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Recursive MUSIC: A Framework for
EEG and MEG Source Localization

John C. Mosher,"Member, IEEE,and Richard M. LeahyMember, IEEE

Abstract—The multiple signal classification (MUSIC) algorithm  that they are spatially fixed for the duration of a particular
can be used to locate multiple asynchronous dipolar sources response, researchers were able to justify fitting the multiple-
from electroencephalography (EEG) and magnetoencephalogra- dipole model to a complete spatio-temporal data set [2], [3],

phy (MEG) data. The algorithm scans a single-dipole model . . .
through a three-dimensional (3-D) head volume and computes [17], [18]. The spatio-temporal model can result in substantial

projections onto an estimated signal subspace. To locate theimprovements in localization accuracy; however, processing
sources, the user must search the head volume for multiple local the entire data set leads to a large increase in the number
peaks in the projection metric. This task is time consuming ot ynknown parameters, since the time series for each source

and subjective. Here, we describe an extension of this approach . . . . .

which we refer to as recursive MUSIC (R-MUSIC). This new must now be estimated in addition to the dipole location and
procedure automatically extracts the locations of the sources orientation. Since these time series parameters are linear with
through a recursive use of subspace projections. The new method respect to the data, they can be optimally factored out [7], [12]

is also able to locate synchronous sources through the use ofgnd the source locations found without explicit computation
a spatio-temporal independent topographies (IT) model. This of their associated time series

model defines a source as one or more nonrotating dipoles with a . . .
single time course. Within this framework, we are able to locate ~ YVhile factoring out the linear parameters can reduce the

fixed, rotating, and synchronous dipoles. The recursive subspace dimensionality of the search required to localize the sources of
projection procedure that we introduce here uses the metric of the measured fields, a fundamental problem remains: the least-
canonical or subspace correlations as a multidimensional form of squares cost function is highly nonconvex with respect to the
correlation analysis between the model subspace and the data . . .

subspace. By recursively computing subspace correlations, Welocatlon§ of the d|pole§. .Cor\sequently,. mverge methods such
build up a model for the sources which account for a given set as gradient-based optimization or nonlinear simplex searches
of data. We demonstrate here how R-MUSIC can easily extract often become trapped in local minima, yielding significant
mgltiple asyng:hronous dipolar sources that are difficult to find |gcalization errors (cf. [9]). In an attempt to overcome this
using the original MUSIC scan. We then demonstrate R-MUSIC problem, we have examined the use of signal subspace meth-

applied to the more general IT model and show results for . . . )
combinations of fixed, rotating, and synchronous dipoles. ods that are common in the array signal processing literature

Index Terms—Dipole modeling, electroencephalography, mag- [10]. The method that we used in [12], which was originally

netoencephalography, signal subspace methods, source Iocaliza-referr_ed to as the MUlItiple Slgngl Cla_ssificat.ion (MUSIC)
tion. algorithm in [19], replaces the multiple-dipole directed search

with a procedure in which a single dipole is scanned through
a grid confined to a three-dimensional (3-D) head or source
volume. At each point on this grid, the forward model for a
HE PROBLEM of localizing the sources of event relatedipole at this location is projected against a signal subspace
scalp potentials [the electroencephalogram (EEG)] amigat has been computed from the E/MEG data. The locations
magnetic fields [the magnetoencephalogram (MEG)] can bf this grid where the source model gives the best projections
formulated in terms of finding a least-squares fit of a set ghto the signal subspace correspond to the dipole locations.
current dipoles to the observed data. Early attempts at souyge also show in [12] that we do not need to test all possible
localization were based on fitting the multiple-dipole model tgipole orientations at each location; instead, we can solve a
a single time sample of the measurements across the E/ME&neralized eigenvalue problem whose solution gives us the
(EEG and/or MEG) array [5], [21], [31]. By noting thatbest_ﬁmng orientation of the dipole.
physiological models for the current sources typically assumegne of the major problems with the MUSIC method, and
one that is addressed by the new approach described here, is
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compute the metric only at a finite set of grid points. The effect 1. SPATIO-TEMPORAL INDEPENDENT TOPOGRAPHIES
of these practical limitations is that the user is faced with the
problem of searching the gridded source volume for “peak&. Background

and deciding which of these peaks correspond to true Iocat|onsQuasistatic approximations of Maxwell's equations govern

It is important to note that a local peak in this metric does NHle relationship between neural current sources and the E/IMEG

necessarily indicatg the Iogatioq of a source. Only when “aﬁta that they produce. For the signal subspace methods for
forward model projects entirely into the signal subspace—gy, e |ocalization that are described here, these relationships
as close as one would expect given errors due to noise éj

st be expressed in matrix form. In [15], we reviewed

model mismatch—can we infer that a source is at that locatiorﬁatrix forms of the “lead field” [4], [27] for EEG and MEG

The effect of this limitation is that some degree of SUbjECtin%easurements, for both spherical and general head models.
interpretation of the MUSIC “scan” is required to decide o

th each case, the measurements can be expressed as an ex-

tf|1e I<|Jcat|ons ,Of tf|1e SOUrces. Tlh's Tubjectlvehlnterpretatllon dﬁcit function of primary currentactivity; the passive volume
clearly undesirable and can also lead to the temptation i rantsdue to the macroscopic electric fields are implicitly
incorrectly view the MUSIC scan as an image whose intensify, e qqed in the lead field formula. The lead field should

is proportional to the probability of a source being present gfs, account for the sensor characteristics of the measurement

each location. o modality, such as gradiometer orientation and configuration
Two other problems that arise with the use of MUSIC arg e or differential pairs in EEG. The result is that our

based on the assumptions that the data are produced by or MEG measureme|ft(r) at sensor locatiom may be
set of asynchronous dipolar sources and that the data B%ressed as

corrupted by additive spatially white noise. Often both of
these assumptions are incorrect in clinical or experimental fr) = / glr, ) - (') dr’ )
data. If two dipoles have synchronous activation, then the \4

two-dimen_sional (2-D) signal subspace that would_ have begRerev is the volume of sourceg(r') represents therimary
p_roducgd if they were asynchronous_ collapses_mto a ON&irrent densityat any points in the volume, andg(r, ')
dimensional (1-D) subspace. Scanning of a single dipql¢ ihe |ead field vector [4], [27] relating the sensor point to
against this subspace using MUSIC will fail to localize eithgf,g primary current point. The scalar functigf(n-) represents

of the sources. The new MUSIC algorithm described hefgiher the voltage potential or the magnetic field component
is able to localize synchronous sources through the use ofa: would be observed at sensor location

modified source representation, which we refer to as the spatiof; \we assume that the primary current exists only at a
temporal independent topographie§T) model. This model jiscrete pointr,, i.e., the primary current ig(r')8(+' — r,),

is described in detail in Section Il. The second problem, thghare §(' — r,) is the Dirac delta functional, then (1)
issue of nonwhite noise, is not addressed in depth here. Wf%plifies in E/IMEG to

note, however, that it is straightforward to modify both the .

original and R-MUSIC algorithms to cope with colored noise f(r)=g(r,ry)-q 2

through st.and.ard prewhltenlng procedurgs [23] I_n praCtICveglhereq is the moment of a current dipolocated atr,. We
the prewhitening could be achieved by using prestimulus data s . .
ume in this paper that our source consisgsairrent dipole

to estimate the covariance of the background noise; see [ . ;
rces. We assume simultaneous recordings s¢énsors for

22;1 r[62§]ne(1)sisreecent examples of processing E/MEG data Wﬁ time instances. We can express theby n spatio-temporal

We begin the paper in Section Il with a combined formuqlfml matrix as

lation of the E/MEG forward problem in which we develop [ t) - [l ta)

a standard matrix notation for the relationship between the_ Tt

source and data. We then describe the spatio-temporal [¥(Tm; 1) -+ f(Tm, tn)

model in which, rather than treating individual current dipoles giri, vt o glr,r)t ety - au(tn)
as sources, we define a source as one or more nonrotating= - . .
dipoles with a single time course. In this way our model is grm, rq)T o gl )T g, () - gy (tn)
constrained to consist of a number of sources equal to the (3)

rank of the signal subspace. In Section Ill, we review the

definition and properties of the signal subspace and relate th€5e

subspaces to cost functions commonly used for estimating the o ) T

parameters of the model. We describe the use of canonical or F=[G(ra) Glryp)1Q” @
“subspace” correlations as a general metric for computing thewe refer toG(r,;) as the dipole “gain matrix” [12] that
goodness of fit of putative sources to the signal subspace. Waps a dipole at,; into a set of measurements. The three
then review the MUSIC algorithm in the light of the precedingolumns of the gain matrix represent the possifdevard
development. The new R-MUSIC algorithm is developed ifields that may be generated by the three orthogonal orienta-
Section IV. We present some examples of the application #dns of the:th dipole at then sensor location$ry, - - -, r,,}.
R-MUSIC to fixed, rotating and synchronous dipolar sourcésach row of the full gain matriXG(r,1) --- G(ry,)] repre-

in Section V. sents thelead field sampled at the discrete dipole locations
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{rg, -+, rgp). The matrix F' is our spatio-temporal model We cluster thep dipoles intor subsets and restate (4) as

matrix of perfect measured data, i.e., the magnetic field conf* = G(p)Q" wherep = {p1, ---, p,} represents sets of

ponent or scalp potential data we would observe in the abseidgeoles. Theith set of dipoles; compriseg; dipoles with the

of noise. location parameter sef = {'r((;f, e réﬁ,,)i}. The moments of
The columns of represent the time series associated withesth set are clustered such that, by design, thegtresult in

each of the three orthogonal components of each dipole, i&sank-one time series matrix. A singular value decomposition

with each column of the gain matrix. For the “fixed”-dipolgSVD) of these moments yields

model, whose moment orientation is time invariant, we can

. . (i>(t N <i>(t )
separate the orientation of each source from the moments oF = RN 9 Un B T ©)
as [12] P = o o = U;0,V;
g (t1) - agp; (tn)
~ Uq1 0 wherewu; andw; are, respectively, the left and right singular
F=[G(ry) - Glry)] e vectors of unit norm, and; is the only nonzero singular value
0 Ugp of the decomposition of)} . The result is that théth set of
sq1(t1) -+ sq(tn) dipoles may be represented by the rank one spatio-temporal
. . (5) matrix
) .- tn ; ;
sults) st Gl )@l = [Grty) - G| woat = alp, wst
()

such thatg;(fr) = ugisqi(tr), Whereug; is a unit norm \pe e the time series follows from the decomposition in (6)
orientation vector. The scalar time serigg(t;) are thelinear as s — o,
T T (A

parameters of theth source O.f our_model, fo_r time indexes Ther sets of dipoles are then collected such that (4) is now
k=1, ---, n. The corresponding dipole locationg; are the restated as

nonlinear parameters, and the dipole orientatiang are the

guasilinear parameters. . - st

In [12], we also considered a “rotating” dipole as one F=G(p)Q" =lalpr, w1) -+ alpr, w)] T (8)
whose time series could not be decomposed into a single Sy
fixed orientation and time series and, therefore, comprised =A(p, )87 9)

multiple “elemental” dipoles. Physically, a rotating dipole may i )

be viewed as two nearly collocated dipoles with independeffpere the set = {u;, ---, w,} contains the corresponding

time series, such that they are indistinguishable from a modit norm vectors. Our final requirement in this IT framework
comprising a single dipole whose orientation is allowed t§ that I” mustbe of rank+ and, therefore, by necessity,

vary with time. The “hybrid” models in [12] comprised bothPoth A(p, #) and S are of full column rankr. We refer to
fixed and rotating dipoles. each column vector ofA(p, €) as a ‘p;-dipolar IT,” with a

corresponding time series found as titie column of S.
) IT and previous spatio-temporal source models [12], [18]

B. Independent Topographies differ as follows. If written as (4), we can state that the model

A common observation in MUSIC processing is that theomprisesp dipolar sources and corresponding time series.
rank of the signal subspace should equal the number Tis model has led to the complexity of representing “fixed”
“sources.” As defined in [12], we allowed a source to be @nd “rotating” or “regional” dipoles. The rank of this spatio-
single dipole with one (“fixed”) or more (“rotating”) indepen-temporal dipolar model can vary from unity (all dipoles fixed
dent time courses. For example, the data model defined dryd synchronous) tog3(fully rotating dipoles in an EEG
(5) assumes a collection gf “fixed” dipoles. The MUSIC model). The number of “sources” depended on the viewpoint
method applied to this model requires that all dipoles hawé the researcher, since some viewed the rotating dipole as a
linearly independent time courses. Stated conversely, eathgle “regional” source or as multiple “elemental” sources.
linearly independent time course is associated with a singiéhen written as (9), we have altered the spatio-temporal
dipole. model by stating that the number of souraesstequal the

Our goal in this section is build up a new source model faank of the spatio-temporal model, where a single source may
the data as the sum of contributions from a fixed number bbw comprise one or more dipoles. Each source generates a
spatio-temporaindependent topographieEach of these IT's “topography” across the array of sensors that is spatially and
is considered to be a source comprising one or more fixemporally independent of any other source or topography.
dipoles which collectively have a single time course. Thus, in We will conclude this section with some examples that show
contrast to our models in [12], each linearly independent tintke relationships between IT models and common multiple-
course is now associated with omemoredipoles. By building dipole models. The case of three fixed dipoles, with asyn-
up the model in this way, the rank of the signal subspachronous time series, is represented by the rank-three spatio-
is, by definition, always equal to the number of sourcetemporal matrix as
This representation then provides a convenient framework for
describing and implementing our new variant of the MUSIC
algorithm. (541> 84, 8g3] " (10)

A(p’ Q)ST = [a'('rqla 'U'ql)a a(’qu, uq?)a 0,(’!',13, 'U'q?))]
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where p = {rg1, rq2, rq3} is the set of dipole locations the common assumption that the noise is zero-mean and white,
and 0 = {u,1, up, u,3} is the set of dipole orientations asi.e., E{e(t;)e(t;)T'} = 021, whereE{e} denotes the expected
shown in (5). Our IT model comprises three “single-dipolaralue of the argument, anllis the identity matrix. The case
topographies.” Now consider the case where two of thek® colored noise is readily treated with standard prewhitening
dipoles are synchronous, but the third remains asynchronaosthods [23], provided a reasonable estimate of the noise
from the others. The rank of the model is two, and our I€ovariance is available. For event related studies, the noise
model must be adjusted to account for two sources covariance can probably be estimated using sufficiently long

T _ T periods of prestimulus data.
Alp, )57 = lalrs, ug). alps, uz)llsa, 5] (11) Under the zero-mean white noise assumption, we may

where nowp = {r,;, p2} is the set of source locations, and théeprTesent the expected value of the matrix outer product
second source comprises two dipoles= {7, r,3}. The set FF° as

of source orientations i® = {ug1, 2}, and we may continue _ T e n T

to viewu,; as the orientation of the dipole in the single-dipole Rp = E{FF } =ASTS5A" + ZE{e(ti)e(ti) } (14)
topography. The orientatios,, however, is a generalized form - z=12
of source orientation and is in this instance a six-dimensional =AS"S5A" +no l. (15)

(6-D) vector, as discussed in the Appendix. The first thrggere, we have assumed that our model parameters and the
elements of this vector relate to the orientation of dipale dipolar time series are deterministic. From our IT model, we
and the second set of three elements relate;40 The norm  know that ASTSAT is rank » and may be decomposed as
of the first three elements gives the strength of dipaje ¢ _A®Z, where®, contain them x r eigenvectors such that
relative tor,s, with the restriction that the combined vector nganiq)s) = sparfA), andA is the correspondingxr diagonal

all elements iru; is of unit norm. This IT model comprises onematrix of nonzero eigenvalues.

“single-dipolar” topography and one “2-dipolar” topography. e can decompose the correlation matrix as
If all three dipoles are synchronous, then our IT model

2
comprises a single “3-dipolar” topography. Similarly, we Rp =[®,, ®.] A +(7)w€I OQI [Ds, <I>€]T (16)
consider the limiting case of a single time slice and a general . . noe
p-dipole model; this spatio-temporal model is always rank one, =0 ;AP + P AP, 17)

and our IT model is, therefore, a singledipolar topography. whereA, = A+no2 is ther x + diagonal matrix combining

“Rotating” or “regional” dipoles are a simple extens_iorboth the model and noise eigenvalues, and= no?I is the
of the IT framewaork. ‘I‘n the case of the MEG spheric m —r) X (m —r) diagonal matrix of noise-only eigenvalues.
head model, a single “rotating” dipole becomes two fixeGrpg ,,,"_ . eigenvectors that are not i, are contained in
orlentatlpn dipoles corresponding to two “single-dipolar” toq)e' In the subspace discussions below, we refer to @pan
pographies as thesignal subspacand spaf®.) as theorthogonal signal

Ap, 0)S™ = [alps, ugs), alps, ug2)llsyr, 52l (12) subspaceor noise-only subspace
In practice, we acquirez samples of the data to form the

with p1 = p2 = rq. In other words, two fixed dipoles spatio-temporal data matrix and eigendecompose the outer
share the same location, just different orientations and ti\eoduct of this matrix as

courses, which is the original intent of a “rotating” model. . PP PP

For other head models, the dipole may possibly rotate in Rp = FF" = A&7 + A 27 (18)
three dimensionsp; = p; = ps = r,. Note that the where we designate the first left singular vectors of the
m x 2 (or m x 3) IT gain matrix [a(ry1, ue1)a(re, ue2)]  decomposition asb,, i.e., our estimate of a set of vectors
(or [a(rqt, ug)a(rq, ue)alry, ugs)]) properly remains of which span the signal subspace; similarly we desigriate

full column rank. from the remaining eigenvectors. The diagonal matrjcon-
tains the first- eigenvalues and. the remaining eigenvalues.
lIl. SIGNAL SUBSPACE METHODS Alternatively, we may decompose this data matrix using an
SVD asF = ¢£¥7 and partition similarly, where we note
A. Signal Subspaces that ¥2 = A,.

We will now investigate the relationship between the |
model and the signal subspace that we estimate from - _
spatio-temporal data. Assume that a random error matrixIn least-squares fittingwe estimate the source parameters

-t%e Parameter Estimation

comprisingn time slicesE = [e(t;) --- e(t,)] is added as the arguments which minimize the cost function,

to the datalF" = A(p, 6)S7, to produce ann x n “noisy” I .

spatio-temporal da(tg s)et P Y {p’ 6, S}h = arg min [ — A(p, )S" [ (19)
F=AST + E (13) i.e., we minimize the squared Frobenius norm of the error ma-

trix. As we reviewed in [12], well-known optimal substitution
For convenience, we will drop the explicit dependencdain [7] of the linear terms yields the modified cost function
its parameters. The goal of the inverse problem is to estimate { } N F 2
the parameters{p, 8, S}, given the data seF". We will use P, 0 s e 17— AATE [ (20)
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whereA' is the Moore—Penrose pseudoinverseidB]. Once The decomposition shown in (27) yields theibspace

the minimizing set of parametefg, 9]:15 has been found, the correlationsbetween the subspaces spanneddbgnd @, [8].

linear parameters are simply found 8§ = A({p, 6}15)F. In the Appendix, we summarize the steps for calculating these
The product of4 and its pseudoinversd' is an orthogonal subspace correlations to yield a function we designate as

projection operatoil, = AA', which may equivalently be B R

represented by the outer produdty = U, U%, whereU 4 R subcorr{A, (I)S} (30)

is the matrix whose columns are the left singular vectors Qfich returns the ordered set of subspace correlations
A that correspond to its nonzero singular values. Substituti?g1 e 1> e > - > ¢ > 0, between the two
? ? TS —_ —_ —_ g A )

this definition yields subspaces spanned #yand d,, wherer is the minimum of
3 é} — are min {IFIZ — 1114 F||2 21y the ranks ofA and®,. We use the notation subcéet, ¢, };
{p s & {H I = [11La HF} (21) to denote theth correlationg;.
into which we substitute the SVD of the data matrix and Summarizing, we have shown a sequence of steps which re-

readily restate as a maximization late least-squares to modified least-squares to signal subspace
) LT fitting. Each of these cost functions represents a somewhat dif-
{/@ 9}15 = arg max [[U U QX7 || (22) ferent approach to estimating the unknown paramefter#®}

_ _ . . in our spatio-temporal model. By substituting (27) into each
Using the Frobenius norm-preserving properties of orthogonalss function, each estimation technique can be viewed as
matrices, we can restate (22) as a different method of weighting and summing the subspace

{ﬁ, é} = arg max |[UL 652 (23) correlations bgtween the model matm(p, Q) and the signgl
s subspace estimate. More formal derivation and analysis of
Finally, substituting in our signal and noise subspace repi@ese various cost functions in relation to the general array
sentations ofF yields signal processing problem may be found in [24], [25], and
R o o [28]-[30]. We will now use the novel framework of subspace
{@ 9}15 = arg maX{HUﬂ‘I’sEsH% + ||U£(I)GE€||%‘}' (24)  correlations to redevelop the MUSIC algorithm and introduce

. . . our new variant, R-MUSIC.
From (24), we may observe the following. Since the singular

values of F' are ordered in decreasing value, maximizatio MUSIC

of this least-squares cost function favors fitting the first term’ ) _
containing’., rather than the second term containiig Sim-  1he least-squares and SSF methods reviewed above require
ilarly, as we acquire more data, our estimatelf improves Nonlinear multidimensional searches to find the unknown
and, consequently, so dods and &.. By construction, the Parameters{p, 6}. MUSIC was introduced by Schmidt [19]
true values project ail,®, = ®, andI1,®, = 0. These 2aS @ means to reduce the complexity of this nonlinear search.

observations lead to an alternative maximization criteridi€re we review MUSIC in terms of the subspace correlations,

function that focuses on just the first term which in turn leads to our proposed R-MUSIC approach.
A o Given that the rank ofA(p, 8) is » and the rank of®,
{ﬁ, 9} L =8 max |[UL 0,3, ||% (25) is at leastr, the smallest subspace correlation valuge,=

subcor{ A(p, ), ®,},., represents the minimum subspace cor-
i.e., a “modified” least-squares criterion [10], [24], [28]. Effecre|ation (maximum principal angle) between principal vectors
tively, X, in (25) represents a weighted sum of the projectiong the column space ofi(p, 6) and the signal subspack,.
of the estimated signal subspace eigenvectignal subspace The subspace correlation of any individual colum;, 6;)
fitting (SSF) [28] is (25) with the weighting matrix set to theyjth the signal subspace must therefore equal or exceed this
identity matrix minimum subspace correlation

{p.6} = arg max||U, 13- (20 subcor{a(p, ), .}z i=1r (31)

TInA these cost functions, we _note the common inner pro_ductAs the quality of our signal subspace estimate improves
U’;®;. We can decompose this product with an SVD to yielgkither by improved signal to noise ratios (SNR'’s) or longer
Uﬁés —ys.ZT 27) data acqwsmon), thet WI|! approach®, and the minimum
correlation approaches unity when the correct parameter set
where Y and Z are eachr x r orthogonal matrices. We {p, ¢} is identified, such that the distinct sets of param-

designate the ordered singular values in the diagonal matrieters{p;, 8;} have subspace correlations approaching unity.

Y¢ as{ec, -+, ¢ ). Substituting (27) into (26) yields Thus, a search strategy for identifying the parameter set

A~ A {p7 9} = {{pb 91}7 T {pra 97}} is to identify r peaks of

{p.0} = arg max{|zcl}} (28) the metric
to yield simply an unweighted sum Subcor?{a(p o). & } _a%(p, 0)2,2%a(p, 6) (32)
. T lla(e, 6)I|?
{ P, 9} = arg max {Z ci}. (29) where the squared subcorr operation is readily equated with
ssf . . . . .

k=1 the right hand side, since the first argument is a vector and
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the second argument is already a matrix with orthonormiargest peak is easily located by searching over the grid for the
columns. We recognize this as the MUSIC metric [19], withargest correlation; however, the second and subsequent peaks
the minor difference of using the signal subspace projectowust be located by means of a 3-D “peak-picking” routine.
éséf rather than the more commonly used noise-only sulbhe R-MUSIC method overcomes this problem by recursively
space projectoﬁ)eéf. If our estimate of the signal subspacduilding up the IT model and comparing this full model to the
is perfect, then we will findr global maxima equal to signal subspace.
unity.

A. Development

D. Quasilinear Solution ) )
In the following we assume that our IT's each comprise

bne or more dipoles. We search first for the single dipolar
: . topographies, then the two-dipolar topographies, and so forth.
The.dl_pole %arameters n éhe Sfﬂoi’luf} aLe chosen to As we discover each topography model, we add it to our
maxm;]lze su Ilco'{m(,péi i), bs,}l’ mp ylfnlg that Wedmust existing IT model and continue the search. We build the
s_earcThover all possible com |r:1at|0ns of location an ?”entﬁiurce model by recursively applying the subspace correlation
tion. The parameter vectar;, however, represents a IN€alneasure, the key metric of MUSIC, to successive subspace
combination of the columns of the gain matrix, such th%torrelations

a{pi, ;) = GlpiJu; [see (7) and preceding discussion]. r exemplary purposes, we first assume thatthiés each

As described in the AAppgndb'(,.the ]‘irst subspace Correlati%'amprise a single dipole. Single-dipole locations are readily
value subcorG(p;), ¢, }1 implicitly gives us the best way of found by scanning the head volume. At each point in the
combining the columns of#(p;). We, therefore, first find the | 0\« “\ve calculate

dipole parameterg, which maximize subcofiG(p;), <i>5}1.
As described in the Appendix, we then readily extract the {c1, oy} = subcorr{G(rq), Cj)s} (33)
corresponding quasilinear; which maximize this subspace

correlation. This avoids explicitly searching for these quasjhere {c1, ¢, -+ ) is the set of subspace correlations.
linear parameters, reducing the overall complexity of th&e find the dipole location#,;, which maximizes the

address the problem of finding the orientation vectgr

nonlinear search. subspace correlation;. As described in the Appendix, the
_ corresponding dipole orientatio@; is easily obtained from
E. Classical MUSIC subcor{G(#,1), ®,}, and we designate our topography model

In [12], we adapted a “diversely polarized” form ofcomprising this first dipole as
Schmidt’s original MUSIC algorithm [6], [19] to the problem A0 — i 6 34
of multiple point dipoles. We briefly review and update = alfq1, ). (34)

that presentation here to include our discussion of subspacg_0 search for the second dipole, we again search the head

correlaﬂon_s. The s'Feps are as follows. ~__volume; however, at each point in the head, we first form the
1) Obtain a spatio-temporal data mat#X comprising in- | ,odel matrix M — [1:1(1)7 G(r,)]. We then calculate
formation fromm sensors and time slices. Decompose

F oor FFT and select the rank of the signal subspace {c1, cop -} = subcorl{M (i,s} (35)
to obtain®,. Overspecifying the true rank by a couple A ’

of dimensions usually has litle effect on performancg,; now we find the dipole point that maximizes thec-
Underspecifying the rank can dramatically reduce thg,g supspace correlation:; the first subspace correlation
performance. . _ _ should already account foa(#,1, ;) in the model. The

2) Create arelatively dense grid of dipolar source locationsresponding dipole orientaticia, may be readily obtained
At each grid point, form the gain matr& for the dipole. ,y projecting this second topography against the subspace,

At each grid point, calculate the subspace correlati0g§|bcon{Gr(;‘qQ)7 (i,s}, and we append this to our model to
subcor{G, ¢,}. form

3) As a graphical aid, plot the inverse ¢f1 — c¢f, where
¢1 is the maximum subspace correlation. Correlations AP = [a(#g1, @), a(F g2, w2)]. (36)
close to unity will exhibit sharp peaks. Locate or
fewer peaks in the grid. At each peak, refine the seart¥e repeat the processtimes, maximizing thetth subspace
grid to improve the location accuracy, and check theorrelation at theéith passi =1, ---, r. The final iteration is
second subspace correlation. A large second subspatfectively attempting to minimize the subspace “distance” [8]
correlation is an indication of a “rotating dipole.” between the fult topographies matrix and the signal subspace
estimate.
If the » topographies comprise; single-dipolar topogra-
IV. R-MUSIC phies and-, 2-dipolar topographies, then R-MUSIC will first
Problems with the use of MUSIC arise when there amxtract the; single dipolar models. At thé+ +1)th iteration,
errors in the estimate of the signal subspace and the subspaeewill find no single dipole location that correlates well with
correlation is computed at only a finite set of grid points. Thilne subspace. We then increase the number of dipole elements
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per topography to two. We must now search simultaneously 4) For each set of grid pointd;, form the grid model

for two dipole locations, such that
)= subcorl{ [}1(”1), G(p):|, és}

fer, ca, o

is maximized for the subspace correlation,, wherep =

{rq1, rq2} comprises two dipoles. If the combinatorics are not 6)

impractical, we can exhaustively form all pairs on our grid
and compute maximum subspace correlations for each pair.
The alternative is to begin a two-dipole nonlinear search with
random initialization points to maximize this correlation (cf.
[9]). This low-order dipole search can be easily performed
using standard minimization methods.
We proceed in this manner to build the remaining 2-

dipolar topographies. As each pair of dipoles is found to max-

imize the appropriate subspace correlation, the corresponding 8)

pair of dipole orientations may be readily obtained from
subcor{ G(p), ®.}, as described in the Appendix. Extensions
to more dipoles per IT are straightforward, although the

complexity of the search obviously increases. In any event, 9

the complexity of the search will always remain less than
or equal to the least-squares search required for finding all
dipoles simultaneously.

B. Algorithm

To summarize, we assume that our forward model has been
corrupted by additive noise, and that this noise is zero mean
with a known spatial covariance matw¥I. We decompos#’
or FF" and select the rank of the signal subspace to form
®,, which is our estimate of a set of vectors that span the

(37) 5)

M; = [A, G()\,)], i.e., concatenate the set of grid point
models to the present extracted model.

Calculate the set of subspace correlations,
{e1, ca, --- } = subcor{ M;, .}, using the algorithm
described in the Appendix.

Find the maximum over all sets of grid poims for
Cindex, €.0., for index= 2, find the maximumsecond
subspace correlation.

7) Optionally, if the set of grid point§);} is not particu-

larly dense or complete, then use a nonlinear optimiza-
tion method (e.g., Nelder—Meade simplex) to maximize
Cindex, D€QINNING the optimization at the best If the

grid is dense and our sets in Step 2) complete, this
step may not be necessary.

Is the correlation at the location of the maximum “suf-
ficient,” i.e., does;,ex indicate a good correlation? If
the correlation is adequate, proceed to Step 11). If it is
not, proceed to Step 9).

) [Insufficient correlation in Step 8)] We have two sit-

uations to consider. We may have overspecified the
true rank of the signal subspace, in which case we are
now attempting to fit a topography into a noise-only
subspace component. We can test for this condition by
forming the projection operatd? ; = AA" (where At

is the pseudoinvers§l2]) from the existing estimated
model, then forming the residudf,., = ¥ — P F.
Inspection and testing of the residual should reveal
whether or not we believe a signal is still present. If
we believe the residual is simply “noise,” break this
loop. Otherwise, proceed to Step 10).

signal subspace. If the rank is uncertain, we should err towardlo) (Signal still apparent in the residual) Increase the

overspecifying the signal subspace rank. If we overselect the
rank, the additional subspace vectors should span an arbitrary
subspace of the noise-only subspace, and the probability that

these vectors correlate with our model is small. However, asj1)

the overspecification of the signal subspace increases, so does
the probability that we may inadvertently include a noise-only
subspace that correlates with our models, so some prudence
is called for in rank selection. We demonstrate examples of
overselection of the subspace in Section V.

We design a sufficiently dense grid in our volume of interest,
and at each grid poini; we form the head model for the
single-dipole gain matriG(l;). We initialize the topography
complexity as “1-dipolar topography,” i.e., each topography
comprises a single dipole. We then proceed as follows:

1) Forindexfrom 1 to ranks:

2) Let A = [a1, -+, a(index—1)] b€ the model extracted
as of the previous IoopZ( is a null matrix for the first
loop).

3) Form sets of grid points\;, where for a 1-dipolar
topography each set consists of the location of a single
grid pointl;. For a 2-dipolar topography; contains
the locations of pairs of grid points, and so on for
higher order dipolar topographies. If the combinatorics
make it impractical to consider all possible combina-
tions of grid points, choose a random subset of the
possible combinations.

complexity of the topography (e.g., from one to two
dipolar) and return to Step 3) without increasing the
loop index

[Good correlation in Step 8)] We have found the
best set of locationspingex Of the next indepen-
dent topography, with corresponding gain matrix
Gindex(Pindex)- We need the best-fitting orientation.
Calculate the principal orientation vectof; (see
the Appendix) from subcofGindex(Pindex), <i>5},
normalizeit; e = %1/||21||, and form the topography
VECtOr Gindex = Gindex(findex ) Bindex-

12) Increment thendex and loop to Step 1) for the next

independent topography.

In Step 8), we have used a minimum correlation
of 95%. In [14], we discussed some of the means for
determining if a MUSIC peak represents “adequate” or
“sufficient” correlation. Our recommendation of 95%
reflects the empiricism that a “good” solution should
generate a topography which explains at least 90% (the
square of the correlation, i.e., the “R-squared” statistic)
of the variance of the topography identified in the
data. If we overselect the rank of the signal subspace,
then we will in general break out of the loops at Step
9), once we have found the true number of sources
and have only noise left in the residual. We will not
address the determination of statistical “sufficiency” of
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Fig. 2. Subspace correlation between an EEG dipolar model and the rank five
Fig. 1. The upper plot is the overlay of the response of all 255 EEG senssignal subspace extracted from the data. The correlations were calculated in the
to the simulated three dipolar sources. The sources were given independent, 7-cm plane on a 1-mm grid. Each grid point was then scaled in intensity
overlapping time series. White Gaussian noise was added such that the SN¥Rg the color bar on the right-hand side of the figure. All correlations below
was 20 dB, and the percent variance explained by the true solution was 93%686 are scaled as black. The largest correlation of 99.8% is correctly at
of the total variance. [-1, —1, 7] cm, as rounded to the nearest mm; however, this peak and the
other two peaks, as indicated by the arrows, are not readily discernible, either
graphically or computationally.

the model in this paper. See [1] and [26] for discussions

on the testing of the residual for remnant signals. . . . .
o squared Frobenius norm of the noiseless signal matrix, for an
If the grid is dense or we performed Step 7) fo

each topography, we may find the R-MUSIC set o NR of 20 dB. The lower plot of Fig. 1 shows the overlay of

parameters is already a good solution. The R—MUSI@I Sensors for the signal plus noise data.
. L .~ The singular value spectrum was clearly rank three, but
algorithm has maximized a set of subspace correlations

a metric different from the least-squares approach. v\"/‘éé selected rank five to illustrate robustness to rank over-

may refine this solution with a least-squares search:SEIeCt'On' We created a 1-mm grid in the= 7-cm plane

13) Our R-MUSIC search has yielded an estimate of tﬁ;gld calculated the correlation between a single-dipole model
full spatial topographies gain matrik = [ai, -, ar and the signal subspace. Fig. 2 displays these correlations as

which is a function of the estimated full set of dipolean image whose intensitie_s are proportional t_o the primary
locations 5 and orientations. Beginning with these correlationc;. We have def_lned the gray scale |n.F|g. 2 such
parameters, initialize a nonlinear search using the cdgft the subspace correlation must exceed 95% in order to be
functions (24) or (25). visible. In Fig. 3, we have replotted the same data, but in this
Step 13) represents an increase in the complexity in {fase we plot/ (/1 — i) in ord_er.to graphlcally mte_nsﬁy the
nonlinear search over that of R-MUSIC, at possibly dimirgPpearance of t_he peaks. This magehls tf;e_ orlgln_al MUSIC
ishing returns in terms of improvement in the solution. Notg"2! proposeq n [12]' The meas 1=c 1S equwaler.)t.
the correlation with the noise-only subspace, the original

that each iteration of the nonlinear search must now adjust IIIQe )
! ! ! . W adu roposal by Schmidt [19].

pargmeters of all of the dipoles, not just a single topograpRyThe largest subspace correlation of 99.8% is easily found at
as in R-MUSIC.
[-1, -1, 7] cm, as rounded to the nearest mm. The peak at [1,
1, 7] is apparent in Fig. 3, but the peak at [0, 0, 7] is obscured
V. COMPUTER SIMULATIONS in both figures (see caption). Graphically or computationally
We present two simulations to illustrate some of the featurégclaring the location of these other two peaks is not obvious
of our proposed IT model and the R-MUSIC algorithm. Invithout subjective interpretation by the observer.
the first simulation, we arranged 255 EEG sensors about théVe generated the forward field for this first dipole, then
upper region of an 8.8-cm single-shell sphere, with a nomirigiscanned the subspace correlation on the same grid with
spacing between sensors of 1 cm. For illustrative purposes, the combined model. Fig. 4 displays tlcondsubspace
arranged three dipolar sources in the same plane,7 cm, correlation; in this and subsequent figures, we will resume
and the three sources were given independent, overlappjgtting the correlation value directly, rather than the inverted
time courses. The overlay of the responses of all sensongtric. We can now more clearly see the peaks corresponding
is given in the upper plot of Fig. 1. We then added white the two remaining sources, and the first source has been
Gaussian noise to all data points, scaled such that the squareppressed. The maximum peak of this image at 99.7% is
Frobenius norm of the noise matrix was one-tenth that of tleasily located at [1, 1, 7]. We then generated the forward field
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Fig. 3. Rather than plot each pixel as a scaled version of a correlation va 3; 15 i 05 i 05 - i 5 2

as in Fig. 2, here we plat/(y/1 — ¢%). This image metric is equivalent to

the MUSIC metric discussed in [12], [19]. We see two of the three peaksg. 5. We generated the forward fields for the first two dipolar locations and
rather clearly, but the central peak is somewhat obscured, since its graphigsicatenated that set with the field generated by each point in the grid. We then
"intensity” is about 75% of the intensity of the other two peaks. Althougke-ran the subspace correlations, then imagedhe subspace correlation.

the peaks are better defined than in Fig. 2, interpretation of the intensitie remaining source solution is now easily observed at [0, 0, 7], with a
scale is now ambiguous, and the user must still "peak pick” graphically gérrelation of 99.6%. The percent variance explained by the combined three
algorithmically in three dimensions. Subsequent figures resume the correlaigoles was 91%.

scaling of Fig. 2.

Visual examination of the residual at this point indicated no
Za7 0 om dioe Anghs B remaining signal, and subspace correlations of multiple-dipole
models yielded no substantial correlations.
The second simulation was designed to demonstrate the
HH localization of a “rotating” dipole and a pair of synchronous
g dipoles, as well as to illustrate the use of a directed search
. algorithm to refine these locations. In this simulation, we
1 i arranged 240 MEG planar gradiometer sensors about the upper
! . : hemisphere, with a nominal spacing of about 2 cm and a
I HHE baseline separation of 1 cm. A “rotating” dipole was located at
1 Siiiis [0, 0, 7] cm, and a pair of dipoles with synchronous activation
' was located atf2, —2, 7] and [2, 2, 7] cm. We then created
a 1.5-mm grid in thez = 6.5-cm plane, i.e., in a plane
displaced from the true source plane, and the gridding was
slightly coarser than the first simulation. The noise level was
again set to 20 dB. The true rank of the signal subspace was
three, with the rotating dipole comprising two single-dipolar
topographies, and the third topography comprising a 2-dipolar
2 ! o5 . oo 1 '3 2 topography. Fig. 6 displays the overlay of the noiseless and
Noisy Sensor responses.
Fig. 4. The forward field from the first dipolar solution was formed and V€ again overselected the rank of the signal subspace to
concatenated with the forward field generated by each point on this grid. The five, then scanned the one-dipole model against the signal

subspace correlations were again computed between this combined modelgn ; 0 ;
the signal subspace. Tlsecondsubspace correlation is displayed here as aﬁ’hﬂspace' We found a smgle gOOd peak at 99.3%, as dlsplayed

image. The original peak has been suppressed, and we more clearly seelfvEig. 7. Note the absence of any other peaks; the remaining
peaks in this image. The maximum correlation in this images is found at [fotating” dipolar topography is obscured by this peak, and

1, 7] of 99.7%. the other topography is not a single dipole. The peak observed
_ _ . i i in the grid was at [0.1-0.2, 6.5] cm. We initiated a directed

for this second dipole and appended it to the first dipolegarch from this point to maximize the correlation to 99.8%

forward field. We then rescanned the subspace correlationsegrlo_o, 0.0, 7.0] cm, the correct solution for the single-dipole

the same grid with the combined model. Fig. 5 displays thepography, rounded to the nearest mm.

third subspace correlation, where we now readily observe theAs in the previous example, we then scanned for a second

single remaining peak for the third source, 99.6% at [0, 0, Aipole, observing the second subspace correlation. The maxi-

.

=]
B o=y

n
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Fig. 6. MEG Simulation comprising 240 planar gradiometers with a 1-cn =< T ; 05 0 05 ; T

baseline spaced about 2 cm apart, arranged about the upper region of a 12 > E

sphere. A rotating dipole was located at4, —2, 7] cm, and a pair of . .

dipoles with synchronous activation was located at and [2, 2, 7] cm. THdd: 8. Second subspace correlation between the 1-dipole model and the rank

white Gaussian noise was scaled such that the squared Frobenius norm of¥i§eMEG subspace, using the solution from Fig.7. The peak in this plane

signal was ten times that of the noise (20 dB). The true rank of the sigrt4fS used to initiate a directed search for the maximum second correlation,

subspace was three, but we again overselected it to be five. which was Ioca?ed co_rrectly, again at‘[(_), 0, 7] cm as in Fig.7. We_have, ‘thus,
located a "rotating" dipole. The remaining IT source was not a single dipole

and, thus, not observed in these single-dipole scans.

Z=li & om shoe Angle 1
We then scanned for a third single-dipole solution, but only a
peak of 88.8% was found, and a directed search maximization
only improved this correlation to 88.9%. Thus this third dipole
could only account foK88.9%)? = 79.0% of the variance of
the third topography, and we rejected this third single-dipolar
o : topography solution.

i Since one dipole was inadequate to describe the third
topography, we shifted to our next putative solution, that of
5l two dipoles. Our grid comprised 729 dipole locations, and
f all combinations of two dipoles yielded 265 356 sets. Rather
Era I than exhaustively search all set combinations, we randomly
selected a small subset for a total of about 3000 sets. We
E then concatenated each of these 3000 pairs with the first two-

dipole solutions, calculated the subspace correlation of the
e combined model and observed the third subspace correlation.
The maximum third correlation of 98.4% corresponded to the
e S E—Y B 05 i | 5 pair at [-2, —1.9, 6.5], [1.8, 1.8, 6.5]. We initiated a 2-
dipole directed search from this set and achieved a maximum
Fig. 7. Subspace correlation between the 1-dipole model and the rank feRrrelation of 99.7% at{2.0, —2.0, 7.0], [2.0, 2.0, 7.0] cm,
'\r/:EG SUng’%?e(-)g f?gd?créegk;f ggt?\'/eg/eg L?rtiézegocatign gfa}(heTfﬁitSatiTgngF;Cthie correct solution. In Fig. 9, we plot 2-D cross-slices of this
tscznsr?ggnat :p6.5 cm, but the true soIYJtion lay gbove fhis s;canninpg pIane.'D funCt!On’ holding constant th.e correetplane and the
The peak in this plane was used to initiate a directed search for the maximtiide location of one of the two dipoles. We clearly observe
correlation, which was located correctly at [0, 0, 7] cm, as rounded to thge correlation metric peaking at the correct solution. As in
nearest mm. the first example, visual examination of the residual from
this model revealed that no signal was present, and further

L . - 0
mum correlation in thg 9“9' was aggln high, 99‘2@' “T"Q[l' correlations with multiple-dipole models yielded no substantial
—0.2, 6.5], as shown in Fig. 8. A directed search initiated @brrelations.

this point maximized the second subspace correlation at 99.7%pis relatively simple pair of simulations has illustrated
at [0, 0, 7], the same dipole location as the first solution. TRgyme of the key concepts of the R-MUSIC algorithm and
dipole orientations of the two solutions were nearly orthogonahe IT model. Both simulations used relatively dense grids
[0.94, 0.34, 0] and$0.3, 0.95, 0], indicating we had correctlyof EEG or MEG sensors, such that sensor spacing was
identified the simulated “rotating” dipole at this point. not an issue; see [13] for analysis of the effects of EEG
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contrast, a full nonlinear least-squares would have required
nine parameters. In the second simulation, we performed two
single-dipole searches, followed by a two-dipole search of
six nonlinear parameters. A full nonlinear least-squares search
would have required a 12-parameter search.

LaT 0 cromn phow of Angle ], 1 dpcla

VI. CONCLUSION

In the E/MEG inverse problem, our goal is to estimate a
set of parameters that represent our source. In the multiple-
dipole model, an issue that complicates the least-squares
problem is that it requires a multidimensional search over a
highly nonconvex cost function. Here we have described a
new algorithm, R-MUSIC, which uses subspace correlations
between the model subspace and the data subspace to reduce
the problem to a sequential search. By identifying one source at
a time we reduce the computational complexity of the search.
The search for topographies comprising a few dipoles can then
be performed over the entire source volume, largely avoiding
the local minima problem.

The IT model that was also presented here is a new
framework in which to view the concept of a source. We often
encounter dipolar sources that are effectively fully correlated
in their time courses due to either bisynchronous activation or
strong noise. The IT model allows a straightforward interpre-
tation of these correlated dipoles as a single source topography
comprising multiple dipoles. Combining the R-MUSIC method
with the IT source model keeps the complexity of the parame-
ter search simple relative to more traditional multidimensional
cost functions while bypassing the “peak-picking” problem of
the classical MUSIC algorithm. While determining multiple
peaks in a single parameter case (the common presentation
in much of the array signal processing literature on MUSIC)
Fig. 9. Third subspace correlation of the MEG simulation, computed in a 645 possible, we found the problem confounding in even our
space comprising the synchronous two-dipole topography. Pairs of dipolgignplest case of single-dipolar topographies, where we must

were concatenated to the model identified in the first two topographies, tl - . . - -
the third subspace correlation computed. (a) is a 2-D slice through this ggfgamh Tor peaks m three .dlmensmns. Grgphlcally SearChmg
space, holding fixed the true location of one of the dipoles and the trfler multiple peaks in two-dipolar topographies (a 6-D space)

z = T7-cm value of the second dipole. We observe the correlation peakijg generally not practical.

correctly at [2, 2, 7]. (b) holds fixed this dipole and the same value, and peaks . . .

correctly at the other dipole-{2, —2, 7]. In th|§ paper, we haye used multiple dipoles as our source
model, increasing the independent topography complexity by

and MEG sensor spacing on dipole localization performancMPly increasing the number of synchronous dipoles. The
In both simulations, we overselected the true rank of t& model and R-MUSIC algorithm are readily extended to
signal subspace to illustrate the robustness to such an erfgflude source models that can represent more distributed

we repeated the localization results with the true rank aGdrent activity, as we will address in a future publication.

achieved nearly identical results to those presented here.

In these simulations, as in [12], the subspace scans were APPENDIX
presented as images to highlight the MUSIC peaks; however, SUBSPACE CORRELATION
the R-MUSIC algorithm readily extracts these peaks without

the need for the user to manually observe and select th@sepefinitions and Computation
solutions. A “blind test” simulation study using R-MUSIC
can be found in [11].

@

(b)

.} -2 i 0 1 z 3

From [8], we summarize the definition and method for

In practice, after we have scanned on a discrete grid for a putation of the canonical or "subspace” correlation. Given

of the single- or multiple-dipolar solutions, we always theﬁ 0 matricesA and B, whereA is m x p, andB is m x g, let

initiate a directed search from these points to maximize tflfebe the minimum of the ranks of the two matrices. We wish

correlation. By optimizing the correlation in this manner, we Z?;Ctuhlztie? J:ggg?an{cléfé’dé{_hga}azf;?obcg_”{fl’ B,
bypass some of the concerns of coarse or inadequate gridd?’r\{a. £ ' WS-

In' the fir_st simglation, each of the three d?poles was Iocate_d cr = max max a’b = alb, (38)
with a single-dipole search of three location parameters; in aCA beB
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subject to
[lall =[lbll =1
afa; =0, i=1,---, k-1
b'b;, =0, i=1,---, k—1. (39)
The vectors{a;, ---, @.} and{b, ---, b.} are theprinci-
pal vectorsbetween the subspaces spanneddbgnd B, and
by construction, each set of vectors represents an orthonormal 2-D Plane

basis. Note that > ¢; > ¢ > --- > ¢. > 0. The angledy,

WheI’ECO.S Oh = o, are theprlnC|paI angles,representl'ng the Fig. 10. Geometric interpretation of principal angles. The 2-D plane is spanned
geometric angle betwear). andb;,, or analogouslyg;, is the  py the two columnsA; andA-, of the matrixA. These vectors and the vector
subspace correlatiobetween these two vectors. The steps tass through the coordinate origin. The function sulcérrB} returns the

compute the subspace correlations are as follows [8, p. 58§x_bspace correlationos_(ﬂ_, whered; is theprincipal anglebetween_ the line
and the plane. The principal vectors are and by, which are unit length

1) If A andB are already orthogonal matrices, we redesigectors in the plane and line, respectively.
nate them a#/ 4 andU g and skip to Step 2). Otherwise,
perform a SVD of A, such thatA = U,X,V%. a corresponding best-fitting will yield a better correlation
Similarly decomposeB. Retain only those componentsbetweera andb. The first columns ot/,, andU, area; andb;.
of U4 and Uy that correspond to nonzero singular Similarly, the worst way to linearly combing is a,. = Ax,..
values, i.e., the number of columns B4 and Uz The best fit to this particular is b, = By,., with a correlation
correspond to their ranks, and the other matrices aséonly ¢,.. No otherz will yield a bestfitting % such that the
square, with dimension equal to the ranks. subspace correlation iswer.

2) FormC = UTAUB. If two correlations are identical, for instaneg = c; = 1,

3) If only the correlations are desired, then compute onthen the two corresponding vectats andz. are, themselves,
the singular values of (the extra computation for the arbitrary, but they form a plane such that any linear combina-
singular vectors is not required). Theordered singular tion of the two vectors yields a vector whose corresponding
valuesl > ¢; > ¢ > --- > ¢, > 0 are the subspace correlation isc; = ¢s.
correlations betweert and B.

4) If the principal vectors are also desired, then compuig Geometric Example
the full SVD, C = UCECVE. The r ordered singular
values are extracted from the diagonalbef. Form the
sets of principal vector¥, = U sU- andU, =UgV ¢
for setsA and B, respectively.

The matricesU, and U, are each orthogonal, and th

To give an intuitive geometric insight into these subspace
correlations, consider subcéd, B}, where we define the
columns of a 3x 2 matrix A to represent two vectors that form
a basis for a 2-D plane in a 3-D space. Similarly, let the 3

same subspace dimension, the measyie— ¢ = sin 6, is
called thedistancebetween spaces spanned Ayand B [8].
When the distance is zero, we see tiatand B are parallel

smtJ?spatces. 'g max(;Tym ?i:stancel ?L;n@'f%: 0) Ind!c_?ttis correlation is unity, thenB lies in the plane ofA4, if the
atleast one basis al 1s orthogona or vice versa, 1€ ., relation is zero, thed is perpendicular to the plane, and
maximum subspace correlation ég = 0, then all bases are e arbitrary

orthogonal. We see that minimizing the distance is equwalen]tNext’ consider a second 2-D plane spanned byx@3natrix

to maximizing the minimum subspace correlation betwden B, and again the planes formed by the columns of bbtnd

an\(/jVB. | dil te th ific i B pass through the origin. We find that the first (maximum)
i N mafyAa sc:j ]r;?hl)t/ qo:’gp(t; ?h € spect ICI meatr com subspace correlation of subcpa, B} is always unity, since

na |?ns |(3) ant i at yie ke tese pﬂn;p? vec or;an wo such planes always intersect along a line, namely the line

angles. by construction, we know = Yo TOrSOmMeR, ¢4 g by Az, or By,. The second subspace correlation is the

andg( can b% ?;]mplsyvglinddusmg tg: gieudtﬁmverlseéllopf cosine of the angle between the planes, the angle we intuitively
we have used the 0 decompadetnen the calculation picture when visualizing two intersecting planes.

of X reduces toX = VAEjfUC; similarly, we compute
Y = Vpy;'Ve. _
The best way to linearly combine the columnsfi.e., the C- Subspace Correlations and E/MEG

combination that minimizes the angle of the resulting vector In EEMEG MUSIC processing, we may compute the sub-
with B) is found in the first column ofX = [z, ---, z,] space correlations between a dipole model and the signal
(similarly defineY), a; = Az;, which is best correlated subspace, e.g., subcé€(r,), ®,}. In this case, the vectors
with B when it is arranged a8; = By;. In other words, in X relate to the dipole orientations. By scaling the first
there is no othex: (excepting a scale factor af;) for which orientation to unity,u; = zi/||z1||, we obtain the unit-

of the angle between the line and the plane. We can directly
form a; = Az, which is the unit length vector in the plane
of A closest toB. We illustrate this case in Fig. 10. If the
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dipole orientation that best correlates the dipolar source [a$]
74 With the signal subspace. For a two-dipolar topography,
subcor{[G(r,1), G(r,2)], s}, thenw, represents the con-
catenation of the two dipole orientations, = [¢7, 2 ], such [20]
that the two-dipolar topography

[G(rq), Glre2)lur = G(ry1)q, + G(ry2)g,  (40)

[21]

best correlates with the signal subspace. Consistent with our
IT model description, we note that the dipole orientatigns [22]
and g, in (40) are themselves not unit vectors, but that their

concatenation into the vectay; is constrained to unity norm. [23]
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