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Abstract

Th is paper is dedicated toth e synth esis of a multiple
ob server. Th e considered system is itselve represented
b y a (nonlinear) multiple model with unk nown inputs.
Stab ility conditions of such ob server are expressed in
terms of linear matrix inequalities (LMI). An exam-
ple of simulation is g iven to illustrate th e proposed
meth od.

1 Introduction

A ph ysical process is often sub jected todisturb ances
wh ich h ave as orig in th e noises due toits environment,
uncertainty of measurements, fault of sensors and/or
actuators. Th ese disturb ances h ave h armful effects on
th e normal b eh avior of th e process and th eir estimation
can b e used to conceive a control strateg y ab le to
minimize th eir effects. Th e disturb ances are called
unk nown inputs wh en th ey affect th e input of th e
process and th eir presence can mak e difficult th e state
estimation.

In th e linear system framework , ob servers can b e de-
sig ned for sing ular systems, unk nown input systems,
delay systems and also uncertain system with time-
delay perturb ations [8 ]. Several work s were also
ach ieved concerning th e estimation of th e state and th e
output in th e presence of unk nown inputs. Th ey can b e
g ath ered intotwocateg ories. Th e first one supposes an
a priori k nowledg e of information on th ese nonmeasur-
ab le inputs; in particular, Joh nson [12 ] proposes a poly-
nomial approach and Meditch [16 ] sug g ests approxi-
mating th e unk nown inputs b y th e response of a k nown
dynamic system. Th e second categ ory proceeds eith er
b y estimation of th e unk nown inputs, or b y th eir com-
plete elimination from th e equations of th e system.

Among th e tech niques th at do not require th e elimi-
nation of th e unk nown inputs, Wang [17 ] proposes an
ob server ab le toentirely reconstruct th e state of a lin-
ear system in th e presence of unk nown inputs and in
[5],[13 ],[15], toestimate th e state, a model inversion
meth od is used. Using th e Walcott and Zak structure
ob server [17 ], Edwards et al. [6 ],[7 ] h ave alsodesig ned
a converg ent ob server using th e Lyapunov approach .
Oth er tech niques are b ased on th e elimination of th e
unk nown inputs [9 ],[14].
However, th e real ph ysical systems are often nonlinear.
As it is delicate tosynth esize an ob server for a non-
linear system, we preferred torepresent th ese systems
with a multiple model. Th e idea of th e multiple model
approach is toappreh end th e total b eh avior of a system
b y a set of local models (linear or affine), each local
model ch aracterizing th e b eh avior of th e system in a
particular zone of operation. Th e local models are th en
ag g reg ated b y means of an interpolation mech anism.
In th e case of a nonlinear system affected b y unk nown
inputs and describ ed b y a multiple model, a tech nique
for multiple model state estimation b y using a multiple
ob server with sliding mode h as already b een proposed
[1],[4].
In th is paper, we consider th e state estimation of an
uncertain multiple model with unk nown input. For th at
purpose a multiple ob server b ased on convexinterpo-
lation of classical Luenb erg er ob servers [2 ] involving
additive terms used to overcome th e uncertainties
is desig ned. Using quadratic Lyapunov function,
sufficient asymptotic stab ility conditions are g iven in
LMI formulation [3 ].

Notation: Th roug h out th e paper, th e following useful
notation is used: XT denotes th e transpose of th e ma-
trixX , X > 0means th at X is a symmetric positive
definite matrix, IM = {1, 2, ..., M} and ∥.∥ represents
th e Euclidean norm for vectors and th e spectral norm
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for matrices.

2 State and input estimation using
a multimodel

In th is work , we consider th e estimation of th e state
vector and th e unk nown inputs of a nonlinear system
represented b y a multiple model and sub ject toth e in-
fluence of unk nown inputs, b y using a multiple ob -
server. Th is multiple ob server is b ased on local Luen-
b erg er ob servers including a sliding term tocompensate
th e effect of th e unk nown inputs.

2 .1 Multiple model structure

Let us consider a nonlinear system represented b y th e
following multiple model (with M local models) sub -
ject tounk nown inputs :
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x(t + 1) =
M
∑

i=1
µi(ξ(t))

(

Aix(t) + Biu(t)+

Riū(t) + Di

)

y(t) = Cx(t) + F ū(t)

(1)

with :
{

∑M
i=1µi(ξ) = 1

0≤ µi(ξ) ≤ 1 ∀ i ∈ {1, .., M}

wh ere x(t) ∈ Rn is th e state vector, u(t) ∈ Rm th e
input vector, ū(t) ∈ IRq , q < n, contains th e un-
k nown input and y(t) ∈ Rp g ath er th e measured out-
puts. Th e ith ” local model” uses Ai ∈ Rn×n as th e
state matrix, Bi ∈ Rn×m for th e input influence ma-
trix, Ri ∈ Rn×q for th e unk nown input influence ma-
trixand Di ∈ Rn×1 is introduced totak e intoaccount
th e functionning point of th e system; C ∈ Rp×n and
F ∈ Rp×q . At last, ξ(t) is th e so-called decision vec-
tor wh ich may depend on th e k nown input and/or th e
measured state variab les.

At each time, µi(ξ(t)) quantifies th e relative contri-
b ution of each local model toth e construct th e g lob al
model. Ch osing th e numb er M of local models of th at
multimodel may b e intuitively ach ieved with tak ing
account of th e numb er of reg imes wh en th e system is
runing , However, determining th e matrices Ai, Bi, Ri

and Di needs th e use of specific tech nics [10 ]. For a
practical point of wiev, th e matrices Ai, Bi, Ri and
Di are th ose used to describ e th e local functionning
around th e ime reg imet. Indeed, th at is exactly th e case
at th e ith fonctioning reg ime, wh ere µi(ξ(t)) = 1and
µj(ξ(t)) = 0, j ≠ i. Indeed, th e functions µ will tak e
th eir values upon th e set [0, 1] and th us th e activation

of a local model is criticab le. It is preferab le tosay
th at th e multimodel is a weig h ting sum of models ; at
a particular time t th e active part of th e model comes
from a particular weig h ting of local models.

Th e prob lem tob e solved h ere is th ose of th e simulta-
neous reconstruction of th e state variab le x and th e un-
k nown input u wh en only using th e information avail-
ab le in th e k nown input u and in th e measured output y.

2 .2 Desig n of amultiobservateur

In th is section, we explain h ow todesig n th e ob server.
Th e structure of th at ob server results of th e ag reg ation
of local ob servers [4] and th e ob tained analytical form
is particularly adapted for studying th e stab ility and th e
converg ence property of th e state reconstruction error.
Th e numerical aspects related toth e determination of
th e g ains of th e ob server will b e alsoanalysed. Th e so-
called multi-ob server (1) h as th e following sttructure:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z(t + 1) =
M
∑

i=1
µi(ξ(t))

(

Niz(t) + Gi1u(t) + Gi2

+Liy(t)
)

x̂(t) = z(t) − Ey(t)
(2 )

wh ere Ni ∈ Rn×n, Gi1 ∈ Rn×m, Li ∈ Rn×p is th e
g ain of th e ith local ob server, Gi2 ∈ Rn is a constant
vector and E is a matrixtransformation. Indeed, th e ob -
server only uses k nown variab les u and y, ū b eing non
measured. Th is wh ole set of matrices h as tob e prop-
erly defined, and mainly on a numerical point of wiev,
th e ob jective b eing toensure th e converg ence of th e es-
timated state towards th e true state. For th at purpose,
let us define th e state estimation error :

e(t) = x(t) − x̂(t) (3 )

From th at definition and using th e expression of x̂(t)
g iven b y equation (2 ), th e dynamic error can b e written:

e(t) = (I + EC)x(t) − z(t) + EFu(t) (4)

Th en, one expresses th e time evolution of th e state error
in order toanalyse its converg ence towards zero. Th us,
at time t + 1, th e state error is expressed :

e(t + 1) =
M
∑

i=1

µi(ξ(t))
(

P
(

Aix(t) + Biu(t)+

Riū(t) + Di

)

− Niz(t) − Gi1u(t)−

Gi2− Liy(t)
)

+ EFu(t + 1)

(5)
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with :

P = I + EC (6 )

Replacing y(t) and z(t) b y th eir respective expressions
g iven b y (1) and (2 ), th e state error tak es th e form :

e(t + 1) =
M
∑

i=1

µi(ξ(t))
(

Nie(t) +
(

PAi − NiP

− LiC
)

x(t) + (PBi − Gi1)u(t)+

(PDi − Gi2) +
(

PRi − LiF )ū(t)
)

+

EFū(t + 1)
(7 )

If th e following conditions are fullfilled :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P = I + EC
NiP = PAi − LiC
PRi = LiF
Gi1= PBi

Gi2= PDi

EF = 0

(8 )

equation (7 ) reduces to:

e(t + 1) =
M
∑

i=1

µi(ξ(t))Nie(t) (9 )

A simplification th at will b e furth er used is proposed. It
is straig h tforward toverify th at (8 ) may b e writen with
th e h elpof th e matrixKi:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P = I + EC
Ni = PAi − KiC
Ki = NiE + Li

PRi = KiF
Gi1= PBi

Gi2= PDi

EF = 0

(10 )

Th e rate decay of th e state error estimation is de-
pending on th e matrix N =

∑M
i=1µi(ξ)Ni and it

is important tonote th at th e stab ility of matrices Ni,
∀ i ∈ {1, ..., M} does note prove th e stab ility of N .
Th at point will b e analysed in th e next section. Th us,
th e constraints (10 ) allow tosynth esis th e ob server of a
system with unk nown inputs. However, for some appli-
cations (for example in diag nosis), th e estimation of th e
unk nown input ū h as tob e performed. Th at point will
b e adressed in th e next section 2 .4. Moreover, th e sta-
b ility of th e matrixN needs tob e respected with tak ing
account of all th e matrixconstraints (8 ); th at tech nical
point is th e aim of section ? ? .

2 .3 Global converg ence of the multiple ob-
serve

In th is part, sufficient conditions of th e asymptotic
g lob al converg ence of th e state estimation error are
estab lish ed. As expressed b y th e model of th e state
error estimation, (9 ), th e converg ence is strong ly
depending on th e matrixN =

∑M
i=1µi (ξ(t)) Ni.

Theorem [2 ] : The state estimation error between the
multiple model (1 ) and the unknown input multiple
observer (2 ) converges towards zero, if all the pairs
(Ai, C) are observables, the matrix F is of full col-
umn rank and if the following conditions hold∀ (i, j) ∈
{1, ..., M} :

NT
i XNj − X < 0 (11a)

Ni = PAi − KiC (11b )

P = I + EC (11c)

PRi = KiF (11d)

EF = 0 (11e)

Li = Ki − NiE (11f)

Gi1= PBi (11g )

Gi2= PDi (11h )

where X ∈ IRn×n is a positive definite symmetric
matrix.

Th e proof of th at th eorem may b e found in [2 ]. Let us
just note th at th e stab ility condition of N is expressed
b y th e matrixinequalities (11a). Th e conditions (11b )
to(11h ) may b e seen as an equivalent form of th e con-
straints (10 ). Th e system (10 ) contains b ilinear ma-
trixinequalities (11a), th at must b e solved wh ile tak ing
intoaccount some equality constraints. Let us note th at
equations (11f), (11g ) and (11h ) are only used tocom-
pute th e g ains Li, Gi1 and Gi2 since matrices X , Ni,
P , Ki and E will b e k nown.

2 .4 Unk nown input estimation

We h ave previously sh own th at th e converg ence of th e
multiple ob server (2 ) is g uaranteed if th e conditions
(10 ) are verified and th e pairs (Ai, C) are ob servab le.
Under steady state condition, th e state estimation error
tends towards zero; th en sub stituting th e true state x b y
its estimate x̂ in equation (1), th e input ū is replaced b y

3
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its estimation ˆ̄u:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x̂(t + 1) =
M
∑

i=1
µi(ξ(t))

(

Aix̂(t) + Biu(t)+

Ri ˆ̄u(t) + Di

)

y(t) = Cx̂(t) + F ˆ̄u(t)
(12 )

Th e unk now input ū is th en estimated b y using th e
wh ole set of equations (11) :

ˆ̄u(t) = (WT W )−1WT

(

x̃(t + 1)
y(t) − Cx̂(t)

)

(13 )

with

x̃(t+1) = x̂(t+1)−
M
∑

i=1

µi(ξ(t)) (Aix̂(t) + Biu(t) + Di)

assuming th at th e matrix

W =

⎛

⎝

M
∑

i=1
µi (ξ(t)) Ri

F

⎞

⎠ (14)

is of full column rank . Summarizing th e estimation pro-
cedure, twosteps are needed: th e first one is dedicated
toth e state estimation using th e ob server (2 ), th e sec-
ond is devoted toth e unk nown input estimation using
th e estimated state (12 ). Th e condition allowing toex-
press th e matrices of th e ob server are link ed toth e rank
of W and is sometime difficult tosatisfy. However, for
th e secure communication application (section 3 ), th e
constraint may b e easily fullfilled since we h ave alsoto
desig n th e ob server b ut alsoth e process itself.

2 .5 Resolution method for determining the
observer matrices

Wh en analysing th e different constrains, (11e) com-
pletely determine th e matrixE of th e ob server. Noting
F (−) a g eneralised inverse of F , E may b e deduced:

E = I − FF (−) (15)

As a consequence, th e matrixP may b e deduced from
(11c). Th en, th e matrixinequalities (11a) h ave tob e
solved after sub stituting th e matrixNi b y its value de-
rived from (11b ), and tak ing intoaccount th e equality
constraint (16 ).

NT
i XNj − X = (PAi − KiC)T X(PAj − KjC) − X < 0

(16 )
wh ich is equivalent to:

(

X (PAi − KiC)T X
X(PAj − KjC) X

)

> 0 (17 )

Using th e following ch ang e of variab les :

Wi = XKi (18 )

(11d) is rewriten :
(

X AT
i PX − CT WT

i

XPAj − WjC X

)

> 0 (19 )

Th e system b eing linear in respect toth e unk nown
matrices X and Wi, conventionnal LMI tools (LMI
MATLAB Toolb oxfor exemple) may b e extendly used
for th at resolution. Th e oth er matrices defining th e ob -
server are th en deduced k nowing E, P , X and Wi :

Gi1= PBi (2 0 a)

Gi2= PDi (2 0 b )

Ki = X−1Wi (2 0 c)

Ni = PAi − KiC (2 0 d)

Li = Ki − NiE (2 0 e)

3 Application to communication

Let us consider a discrete SISO multimodel resulting of
th e ag reg ation of twolocal models:
⎧

⎨

⎩

x(t + 1) =
2
∑

i=1
µi(ξ(t))

(

Aix(t) + Riū(t)
)

y(t) = Cx(t) + F ū(t)
(2 1)

Th e system (19 ) h as th e particularity tob e controled b y
th e unique input ū(t) and its output y(t) is th e input
of th ob server. Th e activation fonctions are expressed
with exponential fonctions and only depend on th e mul-
timodel output (ξ(t) = y(t)):

⎧

⎨

⎩

ξ(t) = y(t)
µ1(ξ(t)) = 1

2(1− ta nh(ξ(t)))
µ2(ξ(t)) = 1− µ1(ξ(t))

(2 2 )

Applying results g iven in section 2 .5, th e ob server is
defined b y:

x̂k+1=
M
∑

i=1

µi(ξ(t))
(

Nix̂(t) + Kiyk

)

(2 3 )

with th e definitions:

E = 0 (2 4a)

P = I (2 4b )

Ri = KiF (2 4c)

Ni = Ai − KiC (2 4d)

Li = Ki (2 4e)

4

1376

Didier Maquin




Th e numerical values of matrices are as follows:

A1=

⎡

⎣

0 0.4 1
−1.12 0.4 0
−0.8 0 0.9

⎤

⎦

A2=

⎡

⎣

0 0.4 1
1 0.4 0

−0.8 0 0.9

⎤

⎦,

C =
[

0.15 0 0
]

, F = 50

Th e fig ure 1 sh ows th e sig nal y transmited toth e ob -
server and th e messag e contained in y. Th e fig ure 2
compares th e true and th e estimated states of th e sys-
tem. Th e fig ure 3 depicts th e trajectory of th e system;
as th ere are 3 states, th e trajectory is drawn in th e plans
{x1(t), x2(t)}, {x2(t), x3(t)} and {x3(t), x1(t)}; th us
it is possib le toappreciate th e ”ch aotic” b eh aviour of
th e system. Th e fig ure 4 presents th e estimated mes-
sag e, th e true messag e and th e mixing function µ. Ex-
cepted around th e time orig ine (du tounapropriate ini-
tial conditions), th e estimated messag e fully ag ree with
th e true one.

4 Conclusion

In th is communication, we propose a meth od for
estimating th e state of a non linear discrete system;
th is system is modelized b y a multimodel in wh ich
some input are unk nown. Th e calculation of th e
g ain of th e g lob al ob server reduces toth e calculation
of th e g ains of th e local ob servers ; th e stab ility of
th e wh ole requires tak ing into account th e coupling
constraints b etween th e local ob servers, wh ich leads
toth e resolution of a LMI (Linear MatrixInequalitie)
prob lem.

A particular, b ut uptodate, application of th e proposed
meth od deals with decryption communication; th e
ob jective is torecover a messag e imb edded in a sig nal
g enerated b y a dynamical nonlinear system. As future
work s, we aim toconstruct multimodel and associated
multiob server to ensure a ch aotic time evolution of
th e system in such a way th at th e decryption of th e
transmitted sig nal will impossib le with out k nowing th e
model.
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