrad(B)12 SDGD and 
Jgrad(B)12 PLUS have the same zero crossing positions as SDGD 
and PLUS. We shall consider continuous 2-D and 3-D images and 
the impact of sampling on their analysis. The discretization of sample 
values to integers will not be considered. 

A. Edge Location Error and Sampling Density 
Applying Laplace to a bandlimited image sampled at the Nyquist 

rate doesnot require additional bandlimitation. A built-in Gaussian 
of cdrrrvat lve  2 0.9 will suffice. PLUS needs digital bandwidth 
reduction by a factor of three before digital implementation. This can 
be achieved by a built-in Gaussian of uderlvatlve 2 2.7. Moreover, the 
relative location error of Laplace is proportional to - ( u / R ) ~  while 
the error of PLUS is proportional to ~ ( a / f ? ) ~ .  Using this we find a 
break-even radius below which Laplace performs better than PLUS. 
The break-even radius is around R = 6 pixels. To guarantee proper 
intersection of the Gaussian filter and the spherical edge R > 2a. 
This limits the applicability of PLUS to local radii larger than 5.4 
pixels. 

The above predicted errors are supported by an experiment (see 
the next section) where the radius of a disc runs from 10 pixels 
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Fig. 5.  
free images. The test images were sampled at the Nyquist rate. 

Relative location error as function of the relative filter size in noise 

down to 2 pixels for Laplace and down to 5.5 pixels for PLUS. The 
measurements shown in Fig. 6 are in full agreement with the error 
calculations in this section. 

V. EXPERIMENTS 
A series of experiments were performed to test the theory presented 

in previous sections. In the following 2-D (3-D) experiments we have 
used a bandlimited disc of radius 25.5 (a bandlimited sphere of radius 
8.7) as a test image. We have increased the resolution of the detection 
using cubic spline interpolation [25] to detect subpixel edge shifts. 
In all figures we have plotted the relative absolute location error 
as a function of the relative size ( a / R  for the Gaussian filter). The 
prediction bands show the theoretical systematic error of Laplace and 
PLUS in noise free images. In experiment 1 and 3 all images were 
sampled at the Nyquist rate. Sampling at the Nyquist rate corresponds 
to a digital Gaussian filter of CPYF = 0.9. The required threefold 
bandwidth reduction for SDGD and PLUS is achieved by digital 
low-pass filtering of the sampled image. 

A .  Implementation 
We have used Gaussian derivatives to implement the Laplace, 

SDGD and PLUS. The overall Gaussian contains contributions 
of ( T P ~ F .  o.,,,,,,tt1 and C ~ I ~ , , , ~ ~ ( , , ~ . .  Two times gradient filtering 
(derivative-of-Gaussian) yields a fi times larger Gaussian filter than 
a true second derivative of Gaussian. Especially when we combine 
several first and second derivatives into a new filter (SDGD) we 
have taken special care that all built-in low pass filters (Gaussian 
kemels) have the same size (frequency response). If not, the new 
filter will be anisotropic. 

2D noise free 

0.1 1 1 0.05. 

6-1 

Theory Exp. 

0.001 
2 4 6 8 10 

edge radius __f 

Fig. 6.  Break-even radius between Laplace and PLUS for noise free 2-D 
images. Laplace was sampled without oversampling, PLUS with three times 
oversampling to avoid aliasing. 

Noise Free Images ( 2 - 0  and 3-0): We have tested the predicted 
location error for Gaussian filters in 2-D and 3-D. The test image was 
sampled at the Nyquist frequency. Proper digital low-pass filtering 
was used with SDGD and PLUS. Fig. 5 shows that the measured 
errors are in agreement with our prediction. 

Break-Even Radius in 2-0: We have tested our prediction con- 
ceming the break-even point in the radius of the object where Laplace 
performs as well as PLUS (2-D). Note that PLUS needs three times 
oversampling when no digital low-pass filter is applied to combat 
noise. Laplace is satisfied by sampling at the Nyquist rate. These 
results are shown in Fig. 6 and confirm our prediction given in 
Section IV-A. 

Robustness in the Presence of Noise (2-0 and 3-0): In order to 
test the robustness of the edge detectors in the presence of noise we 
added independent Gaussian noise to the test images. SNR has been 
defined as the ratio between edge height (contrast) and the standard 
deviation of the noise in the image 

edge height 
SNR = 

CGaussian noise  
or 

(29) 

For noisy images the relative absolute location error has two com- 
ponents, a systematic one and a stochastic one. The systematic error 
can be predicted as is shown in experiment 1. The stochastic error 
is responsible for the discrepancy between the measurements and the 
prediction bands in the Figs. 7 and 8 .  

edge height 
CGaussian noise 

SNRdB = 201og 

VI. CONCLUSION 
In this correspondence, we have shown that both analog and digital 

low-pass filters exert an influence on the location of curved edges 
in any dimension. The second derivative in the gradient direction 
produces a predictable bias in edge location towards the centers 
of curvature while the linear Laplace filter produces a shift in the 
opposite direction. We have shown that the sum of the above filters 
(PLUS = Laplace + SDGD) leads to an edge detector that finds the 
edges one order more accurately than its constituents. 

All isotropic, monotonically-decreasing low-pass filters can be 
modeled by a concentric stack of pillballs and analyzed using the 
presented theory. This work describes the systematic errors in edge 
location which cannot be avoided. In the literature, mainly stochastic 
disturbances have been studied so far. (Optimal detection schemes 
have been presented for a planar step edge which is in principle a 1-D 
problem.) Low-pass filtered curved edges in any dimension produce 
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Fig. 7. Relative location error as function of the relative filter size for vanous 
SNR’s with a Gaussian filter for noise reduction In 2-D. The test image was 
a disc of radius 25.5 pixels sampled at the Nyquist rate. The SNR’s used are: 
a) SNR = 100 (40 dB), b) SNR = 20 (26 dB), c) SNR = 5 (14 dB), d) 
SNR = 2 (6 dB). 

a biased zero-crossing (i.e., edge location) in a way that cannot be 
predicted from earlier results. 

-.- t 3D R4.7 SNR=2(6dB) 

0.1 1 0.05 

6-1 
0.0 I 

0.005 

0.001 ‘ 
0.25 0.3 0.35 0.4 0.45 0.5 

relative size of Gaussian filter (alR) - 
Fig. 8. Relative location error as function of the relative filter size for SNR 
= 2 (6 dB) with a Gaussian filter for noise reduction in 3-D. The test images 
were sampled at the Nyquist rate. 

We have shown that PLUS (Laplace + SDGD) performs better 
than both its constituents over a wide range of SNR’s and for a 
wide range of edge curvatures. The PLUS operator requires three- 
fold oversampling when no digital smoothing is applied. The PLUS 
operator is easy to implement using separable filters, is isotropic, 
and allows interpolation. The latter is of extreme importance since it 
allows us to achieve subpixel accuracies. This is often the only way 
to overcome limited sampling density since the pixel size of a CCD 
camera has a smallest size and lenses with higher magnification are 
sometimes not available (e.g., microscope objectives). 

The applicability of PLUS depends on the SNR and the object size. 
In 2-D, the SNR’s can be divided in three intervals. 

1) SNR 2 20 (SNR 2 26 dB): High-Quality Images require 
the smallest possible low-pass filters that provide the necessary 
band limitation using PLUS. Although the location error for 
PLUS is larger than in the theoretical noise free case (im- 
possible to obtain due to quantization into a fixed number of 
bits, camera readout noise, and Poisson noise) PLUS performs 
significantly better than Laplace and SDGD. 

2) 3 5 SNR < 20 (10 dB 5 SNR < 26 dB): Medium-Quality 
Images require small low-pass filters for Laplace and SDGD 
and slightly larger low-pass filters for PLUS to achieve the 
best performance. PLUS gives a slightly better performance 
in terms of location error, but limits the maximum allowed 
curvature of the contour. Laplace is the better choice for high 
curvature objects (radii smaller than 6 pixels) while PLUS is 
to be preferred when the curvature becomes less. 

3) 1 5 SNR < 3 (0  dB 5 SNR < 10 dB): Low-Quality Images 
require large low-pass filters to get better accuracy as well 
as precision. For small objects the maximum allowed low- 
pass filter might not be sufficient in noise suppression. The 
stochastic error will dominate the total position error and there 
is no need for using PLUS. SDGD is less sensitive to nonlinear 
illumination along the edge (low frequency noise) and performs 
better under these conditions. When the objects become larger 
(radii larger than 20 pixels) and the curvature reduces, PLUS 
performs better than Laplace and SDGD because large low-pass 
filters can be applied. Although the difference is less than an 
order of magnitude, the edge displacement can now be reduced 
from a few pixels to less than one pixel. 

For objects where the size of the low-pass filter is larger than the 
edge radius, no prediction with respect to edge location errors can be 
made. For contours having radii smaller than the break-even radius 
(Rl~rrnk-rvrn = 6) Laplace performs better than PLUS. For low 
SNR’s the stochastic error dominates the total position error. For 
radii larger than the break-even radius, the SNR is the most dominant 



IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 1, JULY 1994 133 

2D Gaussian LPF 

0 2  6 15 20 
edge radius (pixels) - 

Applicability domains of PLUS, Laplace, and SDGD as function Fig. 9. 
edge radius and SNR in 2-D. 

[9] H. D. Tagare and R. J. P. DeFigueiredo, “On the localization perfor- 
mance measure and optimal edge detection,” IEEE Trans. Pattern Anal. 
Machine Intell., vol. 12, no. 12, pp. 1 1 8 6 1  190, 1990. 

[IO] S. Sarkar and K. L. Boyer, “On optimal infinite impulse response edge 
detection filters,” IEEE Trans. Pattern Anal. Machine Intell., vol. 13, 
no. 11, pp. 11541171, 1991. 

[ l l ]  -, “Optimal infinite impulse response zero crossing based edge 
detectors,” CVGIP: Image Understanding, vol. 54, no. 2, pp. 224-243, 
1991. 

[I21 A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977. 
1131 A. Huertas and G. Medioni, “Detection of intensity changes with 

subpixel accuracy using Laplacian- Gaussian masks,” IEEE Trans. 
Pattern Anal. Machine Intell., vol. PAMI-8, no. 5, pp. 651464,  1986. 

[I41 J. S. Chen, A. Huertas, and G. Medioni, “Fast convolutions with 
Laplacian-of-Gaussian masks,” IEEE Trans. Pattern Anal. Machine 
Intell., vol PAMI-9, no. 4. pp. 584-590, 1987. 

[ 151 V. Berzins, “Accuracy of Laplacian edge detectors,” Comput. Vision, 
Graphics and Image Processing, vol. 27, pp. 195-210, 1984. 

1161 R. M. Haralick, “Digital step edges from zero crossing of second 
directional derivatives,” IEEE Trans. Pattern Anal. Machine Intell.. vol. 
PAMI4,  no. 1, pp. 5 8 4 8 ,  1984. 

[ 17) J. J. Clark, “Authenticating edges produced by zero-crossing algo- 
rithms,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 1, pp. 

1181 V. Torre and T. Poggio, “On edge detection,” IEEE Trans. Pattern Anal. 
Machine Intell., vol. PAMI-8, no. 2, pp. 147-163, 1986. 

[I91 A. L. D. Beckers, “Parameter estimation for nonlinear object size filters 
in images,” Master’s thesis, (in Dutch) Faculty of Applied Physics, Delft 
Univ. of Technology, The Netherlands, 1986. 

[20] J. Bemsen, “Dynamic thresholding of grey-level images,” in 8th Int. 
Conf. Pattern Recognit., Paris, France, 1986, pp. 1251-1255. 

[21] L. J. van Vliet, I. T. Young , and A. L. D. Beckers, “An edge detection 
model based on nonlinear Laplace filtering,” in Pattern Recognition 
and Artificial Intelligence-Towards an Integration, E. S. Gelsema and 
L. N. Kanal, Eds. Amsterdam: Elsevier Science Publishers B. V. 
(North-Holland), 1988, vol. 7, pp. 63-73. 

1221 __ “A nonlinear Laplace operator as edge detector in noisy images,” 
Comput. Vision, Graphics, and Image Processing, vol. 45, no. 2, pp. 

of 43-57, 1989. 

.. 

167-195, 1989. 
[23] L. J. van Vliet, “Grey-Scale Measurements in Multi-Dimensional Digi- 

tized Images,” Ph.D. thesis, Delft Univ. Press, Stevinweg 1, Delft, The 
Netherlands, 1993. 

[24] P. W. Verbeek, “A class of sampling-error free measures in oversampled 
band-limited images,” Pattern Recognit. Lett., vol. 3 ,  pp. 287-292, 1985. 

[25] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 
Numerical Recipes in C, The Art of Scientijic Computing. Cambridge, 
MA: Cambridge Univ. Press, 1990. 

Fig. 10. 
an object with slowly varying curvature. 

Edge shifts produced by PLUS, Laplace, and SDGD on an ellipse. 

feature for choosing the proper edge detector. Small objects (radii 
smaller than 6 pixels) heavily disturbed by noise cannot be localized 
using Laplace. Fig. 9 indicates which edge detector gives the best 
performance as function of the edge radius and the SNR in 2-D. 
In 3-D, small Gaussian filters are already very effective in noise 
reduction. This extends the applicability of PLUS to objects with 
smaller edge radii heavily disturbed by noise. Fig. 10 shows the edge 
shifts produced by PLUS, Laplace and SDGD on an ellipse, an object 
with slowly varying curvature. 
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