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Abstract
It is shown that a classical error correcting code C' = [n,k,d] which
contains its dual, C* C C, and which can be enlarged to C' = [n,k’ >

k+1,d'], can be converted into a quantum code of parameters [[n,k + k' —
n, min(d, [3d’/2])]]. This is a generalisation of a previous construction, it en-
ables many new codes of good efficiency to be discovered. Examples based on
classical Bose Chaudhuri Hocquenghem (BCH) codes are discussed.
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Quantum information theory is rapidly becoming a well-established discipline.
It shares many of the concepts of classical information theory but involves new
subtleties arising from the nature of quantum mechanics [l]. Among the central
concepts in common between classical and quantum information is that of error
correction, and the error correcting code. Quantum error correcting codes have
progressed from their initial discovery [B, f] and the first general descriptions [,
B, B to broader analyses of the physical principles [}, [0, [T, [J] and various code
constructions [, [[3, 1, @, [3, [, T4, [[7]. A thorough discussion of the principles of
quantum coding theory is offered in [], and many example codes are given, together
with a tabulation of codes and bounds on the minimum distance for codeword length
n up to n = 30 quantum bits.

For larger n there is less progress, and only a few general code constructions
are known. The first important quantum code construction is that of [[, B, [, the
resulting codes are commonly referred to as Calderbank Shor Steane (CSS) codes.
It can be shown that efficient CSS codes exist as n — oo, but on the other hand
these codes are not the most efficient possible. I will present here a method which
permits most CSS codes to be enlarged, without an attendant reduction in the
minimum distance of the code. The resulting codes are therefore more efficient
than CSS codes. The examples I will give are found to be among the most efficient
quantum codes known, and enable some of the bounds in [f] to be tightened. The
code construction is essentially the same as that described for Reed-Muller codes in
(4], the new feature is to understand how the method works and thus prove that it
remains successful for a much wider class of code. After this some relevent theory of
Bose Chaudhuri Hocquenghem (BCH) codes [I§, [9, BI] will be given and used to
construct a table of example quantum codes built by the new method. The codes are
additive and pure in the nomenclature of [j]. A pure additive code is nondegenerate
in the nomenclature of [[J].

1 Quantum coding

Following [f], the notation [[n, k, d]] is used to refer to a quantum error correcting
code for n qubits having 2* codewords and minimum distance d. Such a code enables
the quantum information to be restored after any set of up to |(d — 1)/2] qubits
has undergone errors. In addition, when d is even, d/2 errors can be detected.
We restrict attention to the ‘worst case’ that any defecting qubit (ie any qubit
undergoing an unknown interaction) might change state in a completely unknown



way, so all the error processes X, Z and Y = X Z must be correctable [{, [1, B, [J].

A quantum error correcting code is an eigenspace of a commutative subgroup of
the group E of tensor products of Pauli matrices. The commutativity condition can

be expressed [[L1, [[3, B,
H,-H' +H,-H =o0. (1)

where H, and H, are (n — k x n) binary matrices which together form the stabilizer
H = (H,|H,). All vectors (u,|u,) in the code (where u, and u, are n-bit strings)
satisfy H, - u, + H, - u, = 0. These are generated by the generator G = (G,|G,)
which therefore must satisfy

H,-G'+H,-GT=o0. (2)

In other words H may be obtained from G by swapping the X and Z parts, and
extracting the dual of the resulting (n+ k) x 2n binary matrix. The rows of G, and
G, have length n, and the number of rows is n + k.

The weight of a vector (u,|u,) is the Hamming weight of the bitwise OR of u,
with u,. The minimum distance d of the code C is the largest weight such that there
are no vectors of weight < d in C \ C*, where the dual is with respect to the inner
product ((ug|us.), (ve|v:)) = Uy - v, +u, - v,. A pure code has furthermore no vectors
of weight < d in C, apart from the zero vector.

The CSS code construction [[, [] is to take classical codes Cy and Cy with

Ci C Cy, and form
0 ( Hy| 0
Go ) M= ( 0 | H; ) ’ (3)

where GG; and H; are the classical generator and check matrices. The dual condition
Cit C Oy ensures that Hy - H} = Hy - Hf = 0 and therefore the commutativity
condition ([]) is satisfied. If Cy = [n, k1,d;] and Cy = [n, k2, d3] then the minimum
distance of the quantum code is min(dy, ds) and the number of rows in G is ky + ko,
leading to quantum code parameters [[n, k1 + ko — n, min(dy, do)]].

_ [ G
9—(0

An interesting subset of CSS codes is that given by the above construction
starting from a classical [n,k,d] which contains its dual, leading to a quantum
[[n, 2k — n, d]] code.



2 New code construction

I will present the new construction by stating and proving the following.

Theorem 1. Given a classical binary error correcting code C' = [n, k,d] which
contains its dual, C+ C C, and which can be enlarged to C' = [n, k' > k+1,d'], a
pure quantum code of parameters [[n, k+ k" —n,min(d, [3d'/2])]] can be constructed.

Proof. The generator for the quantum code is

D | AD
G=1| 6| o |, (4)
0| ¢

where G generates the classical code C, and G and D together generate C’, as does
G and AD together (we will choose A such that D and AD generate the same set).

The stabilizer is

AB| B
H=| H |0 |, (5)
0 | o

where H' checks the code C’, so has n — k' rows, {H’, B} checks the code C, so B
has k' — k rows, and

A=BD" (A7) (BD")" (6)

From the dual conditions specified in the theorem, H'H'" = 0 and H'B" = 0 so
the commutativity condition ([l]) is satisified. The definition of A ensures we have

the correct stabilizer since )
AB(AD)" = BD™. (7)

Since the number of rows in the generator is k+k’, the dimension of the quantum
code is k+ k' —n. It remains to prove that the minimum distance is min(d, [3d'/2]).

We choose A such that D and AD generate the same set. Therefore for any
vector (u|v) generated by (D|AD), either u = v or wt(u 4+ v) > d’. We choose the
map A such that u = v never occurs (a fixed point free map). This can be achieved



as long as D has more than one row, by, for example, the map

0100...0
0010...0
A 0001...0 (8)
0000...1
1100...0

To complete the proof we will show that for any non-zero vector (u|v) generated
by G, wt(u|v) > min(d, 3d’/2) (and therefore wt(u|v) > min(d, [3d'/2]).)

For the non-zero vector (u|v), if either wt(u) > d or wt(v) > d then wt(u|v) > d,
so the conditions of the theorem are satisfied. The only remaining vectors are those
for which both wt(u) < d and wt(v) < d. Now, wt(u) can only be less than d if D is
involved in the generation of u, and wt(v) can only be less than d if AD is involved in
the generation of v, since GG on its own generates a binary code of minimum distance
d. However, since the map A is fixed-point free, and using the fact that D and AD
generate the same set, the binary vector u + v is not zero and is a member of a
distance d’ code, therefore wt(u+v) > d’. We thus have the conditions {wt(u) > d’,
wt(v) > d', wt(u + v) > d'}. These are sufficient to imply that wt(u|v) > 3d'/2.
For, if u and v overlap in p places, then wt(u + v) = wt(u) — p + wt(v) — p and
wt(ulv) = wt(u)+wt(v) —p = (wt(u)+wt(v)+wt(u+v))/2 > 3d’'/2. This completes
the proof.

The above construction was applied to Reed-Muller codes in [[f]. These codes are
not very efficient (they have small k/n for given n, d) but they have the advantage of
being easily decoded. A large group of classical codes which combine good efficiency
with ease of decoding are the BCH codes. They include Reed Solomon codes as a
subset. I will now derive a set of quantum error correcting codes from binary BCH
codes using the above construction, combined with some simple BCH coding theory.

3 Application to binary BCH codes

Properties of BCH codes are discussed and proved in, for example, [BI]. A binary
BCH code of designed distance ¢ is a cyclic code of length n over GF(2) with



generator polynomial
g(x) = Lem AMY (), MCV (), ... MO+ (1)} 9)

where

M(z) = I] (v - o), (10)

i€Cly

in which « is a primitive nth root of unity over GF(2), and C; is a cyclotomic coset
mod n over GF(2), defined by

C, = {s,2s,4s,...,2™ s}, (11)

where mg; = |Cs| is obtained from 2™ss = s mod n. The dimension of the code is
k =n —deg(g(z)). From (P) and (f0) this implies k¥ = n — 3", |C}| where the sum
ranges from s = b to s = d + b — 2 but only includes each distinct cyclotomic coset
once. This can also be expressed k =n — |Z¢| where Zp = C, U Cpyy U -+ - U Chys_o
is called the defining set. The minimum distance of the code is d > .

The dual of a cyclic code is cyclic. Grassl et al. [B(] derive the useful criterion
that a cyclic code contains its dual if the union of cyclotomic cosets contributing to
g(x) does not contain both Cs and C,,_,. In other words

{(n—i)¢Ic VicIe} = CHCC. (12)

3.1 Primitive BCH codes

Consider first the BCH codes with n = 2™ — 1, the so-called primitive BCH codes.
In order to find the codes which satisfy the condition ([[J), we will find the smallest
s such that n —r € C for some r < s. The largest permissible designed distance
will then be § = s. For even m, the choice s = 22 — 1 gives s2"/2 = n — 5 =
Cs, = C_g, so this is an upper bound on s. For odd m, an upper bound is provided
by s = 20m*1)/2 _ 1 since then s20"~1/2 = n — (s — 1)/2. We will show that these
upper bounds can be filled, i.e. that no smaller s leads to n —r € C for r < s.

For n = 2™ — 1, the elements of the cyclotomic cosets C are largest when s
is one less than a power of 2, s = 2/ — 1. Specifically, for s = 2/ — 1 we have
(s2° mod n) > (12" mod n) Vi < m,r < s. This is obvious for s2' < n and the proof
for s2° > n is straightforward. The largest element in C; (s = 2/ — 1) is obtained
for the largest ¢ such that s2° < n, giving max(C,) = 2™ — 27 = n — r where

6



r = 2""J —1. This element max(Cy) = n—r is the largest in the defining set Z¢ for
a code of designed distance = s, therefore it is only possible for Zs to contain both
i and n — 4 (for any 7) if it contains r and n — r, since r = 2™™J — 1 is the smallest
element in its coset, and any other pairs ¢,n — ¢ must have ¢ > r. Finally, we have
a failure of the condition ([@) only if r < s, that is 27 — 1 < 27 — 1, therefore
j=[m/2].

To summarise the above, we have the proved following:

Lemma: The primitive binary BCH codes contain their duals if and only if the

designed distance satisfies
§ < 2lmi2l (13)

Using the code construction of theorem 1, together with this lemma, the list of
quantum codes in table 1 is obtained. The further property used is that BCH codes
are nested, i.e. codes of smaller distance contain those of larger, which is obvious
since the former can be obtained from the latter by deleting parity checks. The first
entry for each value of n uses {C' = extended BCH code} with {C’ = even weight
code} to obtain a distance 3 quantum code. The codes of larger distance involve
only BCH codes, for these a quantum code is obtained both from the unextended
and extended versions. The parameters [[n, K, D]| given in the table are for the
extended BCH codes (i.e. extended by an overall parity check). Using unextended
codes leads to a further quantum code of parameters [[n — 1, K + 1, D — 1]}, for
D > 3.

3.2 Non-primitive BCH codes

When n # 2™ — 1 the cyclotomic cosets mod n do not have so much structure so
in general the only way to find if condition ([[J) is satisfied is to examine each coset
individually.

One way in which the requirement ([[J) is not met is if C; contains both ¢ and
—i mod n, which implies Cy = C_g, for some Cy C Z¢. If s is the smallest element in
Oy, then i,n—1i € Cy if and only s,n —s € C, from which s2? = —s mod n for some
j < ms. Multiplying by 27 we have s2% = —s2/ = s mod n, therefore j = m,/2 and
this is only possible for even m,. Furthermore, since m,>; is a factor of m;, m, can
be even only if m; is even. This observation slightly reduces the amount of checking
to be done.



The values of n in the range 1 < n < 127 for which C does not contain n — 1
are { 7,15,21,23,31,35,39,45, 47,49,51,55,63,69,71,73,75,77,79,85,87,89,91,93,95,103,
105,111,115,117,119,121,123,127}. An efficient code is obtained if one or more of
the cosets is small, this happens for n = 21, 23, 45, 51, 73, 85, 89, 93, 105, 117 (not
counting primitive codes). Quantum codes obtained from BCH codes with these
values of n are listed in table 2. Further good codes exist in the range 127 < n < 511
for n = 133, 151, 153, 155, 165, 189, 195, 217, 219, 255, 267, 273, 275, 279, 315, 337,
341, 381, 399, 455.

4 Efficiency

The code parameters in tables 1 and 2 compare well with the most efficient quantum
codes known. For example, the [[22, 5, 6]] code permits some of the lower existence
bounds in [f] to be raised, and the [[32, 15, 6]] and [[32, 5, 8]] codes fill lower existence
bounds. The [[93,68,5]] code is comparable with the [[85,61,5]] code quoted in [{],
though the [[93,53, 7]] code is not as good as [[85,53, 7]] quoted in [f]. Obviously
the quantum codes based on BCH codes will be best for primitive BCH codes, so
we expect the codes in table 1 rather than table 2 to compare best with other code
constructions. Indeed, the distance 3 codes in table 1 are the previously known
Hamming codes [[3], [[6, fj] and are optimal.

The quantum codes constructed by theorem 1 have an upper bound on the rate
K/n = (k+k')/n — 1 arising from the upper bound on k and £’ for binary codes.
In the asymptotic limit this bound on the quantum codes is

K/n < R(d/n)+ R(2d/3n) — 1, (14)

where R(d/n) is the maximum rate of a binary [n, k, d] linear code. For example the
sphere-packing bound is R(d/n) < 1 — H(d/2n); the codes we have discussed have
parameters lying close to this bound (though in the limit of large n it is known that
BCH codes are no longer efficient). Taking R(z) equal to the McEliece-Rodemich-
Rumsey-Welch upper bound [P7], we find K/n > 0 for d/n < 0.2197 in the limit
of large n. This may be compared with d/n < 0.1825 for CSS codes and the limit
d/n < 0.308 for pure quantum stabilizer codes discussed by Ashikhmin [R3].

The author is supported by the Royal Society and by St Edmund Hall, Oxford.
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n| k k¥ d d&| K D

8] 4 7 4 2| 3 3
16| 11 15 4 2| 10 3
32| 26 31 4 2| 25 3
32121 26 6 4| 15 6
32| 16 21 8 6| 5 8
64| 57 63 4 2| 56 3
64| 51 57 6 4| 4 6
64| 45 51 8 6] 32 8
128 120 127 4 2119 3
128|113 120 6 4|105 6
128106 113 8 6| 91 8
128 99 113 10 6| 84 9
128 | 92 106 12 8| 70 12
128 85 99 14 10| 56 14
128 78 99 16 10| 49 15
256 | 247 255 4 2[246 3
256 | 239 247 6 4230 6
256 | 231 239 8 6214 8
256 | 223 239 10 6 |206 9
256 [ 215 231 12 8190 12
256 [ 207 223 14 10| 174 14
256 | 199 223 16 10 | 166 15

Table 1. Parameters [[n, K, D]| of the quantum codes obtained from primitive
binary BCH codes, for n < 256. The BCH codes have been extended by an overall
parity check in order to allow the distance 3 quantum code to be obtained by com-
bining a BCH code with the even weight code. For D > 3 if the unextended BCH
codes are used, a [[n — 1, K + 1, D — 1]] quantum code is obtained.
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n k kK d d] K D
221 15 21 4 2| 14 3
221 12 15 6 4 5 6
46| 33 45 4 2| 32 3
461 29 33 6 4| 16 6
52| 43 51 4 2‘ 42 3
40 64 73 4 2| 63 3
741 55 64 6 4| 45 4
741 46 55 10 6| 27 9
86| 7r 8 4 2| 76 3
86| 69 77 6 4| 60 6
90 78 &8 4 2| 77 3
90| 67 78 6 4| 55 6
90| 56 67 10 6| 33 9
90| 45 56 12 10| 11 12
941 8 93 4 2| 82 3
94| 78 8 6 4| 67 6
941 68 78 8 6| 52 8
941 58 78 10 6| 42 9
941 53 68 12 8| 27 12

106 | 93 104 4 2| 92 3
106 81 93 6 4| 68 6
06 75 8 8 6| 50 8
106 71 8 10 6| 46 9
118 {105 117 4 2104 3
1181 93 1056 6 4| 80 6
1181 81 93 8 6| 56 8
1181 69 93 10 6| 44 9

Table 2. As table 1, but for non-primitive BCH codes with n < 127.
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