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|dentification of Human Joint Mechanical
Properties from Single Trial Data

Yangming Xu,Member, IEEE and John M. Hollerbach,Fellow, IEEE

Abstract—A method is presented for estimating the time- the possibility of identifying the time-varying human joint
varying compliance parameters of the elbow joint from a single mechanical properties under natural movement.
movement. The method separates by frequency the perturbed  §nha of the central issues in studying the mechanical prop-

from the voluntary response, then determines the parameters by . f the h oints duri t usi
exponentially weighted least squares. The tracking performance eries or thé human arm joints auring movement using non-

of the method is established by simulation and by a calibrated iNnvasive methods is to separate the voluntary inputs and
mechanical joint. Experimental results are presented on time- movements from the perturbation inputs and perturbed joint

varying posture and slow movement. movements. Even though electromyograms are related to the
Index Terms—Arm movements, frequency separation, human V0|untary aCtionS, they are too nOisy to prOVide reliable infor-
joint dynamics, perturbation analysis, system identification. mation of the voluntary movement. In essence, the voluntary

movement is not measurable.
Ensemble methods are promising [3], [14] because the
results at any instant of time are supported by more data
DENTIFYING the mechanical properties of the humapoints. The methods align many trials with similar movement
neuromusculoskeleton system under normal conditions gfofile based on a feature in the movement profile to calculate
challenging because of the time-varying nature of the systegh average movement. The perturbed movement is obtained
nonlinearities, unsensed voluntary inputs, and adaptation§f subtracting the average movement from the movement
the central nervous system. Past approaches have reliednféasurement. Theoretically, they can track an instantaneous
apparatuses using electrical or hydraulic actuators that cefrange of the system dynamics. One problem is intertrial
strain natural human joint movements and limit the resul{griation; since the perturbation amplitude is small, the error
under these conditions. However, the constraint also alloyge to the intertrial variation is often on the same order as the
time-invariant methods to be used because the human joinpisiturbation. Furthermore, the intertrial variation may neither
forced to operate under some fixed operating condition. Thg white nor Gaussian, and may even have nonzero mean. In
time-invariant methods include frequency methods (transfefder to have a stereotyped motion, most of the movements
function), pulse response methods, and a sinusoidals metfigfle to be fast. These methods fail for time-varying posture
[7]-[9], [11]. The time-invariant results obtained are valid onlydentification because there exists no features at all across
for a fixed operating point, and the transient properties of tiigferent trials, therefore, the alignment cannot be done.
human joint cannot be obtained with these methods directly. |n this paper, we propose a method for slow time-varying
More recently, a static nonlinear, time-invariant methogosture and slow motion based on a single trial that is capable
has been applled to identify the different contributions to ti'@ identifying the time-varying ioint mechanical properties
total joint mechanical properties of the reflex versus intrinsighd does not have the intertrial variation issue. The method
components [15] by using random position perturbations wifeparates the perturbed and voluntary responses in frequency,
a hydraulic apparatus. Again, the approach takes advantag@®d then applies exponentially weighted least squares. It is
the constraints of the apparatus on the human joint to obtaslled the frequency separation and exponentially weighted
tonic contractions. least squares (FSEWLS) method. The method requires only a
To overcome the motion limitations of past apparatuses, Wmgle-movement trial data. In the following sections, we will
have developed nonrestrictive one-dimensional (1-D) and tWirst describe the theory for different measurement conditions
dimensional (2-D) airjet systems capable of applying randoghd propose the frequency separation, then analyze the error

force perturbations to the human joints without any mechanicghd limitations, and finally demonstrate the results by applying
constraints [18], [21]. The perturbations can be continuouslyto data from simulation and experiments.

applied to the human joints without impairing the natural
movement. This significant advance in apparatuses brings

I. INTRODUCTION
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wherel is the moment of inertia of the forearihjs the actual Activation Input
joint angle, 7,,,(6, 8, u) is the total torque from the muscles
and passive tissue,is the muscle input, is the perturbation

torque, andr,(#) is the gravity induced torque,,, andr, are Voluntary Compliance
- g\’ ‘ . g Movement Parameters
nonlinear and time varying. Becausg, is not known, we — r Additive
linearize it around an unperturbed operating pofht, ) l Noise
.. . Torque Angular
I(t)66(t) + B(t)60(t) + K(t)66(t) = 7p(t) (2) Perturbation  [Complignée| " OS!tio" Output
Dynafhics IEI

where st = 6 — 6, bu = u — u,, B(t) = —87,,/06, and
K(t) = _a(Tm_Tﬂ)/ae- We have assumed a random externdlig- 1. Block diagram of the simulation procedure for identification of the
perturbation that is not tracked by voluntary effort. ThaMevawing elbow joint dynamics in posture and movement.
compliance parameteigt), B(t), K(t) reflect the linearized

joint mechanical properties at an unperturbed operating poiakponentially weighted least squares method [6], [12], [13].
the validity of this linearization is tested in experiments. W&he continuous domain equations are

Measure,eqs(t) = 0,(t) + 86(t) and meas(t) = 70(f) +

7»(t), where 7, is the force sensor signal induced by the O(t) = P(t)®(2) (y(t) - ‘I’T(t)é(t))
voluntary movement. P(t) = — P(H)®)®T () P(t) + \P(t) (6)
B. Removing Voluntary Movement where X is a weighting factor. The estimation error is related

to the parameter variation rate and measurement noise [16].
In a discrete time domain implementation of (6) as in
], [12], and [13], we found ill conditioning in transforming

An effective way to remové,, andr, from the measure-
ments is to make the voluntary movement and the perturbatig
A

separable in frequency. The movement tasks considered in . .
om discrete to continuous parameters because of the small

paper are below 1 Hz, while the perturbation has enough power " = . ; .
: . . : - sampling period. Consequently, we implement (6) in the

at high frequencies. Using a zero-phase-shift acausal lingéar _: ; : .
. ! . continuous time domain, by using a fourth-order Runge—Kutta
high-pass filterH(s), we can extract the perturbation force

and the perturbed response from the measurements integration method with the step size equal to the sam-
pling period. The points between the steps required by the

6§(t) = H(8)0pmeas(t) = H(s)[0,(t) + 56(2)] ~ H(s)66(t) Runge—Kutta method are obtained through linear interpolation.
SN _ "y The continuous model gives accurate results especially at small
7(8) = H(s)Tmeas(t) = H(s)lra(t) + r(B)] ~ H{s)r(?). (3) sampling periods. The initial values for parameter estimates
Appendix B gives a qualitative error analysis due to high-pa$¥0) and gain matrix>(0) in (6) are calculated using standard
filtering in respect to (2). A quantitative analysis is given ifeast squares.

the simulation and calibration experiment later.

Ill. SIMULATION STUDY
C. Estimating Derivatives

The derivatives of the position are not directly measured fi Simulation Method
the experiment. The differentiation of position data to estimate We first tested the method described in Section Il with data
its derivatives is sensitive to noise in the position measurgenerated by simulating the changes in the human elbow joint
ments and numerical error. One solution to this problem d@ynamics from our previous studies [3], [20], which include
to use a linear low-pass filtek(s) to process the input andthe stiffness and damping changes in posture and movement.
output measurements assuming the filter bandwidth is muely. 1 shows a block diagram of the simulation procedure.

higher than the variation of the parameters The linearized compliance dynamics are similar to (2)
80,.(t) = L(s)60(t), 60,(t) = sL(s)86(t) 16+ B0+ K0 =7, + 7, (7)
65L(t) :32L(3)5§(t), 7L(t) = L(s)7(t). (4) where 7, is the joint torque due to the voluntary action,

6 = (6, + 68). On the basis of previous quasitime-invariant
We let L(s) = s""?a™ /(s + a)™, where the filter constant  studies [3], [4], [11], [20], [22], the voluntary movement and
determines the filter response time amds the order of the stiffness K are assumed to vary sinusoidally with the same
filter. Appendix A shows the error due to low-pass filtering.frequency and with different amplitudes 0.5 rad and+15
Nm/rad plus a mean of 40 Nm/rad, the inerfias assumed
D. Extracting Parameters to be time-invariant0.06 Nms2/rad, and the damping is
assumed to vary similar to the stiffness while the damping
ratio is assumed to be constant [9].
G(t) = 7 (¢) O6(¢) (5) The force perturbation input is a pseudorandom binary force
- . R sequence (PRBS) with an amplitude of about 4 Nm, the same
where §(t) = 7.,(T), ®(t) = [6601(¢) 66.(t) 66r.(t)] and as the one used in the experiments. The autocorrelation is small
O(t) = [I(t) B(t) K(t)|T. We extract®(t) using the (below 10%) beyond 10-ms lag (ten sampling periods), which

We cast (2) into the regression form



XU AND HOLLERBACH: IDENTIFICATION OF HUMAN JOINT MECHANICAL PROPERTIES FROM SINGLE TRIAL DATA 1053

indicates that it is essentially an uncorrelated random process No Derivative Measurement in Posture
in the 100-Hz frequency bandwidth. The power spectrum of 100k & § 'y A A A
the PRBS has useful power up to 50 Hz. The input and output 8o @ P
data are filtered by a low-pass filter with a cutoff frequencyc 60
of 150 Hz, which mimics the anti-aliasing filter used in the~ 4 ®
experiment. 20
. 0
We evaluate the accuracy of the estimated parameters by (a)o 05 1 15 2 25 3

calculating the percentage of variance accounted for (VAF) of

the mean (VAFM) and variance (VAFV), which are defined as No Derivative Measurement in_Movement

00 b§ AR A A &
80 ‘.O

I STIN\2
VAFM = |1 = ) —9®)"| | 100% @ < ® e A Prediction
U(t)2 > 40 e B Lowest mean
L © 20 @ Lowest variance
- L
- P 2 0
/ (g(t) —a4(t)" dt 0 05 1 15 2 25 3
VAFV = [1— 0 - dt| -100%  (9) (b) Frequency (Hz)
/ 72(¢t) Fig. 2. Simulation: VAF of the output prediction, and the VAFM and VAFV
- 0 of the stiffnessiy” versus the frequency of the parameter variation for posture

and movement without derivative measurement.

wherey(t) is the mean of,(t) over time,y(t) is (y(t) —y(t)),
and §(t) is (§(*) — §(t)). VAFM and VAFV indicate how . The VAF of the output prediction error is always high,
well the estimator predicts the mean and variation of the (jose to 100% for all of the frequencies tested. This
estimated signal. In the experiment only the VAFM and VAFV' jmplies that the output prediction error is only a nec-
of the output can be calculated. Both VAFM and VAFV will - essary condition for evaluating the parameter tracking
be meaningless if their denominators are close to zero. For performance.

example, the inertia in the following simulation is assumed to
be constanty(¢) = 0. We suggest that when the denominato\;a
is less than one, we should set it to one. When a signald
zero mean, (9) is the same as the VAF definition in [14].
require both VAFM and VAFV over 75% [3], [14], for which
the relative prediction error variance is less than one-third.

Under our simulation conditions, the maximum parameter
riation should not be more than 0.5 Hz as indicated in
Fg. 2(b). The ratio of the parameter variation frequency to
fe filter cutoff frequency in (4) is about 6.4. Raising the
filter cutoff frequency will improve the parameter tracking
frequency, provided that the perturbation frequency and power
are also increased to keep the noise-to-signal ratio (NSR
B. Simulation Results variance of noise/variance of signal) low.

In all of the simulations, the weighting factor in (6) is The robustness of the FSEWLS method in the presence of

20s~1. )\ determines the width of the weighting window inOutput measurement noise is examined by simulating experi-
which the estimates are calculated as (6) indicates. We ch83@hts with a variety of NSR without derivative measurements
the window width five times smaller than the fast human ar@d in the presence of voluntary movement. Fig. 3 shows the
movement, 4 Hz [2], [3]. A 10%—-15% variation ofdid not Variation of the VAF versus NSR. In general, the VAF of the

change the following simulated results much in the frequen@&ytput prediction and the parameter estimate decreases with
range of interest. the NSR. Note that the VAF of the parametEr decreases
The resu'ts for the FSEWLS tracking performance aﬂ:@ster than that Of the Output prediction, Wh|Ch indicates that
summarized in Fig. 2 for posture and movement withodfie output prediction error is not a sufficient condition for
derivative measurements. For the low-pass filter in (4), waeasuring the method performance to noise. When NSR = 0.2,
use a third_order |Ow_pass f||ter W|th a Cutoff frequency cﬂhe VARV drOpS close to 80% for the simulated conditions.
3.2 Hz, which is chosen based on the requirement of eight
times reduction of the noise in the derivatives, assuming
there is 5% noise over the signal standard deviation in the IV. CALIBRATION EXPERIMENTS
position measurement. For the high-pass filtering in (3), we The simulation study in the previous section is intended to
use a fourth-order Chebyshev filter with a cutoff frequencind the conditions associated with the method under which
of 1 Hz. The lowest VAFM and VAFV are associated withhe experiments must be controlled. The key conditions in
the stiffnessk’, and are shown in Fig. 2 as the solid squaresur methods are: 1) the parameter variation must be less
and solid circles. In all of the cases, the error is negative, i.ehan 0.5 Hz; 2) NSR must be less than 20%; and 3) the
the estimated parameter is smaller than the actual one. If f&turbation model structure must be linear. Since the nature
acceptable values for VAFM and VAFV are 80%, from Fig. 2of the time-varying behavior of the neuromuscular system
we have the following observations. is still unknown, it is impossible to simulate it with great
* The FSEWLS tracking performance is better for postuiertainty. However, the magnitude of the changes and the
(1.5 Hz) than for movement (0.5) because the lattéime over which they occurred may be controlled to satisfy
employs a high-pass filter (see Appendix B). the conditions above. Consequently, we should be able to
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120 VAF of Prediction airjet_p_grturbation device,.a.l motio_n tracking devicg,. and a data
100 b ® ° ° ee o o acqwsmop system. The airjet dgwce [20] ha}g an airjet ac_tuator,
L 8 an extension bar, and a cuff (Fig. 4). The airjet actuator is cur-
g 60 rently a 1-D perturbation device, capable of producibgyvV
‘2‘8 forces from the reaction force of compressed air. The direction
0 of the airflow could be switched 180n less than 5 ms by
(a) 0 0.05 0.1 0.15 02 0.25 03 usinga Co_anda valve. The extension bar aIIO\_Ns_ the airjet tq be
VAF of Parameter Mean mounted d|st_ally to the _hand so_that_ the forc_e isin the d|re_ct|on
120 of elbow flexion/extension and is aligned with the long axis of

60 the arm to avoid pronation/supination torques. The extension

100 - B W a8 &g ‘

50 ¢

z ol O | bar is supported by an aluminum cuff. The left wrist of each
S o ¢ B subject is custom fitted with a molded plastic cuff to which
20 B o« the aluminum cuff can be tightly clamped. The aluminum
0 . : . )
0)0 0.05 o1 015 02 0.05 03 _cuff ca_n_be tightened until m_ovement from skin comph_ance
(b) is negligible for the perturbation used (NSRL%). A strain
120 VAF of Parameter Variance gauge force sensor is mounted between the airjet actuator and
100 B 8 8 ) ee e e| the extension bar. _The sensor has a resonance at 160 _H_z.
> 80 B g - The motion tracking device, the Optotrak (Northern Digital
L<>:" 60 : [ - Inc., Waterloo, Ont., Canada), uses three LCD cameras to track
‘2‘8 By infrared light-emitting diodes (IRED’s) and produces three-
0 dimensional position data of the IRED’s with an accuracy of
0 0.05 ot 045 0.2 0.25 03 0.05 mm. All of our experiments were in a vertical plane,
(c) Noise-to-Signal Ratio

which is aligned with the Optotrak’s—y internal plane. We
\F/E#\?- fSimulati?n! €Y VAFﬂ?f EISROU?J#]I pretdiCiion, (b) VAF'V't, and (c)used one IRED in the experiments, with a sampling rate of

of parameters versus the NS of the oulput measurement noise. - 500 Hz. The Optotrak data is later resampled digitally to 1000
Hz to match the airjet force sampling rate.

A single Joint Arm The PRBS signal was generated digitally in real-time

Adjustable
! Djum:)e:r and fed to the airjet through a 12-bit digital-to-analog
i | ?§‘§/ ; converter (DAC) at 100 Hz. The airjet force signal was
] first amplified by a signal conditioner 2B31J from Analog

o] ptolrak’ v

Devices, then low-pass filtered by a linear phase analog filter
b +  DOWwW848 from Frequency Devices with a cutoff frequency
Cuff P hC . of 150 Hz before digitization by a 12-bit analog-to-digital
Lo .+ converter (ADC). The pure time delay introduced by the
low-pass filter was corrected later, digitally. The sampling
frequency was 1000 Hz. The synchronization between the
Optotrak and the real-time data acquisition system was made
at the beginning of the data collection through an external

Q triggering mechanism provided by the Optotrak.

.
\ Force
1 Sensor
.

Flexible

; tube 2 Air /L\<I[>){D(/,\g(ym"< ] g . )
T ejetbeviee HUS Adiper i B. Calibration Results
———————————— Condor System The model of the artificial arm is given by (7) with
Fig. 4. Apparatus: an airjet system and a single joint, passive arm used for = 0. The parameter values in the _mOdel are Ca_l'
calibration. culated based on the geometry, material, and gravity

properties:I = 0.0687 Nmsz/rad, Buin = 1.13 Nms/rad,
obtain an approximate model with reasonable confidence. Foax = 10.1 Nms/rad, andi’ = 15.4 Nm/rad.

demonstrate it, we did calibration experiments. The airjet devipe is mognted at the tip of the arm simi_lar
to the human wrist mounting. Fig. 5 shows the time-varying
A. Apparatus results, where the damping was varied during the experimental

The calibration setup is shown in Fig. 4. We built a well caltrial. Note that the inertid and stiffnessi’ do not vary and
ibrated single joint, mechanical arm which consists of an arfiave estimation errors less than 5%, and the output VAF is
two linear springs, and ajoint made of a damper (K|NETROE|SO 99%. The results show that the apparatus as well as the
KD-2a). The damper has a shaft-mounted vane rotating #gethod work as expected.
tween fixed vanes in the body. The motion is restricted to
+45°. The springs are high precision with constant stiffness. _

The airjet system [21] is a complete dynamical measurify Subjects
system, capable of mechanical perturbation generation, motiorFive healthy right-handed subjects (four males, one female),
tracking, and data acquisition. It consists of three parts: aanging in age from 22 to 26 years, were examined. Because

V. HUMAN SUBJECT EXPERIMENTS
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5 015 Calibration B. Posture Experiments

% The postural experiments were intended to examine the

% 01 change of the mechanical properties for the elbow joint for

Z 05 different efforts of maintaining the posture and to test the

£ FSEWLS method against existing methods. A different effort

2 o is an indication of a different co-contraction, and was realized
(a) 0 05 ! 15 2 25 3 33 4 by instructing a subject to use minimum, medium and maxi-

. mum effort in maintaining his/her forearm posture against the

E 2 perturbations. Furthermore, we tested the method’s continuous

é’ 15 JJJ\ tracking capability by asking subjects to vary the effort during

< a trial.

g 0.5 In all of our experiments, the torque perturbation is less

£ 0 than 5% of the normal elbow torque range (26 Nm) and the

® ®o o5 1 15 2 25 3 35 4 mMmovementis about 5% of the elbow joint movement range

(100°). The small force perturbation is a prerequisite toward

S 20 the linear identification of a nonlinear biological system.

g T 1) Time-Invariant Posture and Linearity TesBecause the

g 0 results are consistent with previous findings, we merely state

8 them here. For all of the experiments, the VAF of the output

g ° prediction is over 95%

w

0 05 ] 5 » o5 3 a5 . e The inertia for each subject is approximately constant
Time (s) (less than 1% change) over time and does not vary with
different effort. Across subjects, it may vary by 80%.

e The damping drifts slowly over time and increases with
effort for all subjects. Across subjects, it may vary by
100%.

» The stiffness drifts over time and increases with the effort,
similar to that of the damping. Across subjects it can vary
by ten times.

« The damping ratio drifts as well and does not vary much
across effort.

In order to test the linearity of the elbow joint under
small perturbation, on one of the subjects (RSG) a set of the
experiments was conducted with lower air pressure (45 psi), so
that the force perturbation amplitude was reduced to Ba\f)(
There is little difference in terms of the profiles for all of the
parameters. The difference of the mean value of the parameters
is within 5%, which may well be due to intertrial variation.
The VAF's for both cases are above 95%. This indicates the
validity of the linearization under the experimental conditions.

2) Time-Varying Posture’A moving target was presented
to the subject during each trial. When the target was moving
forward, the subject gradually increased the effort, and vice
versa. Fig. 7 shows the measurements of the elbow joint angles
and perturbation torques. The maximum joint angle is about

the results are similar across subjects, we only show the res@@58 rad (3.32), and the maximum perturbation torque to
from two subjects. However, the experimental conclusiofd€ elbow joint is about 2.4 Nm. Fig. 8 shows the results of
are drawn based on the observation from all five subjectdne-varying posture. The VAF for all of the experiments is
Experiments were done with a subject’s left arm. The subje@Yer 95%. From Fig. 8, we have the following observations.

Fig. 5. Calibration: linear time-varying experiment. The damping was varied
during the experiment.

Flexibbe Adr Hoss

~Adrjet Actantor

Uhpiotrak ™
Marker

Fig. 6. The airjet actuator attached to a subject’s wrist.

sat in a chair and rested his elbow on a piece of clay on thee
bench. The airjet actuator was attached to the subject’'s wrist
(Fig. 6). The elbow length was estimated by using both caliber
measurement and the Optotrak. The results differ by less than
2%. The forearm was free to move in a vertical plane passing
through the upper arm. The subject’'s palm was turned 90
away from his shoulder. The wrist was immobilized through
a custom fitted plastic cuff.

The inertia for each subject is approximately constant
with time, and the differences across subjects are similar
to those in the time-invariant posture experiments.

The stiffness and damping vary dramatically with time
and have the same variation pattern for all of the subjects.
The values of the peaks and valleys are comparable to
those from the time-invariant postural experiments with
the minimum and maximum efforts.
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experiment (subject PAB). €
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Fig. 9. Results from movement experiments with minimum and maximum
efforts from subject PAB: (a) inertial, (b) damping, (c) stiffness, (d) damping
ratio parameters in minimum effort tracking task, and (e) shows the actual
movement trajectories.

Stiffness (Nm/rad)

C. Movement Experiments

The voluntary movement in the experiments is slow so
that the mechanical properties also change slowly. In the

Damping Ratio

15

20

25

30

35

40

45

Time (s) | ®— PAB

iy LG |

experiments, we presented a slow-moving target to the subject.
The subject was instructed to track the target with a reasonable
accuracy. The result from subject PAB is shown in Fig. 9. The

inertia for minimum and maximum efforts differs by less than
Fig. 8. Results from postural experiment (subjects PAB and LG): (a) inertia%. The target trajectory is given in Fig. 9(e). Each movement
(b) damping, (c) stiffness, and (d) damping ratio parameters with time—varyilrg]ase (4 s) is followed by a postural phase (3 s). In each trial,
effort. there are seven posture and six movement phases in 45 s.
The maximum movement speed is°1§ and the movement
« The damping ratio for every subject drifts with time, bufrequency is about 0.071 Hz. If we do not consider the postural
does not have a clear pattern. The mean value is betwgdrases, the frequency of 0.125 Hz is well below the 0.5-Hz
0.1 and 0.5, and similar to that in the time-invarianboundary frequency of the FSEWLS method. The VAF for all
postural experiments. of the trials is above 95%.
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1) Inertia: One of the major goals in this study has been to investigate
« The inertia is approximately constant with a variation dghe limitations of the FSEWLS method and to establish the

less than 5%. applicable boundaries under the experimental conditions. We
2) Damping: discovered that the output VAF cannot be used exclusively to

ajrudge how good the parameter estimates are. Theoretical anal-

« At a constant effort, the damping drifts without a clear .7~ . ) . . X
. ... ysis, simulation, and experimental calibration are necessary to
correlation to the movement. The mean and varlatlciﬁ

maani X : L . |r{d the application boundaries for accurate estimates.
gnitude are in the same range as in the time-invarian
postural experiments. ) .
« The damping variation with effort is similar to thatA- Physiological Results
in the time-invariant posture experiments. At the maxi- The primary objective of the experimental study was to
mum effort, the variation is slightly smaller than that irestablish the viability of the FSEWLS method. Nevertheless,
posture. the results are of considerable physiological interest. The time
» The damping with the maximum effort is higher than thagourse of the dynamic change of the elbow joint in posture has
with the minimum effort. The mean value is about 0.hot been reported previously. Previous results are the average
Nms/rad higher. However, in the varying effort posturgalues over a certain period of time.
experiment (Fig. 8), the damping varies by around 1.7. We discovered that at a fixed effort the stiffness, damping
 Across subjects, the variation is also similar to that in thend damping ratio can vary with time while the inertia is
time-invariant posture experiments. constant. The variation of the damping ratio is smaller than
3) Stiffness: that of the stiffness or damping, but is significant. In time-
« The stiffness variation is similar to the damping variatior¥@rying posture, the damping variation with stiffness has been
The stiffness variation is not strongly correlated with théeémonstrated. The damping ratio shows no clear correlation
movement. The stifiness is higher with the maximuriith stiffness or damping even though it is computed from

effort than that with the minimum effort. The mean valudem. This brings up the question of whether the stiffness
differs by about 10 Nm/rad. and damping are controlled independently or the damping

; . ratio is the controlled quantity. In any case, the damping
4) Damping Ratio: . LT ' -
) P g. . e ._ratio is between 0.1 and 0.5, which indicates that the joint
e The damping ratio variation is similar to the dampmgi;S underdamped
var|at|_on as we_II. The mean va_\lue with the MINIMUM*1he yesults from movement are different from previous ones
effort ISa iittle h|gher_than that. W'.th the maximum eﬁortwith the normal or fast movements. The stiffness, damping
opposite to the Qampmg_. 1_'h|s indicates the damping pla¥ﬁd damping ratio are all in the same range as those from
more of & role in the minimum effort case. the postural experiments, much higher than reported before
[3]. Furthermore, their variations over time do not show a
strong correlation with the movement. One reason may be due
VI. DISCUSSION to the slow movements in the current experiments. If both

. . results are accurate, it may indicate that there is a significant
This paper demonstrates that the FSEWLS method 'Sy8crease of the stiffness and damping from very slow to

successful means to identify the slow time-vgrying dynam'?ﬁ)rmal or fast movements. On the other hand, the current

?f thl_e hurr:anﬂr;notorl cotntrol system. T?e key in tgetm?r:h()d{ﬂf},ovement experiments show that there is no sudden change

ho' E|m|na (fa'lt € Vo undatry rest_pontse trzomd raw i ata throu mechanical properties from posture to movement. Flash [5]
Igh-pass fitering and to estimaté the derivatives rOu%'P]_owed, in simulation, that in order to fit the hand trajectory

low-pass filtering. The method has three major advantagg\;e" during normal movements, the joint stiffnesses must be

1) |t_works_on a single tr_lal; 2) it has few restrl_ctlons Oqequal to or higher than those in posture. Further experiments
the input signal; and 3) it has a well-characterized errolo needed to resolve this difference

Under our experimental conditions (small force perturbation,
no derivative measurements, and unknown voluntary actions), ) ) ) )
the technique estimates the time-varying parameters up t&aComparison with Previous Studies
frequency of 0.5 Hz. The method is quite robust to output There are several published articles on time-varying dynam-
noise and has been tested extensively. Because the FSEWs®f the human forearm system, which are all ensemble-based
method is capable of tracking dynamical change in posturagthods. There are no reports on their sensitivity to intertrial
it may be used clinically to do monitoring and to evaluateariations. Soechtingt al. [17] devised a correlation-based
functional electrical stimulation in rehabilitation engineeringmethod to study the changes in human myotactic reflex (dy-
Recent advances in ensemble-based methods have redunzadic relationship between joint angular position and surface
their sensitivity to intertrial variation [19]. However, theyelectromyographic activity). Lacquanigt al. [10] applied
must have fast movement patterns in order to align triathe same method to studying the human elbow compliance
We think that the FSEWLS and robust ensemble methods aduring a change in contraction level of the muscles of the
complement each other, in that the FSEWLS method worksupper arm. The impulse functions were fitted by a second-
posture and slow movement domains while ensemble methadder model to obtain compliance parameters. The inertia
work in fast movement domains. parameter was not estimated based on their experimental data,
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but on anthropometric tables. Our result shows that the iner- Impulse Reponse
tia varies significantly across subjects (100%). Nevertheless®
time-invariant results from our methods agree with theirs 7
qualitatively.

Bennettet al. [3] devised an ensemble parametric method 6
to identify the time-varying compliance of the human elbow 5
joint during normal voluntary movements; the cyclic voluntary
movement frequency was about 1 Hz, ten times faster than the*
movement used here. A linear second-order model was used:
to fit the data. The method does not use correlation functions
and, therefore, does not have many requirements on the input2
perturbation as does Soechting’s. The mean value of stiffness;
was very low €8 Nm/rad), much lower than that from posture
with minimum effort. The stiffness was found lower during ~, 02 04 06 08 ]
movement than that at target points. More recently Bennett Time (s)

[2] showed with pulse perturbation that the stiffness increases
with movement speed. The stiffness level is also below tho,'%'%‘rllo'
in posture.

MacNeil et al. [14] devised an ensemble nonparametric , .
method to study the time-varying dynamics during rapitf the mputtand output signals
voluntar)_/ force change in thg human ankle j(_)ir_ﬂ. They foundﬁL(t) _ / It~ 6(e) de
that during the force ramping, the ankle joint cannot be 0
modeled by a second-order system and the dynamic stiffness /t = o) .

— C
0

0

Simulation: impulse response function from a recursive low-pass

decreased with the mean force, which contradicts the posturglL(t) = 0(c)de +1(t)6(0)
results in [7].

C. Nonlinear Considerations G(L") t t—€)0™(e) de + 1" 1()0(0) + - - - + 1(£)6(0)

)
is assumed to be nonlinear in general and the voluntary actionr, t—e)r(e)de
is not measured completely, the perturbation approach has
to be devised carefully so that the linearization is correctly:; ¢y = [ i(t — €)7(e) de + 1(£)7(0)
realized, since superposition is explicitly or implicitly used 0
in all of these approaches. For example, in the movement
experiments, we must subtract the mean from the raw data in +
order to obtain the perturbed responses. The part of the meéﬁ)(t) = / I(t — )7 (e) de + 1" L(#)7(0) + - -« +1(t)7(0)
(especially the time-varying mean) is due to voluntary actions. /0 , :
On the other hand, by understanding the linearized dynamigerel(-) is the impulse response of the low-pass filtgs),
of a nonlinear system, we can gain considerable knowled§?) = 0 and L(c) = 0. A typical impulse response of a

about the system. Better experiments may be devised baggaond-order low-pass filter with damping ratio at one is given

on this knowledge. This is the exact drive behind this stud}! Fig. 10. Because the filter is an infinite impulse filter (or

Indeed, the results of this study may be considered to be dgFUrsive filteni(0) = 0 andi(t) ~ 0 if ¢ > 1/w. Therefore,

first step toward the identification of the underlying nonlinedP® terms withi(¢) in the above expressions should be zero
biological system. whent is sufficiently large. If all of the coefficients’'s and

b's are constant then

/Ot I(t—e¢) [anﬁ(")(e) 4 4 af(e) + aoﬁ(f)} de

' t
0= [ u
The biological system is inherently nonlinear. If the system t
0= [ 1
0
.

APPENDIX A

1
EFFECT OFLOW-PASS FILTERING ON PARAMETER ESTIMATION = / I(t— ) |:bn_17'(n_1)(6) +oe A br(e) + bo’/‘(é):| de
Consider a general time-varying input and output system 0 (11)
) aftert is sufficiently large. This means that the identification
an (OO () 4 - + a1 (D) + ao(H)0(t) method described in Section II-C is the exact solution. If
= b (7D oo b (E) + bo()T(2) the coefficientsy and b are time-varying but approximately

constant within the time constant of the low-pass filter, then
(11) will still be valid. This means that the ratio of the
frequencies of the parameter variation and the low-pass filter
wherer and# are the input and output variables, and th® must be smaller than one. The filter bandwith does not have
andb's are time-varying coefficients. Apply a linear filter (4)to be higher than the bandwith of the system as (11) suggests.

(10)
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However, the low filter bandwith will decrease the signal-toahich shows that the high-pass filtering does not introduce
noise ratio of the derivative terms. A simulation not showarror in the parameter estimation if the high-pass filter cutoff
here indicates that the reliable parameter estimates canfteguency is higher than that of the voluntary movement and
obtained even if the filter bandwidth is lower than that dfhe perturbation has sufficient power in the high frequency
the system with PRBS perturbation. When the bandwith odinge. Given a type and amplitude of a perturbation, the
a system dynamics is known only approximately, it is safeigher the high-pass filter cutoff frequency, the less the useful
to have the filter bandwith higher than that of the systeperturbation frequency range, the less the perturbation power,
dynamics. the higher the NSR and the estimation error. This is where the
source of the error is with the high-pass filtering method.

APPENDIX B
EFFECT OFHIGH-PASS FILTERING ON PARAMETER ESTIMATION

Consider the linearized dynamics of the elbow joint in (2).
Apply a high-pass filter (3) to the measuremehits..(¢) and
7_mea,s(t)

69~(t) = 9111eas(t) - /Oo

— o0

#6) = ) — |

— o0

(1]

Yt — €)umens(€) de 2l

OO

3
At — €)Tineas(€) de 3

where 9(-) is the impulse function of the acausal low-passf4l
filter (4). The derivatives are

56() = fmens(t) — / -

— o0
o

G0t — €)umens (€) de g
[6]

(7]

6é(t) = émeas(t) - / al(t - 6)9111eas (6) de.

Now consider the difference and assume that the voluntar)é
movement is low-frequency only [s]
[I(t)éé(t) + B()SO(t) + K(t)éé(t)] — ()

= [1()8(t) + B + K(8(t) - (2)]

+ [ /_ O; Ut — e)r(e)de — I(t) /

— B(#) /Oo Ut — )i(e) de

— o0

o [

— 1) {én(t) - / T o) de}

—o

El
[10]

oo

Ut — €)b(e) de [11]
(12]
[13]

Gt — )f(e) de}

[14]

(18]

+ B(t) [én(t)— / - Ut — €)0p(e) de}

—o

+ K(t) [Gn(t) - /

— o0

[16]

- GY(t — €)0, () de} [17]

+ [I(t)éé(t) + B(£)66(t) + K (£)86(t) — T(t)] [18]

Ut — yr(e) de — /

ade o)

oo

Ut — e)I(t)60(c)de  [19]

Yt — ) B(t)86(c) de [20]

Ut — ) K(t)66(e) de} (21]

Yt — c) [T(c) — I(H)66(e) — B(2)86(e)
- K(t)éH(e)} de 2
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