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Neural Fuzzy Motion Estimation and Compensation
Hyun Mun Kim and Bart Kosko

Abstract—Neural fuzzy systems can improve motion estimation
and compensation for video compression. Motion estimation and
compensation are key parts of video compression. They help
remove temporal redundancies in images. But most motion es-
timation algorithms neglect the strong temporal correlations of
the motion field. The search windows stay the same through the
image sequences and the estimation needs heavy computation. A
neural vector quantizer system can use the temporal correlation
of the motion field to estimate the motion vectors. First- and
second-order statistics of the motion vectors give ellipsoidal
search windows. This algorithm reduced the search area and
entropy and gave clustered motion fields. Motion-compensated
video coding further assumes that each block of pixels moves
with uniform translational motion. This often does not hold and
can produce block artifacts. We use a neural fuzzy system to
compensate for the overlapped block motion. This fuzzy system
uses the motion vectors of neighboring blocks to map the prior
frame’s pixel values to the current pixel value. The neural fuzzy
system used 196 rules that came from the prior decoded frame.
The fuzzy system learns and updates its rules as it decodes
the image. The fuzzy system also improved the compensation
accuracy. The Appendix derives both the fuzzy system and the
neural learning laws that tune its parameters.

I. MPEG STANDARDS FOR VIDEO COMPRESSION

T HIS PAPER presents new schemes for motion estima-
tion and compensation based on neural fuzzy systems.

Motion estimation and compensation help compress video
images because they can remove temporal redundancies in
the image data. Motion estimation schemes often neglect the
strong temporal correlations of the motion field. The search
windows remain the same through the image sequences and
the estimation may need heavy computation. We designed an
unsupervised neural system that uses the temporal correlation
of the motion field to estimate the motion vectors and to reduce
the entropy of source coding.

Motion-compensated video coding uses the motion of ob-
jects in the scene to relate the intensity of each pixel in the
current frame to the intensity of some pixel in a prior frame.
It predicts the value of the entire current block of pixels
as the value of a displaced block from the prior frame. It
also assumes that each block of pixels moves with uniform
translational motion. This assumption often does not hold
and can produce block artifacts. We designed a neural-fuzzy
system that uses motion vectors of neighboring blocks to
improve the compensation accuracy.
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Fig. 1 shows the typical structure of the Moving Picture
Experts Group (MPEG) encoder. The MPEG standard depends
on two basic algorithms. Motion-compensated coding uses
block-based motion vector estimation and compensation to re-
move temporal redundancies. Block discrete cosine transforms
reduce spatial redundancy. The MPEG standard defines and
forms the bit-stream syntax to achieve interoperability among
different blocks. Standards improve interoperability among
video systems and help speed the development of high-volume
low-cost hardware and software solutions [7].

Most current research in video compression seeks new
algorithms or designs high-performance encoders that work
with existing standards. These standards give a bit-stream
syntax and a decoder and thus allow some flexibility in how
one designs a compatible encoder. The MPEG standards do not
give a motion estimation algorithm or a rate-control mecha-
nism. This leaves manufacturers free to use the flexibility of
the syntax.

Our neural quantizer system uses the first- and second-
order statistics of the motion vectors to give ellipsoidal search
windows. This method reduces the search area and gives
clustered motion fields. It reduces the computation for motion
estimation and decreases the entropy that the system needs to
transmit the entropy-coded motion vectors.

We also propose a neural fuzzy overlapped block motion
compensation (FOBMC) scheme for motion compensation.
Fuzzy systems use a set of if-then rules to map inputs to
outputs. Neural fuzzy systems learn the rules from data and
tune the rules with new data. The FOBMC estimates each
pixel intensity using the block-based motion vectors available
to the decoder. The fuzzy system uses the motion vectors of
neighboring blocks to map the prior frame’s pixel values to the
current pixel value. The 196 rules come from the prior decoded
frame. The neural fuzzy system tunes its rules as it decodes
the image. The fuzzy system defined a nonlinear “black
box” function approximator that improved the compensation
accuracy. The Appendix derives the supervised learning laws
that tune the parameters of the fuzzy system.

II. M OTION ESTIMATION AND COMPENSATION

This section briefly reviews the standard techniques of
motion estimation and compensation.

A. Motion Estimation

Motion estimation occurs in many areas of image process-
ing. Video coding schemes often exploit the high temporal
redundancy between successive frames in a sequence by
predicting the current frame from the prior frame based
on an estimated motion field. Then, the schemes code and
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Fig. 1. Block diagram of the Moving Picture Experts Group (MPEG) encoder.

transmit the prediction error image. The schemes may also
need to transmit the motion field if the motion estimation
algorithm uses information that the receiver does not have.
The prediction error often contains much less information than
does the original frame if the motion estimates are accurate.

The MPEG standard uses three types of pictures that depend
on the mode of motion prediction. The intra (I) picture serves
as the reference picture for prediction. Block discrete cosine
transforms (DCT’s) code the intra pictures, and no motion
estimation prevents long range error propagation. Coding the
predicted (P) pictures uses forward prediction of motion. We
divide each image into macroblocks of size pixels and
search blocks of the same size in the prior reference I frame
or P frame.

A second type of picture is the bidirectional interpolated
(B) picture. We perform both forward and backward motion
prediction with respect to the prior or future reference I or
P frames. Averaging these two predictions gives the interpo-
lation. Bidirectional interpolation can handle just covered or
uncovered areas since the system cannot predict an area just
uncovered from the past reference. The system can still predict
the areas from the future reference frame. The one that has the
smallest mean-square error among the forward, backward, and
interpolated prediction gives the best motion prediction. The
encoding and decoding orders of video sequences can differ
from that of the original sequences due to the three types of
frames. Therefore, the th and th frames follow
the th frame as in Fig. 2. The decoder needs to reorder
the frames to display them.

The two main types of motion estimation use pel-recursive
algorithms or block matching algorithms [23]. Pel-recursive
algorithms predict the motion field at the decoder based on
how neighboring pixels decoded in the current frame relate to
pixels in the prior frame. Block-based motion estimation de-
rives from the need for relatively accurate motion fields while
keeping low the side information one needs to represent the
motion vectors. Image sequence coding often uses full-search
block matching among the block-based motion estimation
techniques. This scheme is simple and easy to implement in

Fig. 2. Ordering of video sequences in MPEG.

hardware. Exhaustive search within a maximum displacement
range leads to the absolute minimum for the energy of the
prediction error and is optimal in this sense. This acts as a type
of codeword search in vector quantization (VQ) [10]. VQ finds
a codeword from the codebook that minimizes some criteria
such as mean-squared error (MSE). It locates the minimum for
the energy of the prediction error and tends to have a heavy
computational load.

Accurate modeling of the motion field becomes more im-
portant under the constraint of a very low bit rate [21]. Here,
however, full block search technique tends to produce noisy
motion fields that do not correspond to the true 2-D motion
in the scene. Noises in real video images can also affect
the locations of the smallest distortion. Noise gives rise to
a blocky effect in motion-compensated prediction images and
has no physical meaning in terms of the estimated motion
vectors. These artificial discontinuities lead to an increase of
the side information to transmit the entropy-coded motion
vectors. A decrease in this side information while keeping
the same accuracy for the motion fields improves low bit rate
applications [5]. Therefore, we propose a new adaptive scheme
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to estimate motion vectors that have spatial consistency. The
scheme uses the temporal correlation of the motion field to
reduce the computation and to give a clustered motion field.

B. Motion Compensation

Motion-compensated video coding relates the intensity of
each pixel in the current frame to the intensity of some pixel
in a prior frame. It links these pixels by predicting the motion
of objects in the scene. However, the transmission overhead
needed to inform the decoder of the true motion at every
pixel in the image may far outweigh the gains of motion
compensation. Motion compensation assigns only one motion
vector to each square (often a -pixel) block in the frame.
The encoder selects this motion vector to minimize the mean-
squared prediction error. It predicts the value of the entire
current block of pixels by the value of a displaced block from
the prior frame. Therefore, it assumes that each block of pixels
moves with uniform translational motion. This assumption
often does not hold and can produce block artifacts.

Orchard and Sullivan [22], proposed overlapped block mo-
tion compensation (OBMC) to overcome this problem. This
linear scheme estimates each pixel intensity using the block-
based motion vectors available to the decoder. It predicts
the current frame of a sequence by repositioning overlapping
blocks of pixels from the prior frame. Then, it computes
the coefficients of the linear estimator by solving the nor-
mal equations of least squares, but this scheme has at least
two problems. The coefficients computed from the training
sequences may not work well for the test sequences, and
the coefficient calculation is computationally heavy and the
decoder must store these values.

We propose afuzzyoverlapped block motion compensation
(FOBMC). A fuzzy rule-based system estimates pixel inten-
sities using the block-based motion vectors available to the
decoder. Fuzzy systems compute a model-free
conditional mean [16], [20], [24] and thus compute
a least-mean-square nonlinear estimate of the random variable

based on our knowledge of the random vector. The
FOBMC system uses the conditional mean to predict each
pixel intensity. It uses the motion vectors of neighboring
blocks to map the prior frame’s pixel values to the current pixel
value. This has at least two advantages. The rules come from
the prior decoded frame, and the neural fuzzy system tunes
its rules as it decodes the image. Simulation results showed
that the FOBMC improved the compensation accuracy. This
method also shows how to insert expert knowledge into the
compensation process.

III. A DDITIVE FUZZY SYSTEMS AND LEARNING

This section reviews the standard additive model (SAM)
fuzzy system and how SAM’s learn with and without super-
vision. The Appendix derives the ratio structure of the SAM
and supervised learning laws that tune its parameters.

A. Additive Fuzzy Systems

A fuzzy system stores rules of the
word from “If , then ” or the patch

form . The if-part fuzzy
sets and then-part fuzzy sets have set
functions and . The system
can use the joint set function [11] or
some factored form such as , or

, or any other conjunctive
form for input vector .

An additive fuzzy system [17]–[20] sums the “fired” then
part sets

(1)

Fig. 3 shows the parallel fire-and-sum structure of the SAM
system. The additive system is standard if the if-part value

scales the then-part set to give the fired set
. These systems can uniformly approximate any con-

tinuous (or bounded measurable) functionon a compact
domain [17].

Fig. 4 shows how three rule patches can cover part of the
graph of a scalar function . The patch cover shows
that all fuzzy systems suffer fromrule explosion
in high dimensions. A fuzzy system needs on the order of

rules to cover the graph and thus to approximate a
vector function . Optimal rules can help deal with
the exponential rule explosion. Lone or local mean-squared
optimal rule patches cover the extrema of the approximand
[18]. They “patch the bumps.” Better learning schemes move
rule patches to or near extrema and then fill in between extrema
with extra rule patches if the rule budget allows.

The scaling choice leads to astandard
additive model(SAM). Appendix A shows that taking the
centroid of in (1) gives [16]–[20] the SAM ratio

(2)

where

positive rule weight;
nonzero volume or area of then-part set;
centroid of or its center of mass.

Therefore, a SAM has the form of a convex sum
for convex coefficients

so that and
for each .

The SAM theorem (2) implies that the fuzzy structure of
the then-part sets does not matter for a first-order function
approximator. The ratio depends on just the rule weightand
the volume and location or centroid of the then-part sets

. Our SAM has then-part sets of the same area and weight
and . Therefore,

the volume terms and the weight cancel from (2). We
need pick only the scalar centersto define the sets. The
then-part structure does affect the second-order structure or
uncertainty of the output [19]–[20].
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Fig. 3. Architecture of an additive fuzzy systemF : Rn ! Rp with m rules. Each inputx0 2 Rn enters the systemF as a numerical vector. At the
set levelx0 acts as a delta pulse�(x � x0) that combs the if-part fuzzy setsAj and gives them set valuesaj(x0) aj(x0) =

R
�(x � x0)aj(x) dx.

The set values “fire” the then-part fuzzy setsBj to give B0

j . A standard additive model (SAM) scales eachBj with aj(x). Then the system sums the
B0

j sets to give the output “set”B. The system outputF (x0) is the centroid ofB.

B. Learning in SAM’s: Unsupervised Clustering
and Supervised Gradient Descent

A fuzzy system learns if and only if its rule patches move
or change shape in the input–output product space .
Learning might change the centers or widths of triangle or
trapezoidal or bell-curve sets. These changing sets then change
the shape or position of the Cartesian rule patches built out of
them. The mean-value theorem and the calculus of variations
show [18] that optimal lone rules cover the extrema or bumps
of the approximand. Good learning schemes [3], [4] tend to
quickly move rules patches to these bumps and then move
extra rule patches between them as the rule budget allows.
Hybrid schemes use unsupervised clustering to learn the first
set of fuzzy rule patches in position and number and to
initialize the gradient descents of supervised learning.

Learning changes system parameters with data. Unsuper-
vised learning amounts to blind clustering in the system
product space to learn and tune the fuzzy rules or
the sets that compose them. Then,quantization vectors

move in the product space to filter or approximate the
stream of incoming data pairs or the concatenated
data points . The simplest form of such
product space clustering[15] centers a rule patch at each data
point and, thus, puts . In general, both the data and the
quantizing vectors greatly outnumber the rules, and therefore,

.
A natural way to grow and tune rules is to identify a rule

patch with the uncertainty ellipsoid [2], [3] that forms around
each quantizing vector . The ellipsoid stems from the inverse
of the vector’s positive definite covariance matrix . Then,
sparse or noisy data grows a patch larger and, thus, a less
certain rule than does denser or less noisy data. Unsupervised
competitive learning [15] can learn these ellipsoidal rules in
three steps:

(3)

Fig. 4. Each fuzzy rule defines a Cartesian-product patch or fuzzy subset of
the input–output state space. The fuzzy system approximates a function as it
covers its graph with rule patches. Lone optimal rule patches cover extrema.

if
if

(4)

if

if
(5)

for the Euclidean norm
The first step (3) is the competitive step. It picks the nearest

quantizing vector to the incoming data vector and
ignores the rest. Some schemes may count nearby vectors
as lying in the winning subset. We used just one winner per
datum. This correlation matching approximates a great deal of
the competitive dynamics of nonlinear neural networks. The
second step updates the winning quantization or “synaptic”
vector and drives it toward the centroid of the sampled data
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pattern class [14]. The third step updates the covariance
matrix of the winning quantization vector. We initialize the
quantization vector with sample data to avoid
skewed groupings and to initialize the covariance matrix with
small positive numbers on its diagonal to keep it positive
definite. Then, projection schemes [2]–[4] can convert the
ellipsoids into coordinate fuzzy sets. Other schemes can use the
unfactored joint set function directly and preserve correlations
among the input components [11]. Supervised learning can
also tune the eigenvalue parameters of the rule ellipsoids.

Supervised learning changes SAM parameters with error
data. The error at each timeis the desired system output
minus the actual SAM output . Unsupervised
learning uses the blind data point instead of the desired
or labeled value . The teacher or supervisor supervises the
learning process by giving the desired valueat each training
time . Most supervised learning schemes perform stochastic
gradient descent on the squared error and do so through
iterated use of the chain rule of differential calculus. Appendix
B derives the supervised learning laws that tune the parameters
in (2). We do not know in advance which parameters to tune
or which mix of parameters to tune.

IV. M OTION ESTIMATION USING

ADAPTIVE VECTOR QUANTIZATION

Motion vector estimation removes the temporal correlation
of video images. Block matching methods often neglect the
fact that the motion field itself has strong spatial and temporal
correlation. We propose an unsupervised neural system that
uses the temporal correlation of the motion field to estimate
the motion vectors. The neural system acts as an adaptive
vector quantizer.

A. Competitive AVQ Algorithm for Local
Means and Covariances

First- and second-order statistics of the motion vectors
combine to pick the search windows. Anadaptive vector quan-
tization (AVQ) determines the local means and covariances of
the motion vectors for the prior frame. The covariance matrix
again defines an ellipsoid [2]. The ellipsoids from the motion
vectors of the prior frame pick the search windows for the
current frame based on the temporal correlation in the motion
field. The ellipsoidal windows give a clustered motion field
that has lower computational load than that of the full search
method. Fig. 5 shows the search windows for full-search block
matching and the ellipsoidal method. The ellipsoidal window
uses the spatial consistency of the motion field.

Define each frame of an image sequence on a 2-D rectan-
gular lattice of pixels with members . Let
stand for the intensity at pixel of frame of the sequence.
Let stand for the pixel intensity of the corresponding
decoded frame. Let stand for a motion vector
and stand for a motion vector for pixel of frame . We
call a set of motion vectors for all pixels in the lattice
a pixel motion field and write the entire field as . Let
stand for a partition of into a lattice of blocks of width
and height . Let stand for a block from ,

(a)

(b)

Fig. 5. (a) Search window for full-search block matching. Such window
involves heavy computation and tends to produce noisy motion fields. (b)
Ellipsoidal search window gives a smooth and meaningful motion field. The
search window hops about more in the presence of noisy motion vectors and,
thus, has a larger “error” ball. The covariance matrixKj measures this error
ball.

and let stand for a pixel position within a block.
Define a diagonal matrix with diagonal elements
and such that with modulo and

modulo . Let stand for a motion vector for block
in frame . We call the set of motion vectors a

block motion field for frame and write it as .
Vector quantizers can use competitive learning to estimate

the local mean and conditional covariance matrix for each
pattern class [16]–[20]. Motion vector drives the
competitive learning process. We first form the concatenated
vector in the product space . Then we
assign quantization vectors to the same product space.
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Fig. 6. Motion vector histogram from the full-search algorithm for the “Miss America” image. We use these motion vectors to estimate the local
means and covariances.

These vectors learn or adapt as they code for the local sample
statistics and give rise to an AVQ. The AVQ vectors act as
the synaptic fan-in columns of a connection matrix in a neural
network with competing neurons [14]. The points learn
if and only if they move in the product space. The points
track the distribution of the incoming motion vectors’s and
tend to be sparse or dense where the’s are sparse or dense.

Each AVQ vector converges to the local centroid of the
motion vectors ’s. Therefore the AVQ vectors estimate
the local first-order moments of some unknown probability
density that generates the motion vectors’s. The AVQ
algorithm is a form of nearest-neighbor pattern matching or

-means clustering. The are random estimators since the
motion vectors ’s are random. The AVQ point hops about
more in the presence of noisy or sparse data and thus has a
larger “error” ball. The covariance matrix measures this
error ball. The competitive AVQ algorithm in (7)–(9) below
updates the positive-definite matrix . The inverse matrix

defines an ellipsoid in the product space as the
locus of all points that obey

(6)

for centering constant . Then the th ellipsoid defines
the th search window.

The following scheme describes the competitive adaptive
vector quantization algorithm for local means and covariances.

1) Initialize cluster centers from sample data
for .

2) Find the “winning” or closest synaptic vector to
sample motion vector

(7)

where denotes the Euclidean norm
.

3) Update the winner

if the th neuron wins
if the th neuron loses

(8)

and update its covariance estimate as shown in
(9), at the bottom of the page.

The sequences of learning coefficients and should
decrease slowly [20] in the sense of but not too
slowly in the sense of . In practice, .
The covariance coefficients obey a like constraint as in our
choice of where is the total number
of data points.

B. Motion Estimation Using Adaptive Vector Quantization

This section shows how we obtain a smooth and meaningful
motion field. The fact that the motion field has strong spatial
and temporal correlation [12] motivates our algorithm. Fig. 6
shows the motion vector histogram we obtain if we use the
full-search algorithm. It shows the scattered motion field. The
full search with the MSE criterion locates just the minimum
of the prediction error.

We assume that the objects in motion move with an almost
constant velocity within a few consecutive frames. Therefore,
we model the motion vector field in frame using the
motion vector field in frame

(10)

if the th neuron wins

if the th neuron loses.
(9)
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where is the noise field in frame . The noise
may come from an acceleration or deceleration of the block
of pixels in consecutive image frames. We assume it has a
zero mean and finite variance. The noise may result from
many sources: poor camera handling, misfocus, nonideal film
materials, camera zooming, scene cut, or sudden light intensity
changes [12].

AVQ estimates the motion vector field . The area of
the search window depends on this motion vector field so that
learning can reduce the search windows with centers that shift
and window sizes that vary. However, the full-search method
always chooses a fixed-size search window with the center
at the origin. It simply locates the energy minimum of the
prediction error and does so without outside information.

C. Unsupervised Weighting for AVQ Algorithm

We can also add an unsupervised weighting scheme to the
AVQ algorithm. We need to minimize the calculation overhead
since we want to decrease the complexity of the full-search
algorithm. We add a simple weighting scheme to the AVQ
algorithm to help achieve this.

The search window hops about more in the presence of
noisy motion vectors and, therefore, has a larger “error” ball.
This presents a problem since noisy motion vectors will have
a larger search window than smaller and more certain motion
vectors have. We give more weight to the window that has the
closet center to the zero point.

The unsupervised weighting scheme has a simple form. We
use in (6) for the window that has the closet center to
the zero point and use in (6) for the other windows.

D. Complexity Analysis

The AVQ algorithm has less complexity than the full-search
technique. Consider the number of additions and multiplica-
tions. We need additions for each search point.
Therefore, we need additions for each
macroblock using the full block search technique if we assume
a window size. This gives
additions for the full block search technique.

Suppose we have five ellipsoids for the AVQ algorithm.
We need additions and
multiplications to find the winning vector in (7). We need
four additions and two multiplications to update and
eight additions and eight multiplications to update .
There are 256 motion vectors if we assume an
image. We first use five motion vectors to initialize the
mean and covariance and then use the other 251 motion
vectors to update them. Therefore we need
additions and multiplications to find the
local means and covariances. We also need to compute (6)
to pick the search points. This takes eight additions and 12
multiplications. Therefore we need additions
and multiplications to pick search points
inside the window. Therefore the extra calculations using AVQ
come to 15 469 additions and 16 552 multiplications. However,
we use this search window for the whole image sequence
until intraframe coding resets it. Therefore if we divide the

TABLE I
COMPLEXITY ANALYSIS OF MOTION ESTIMATORS

Fig. 7. Eight nearest neighbors ofb assigned for optimal motion vectors for
the center blockb. The pixels in the second quadrant ofb have four motion
vectors selected for the shaded blocks.

overhead by three then this gives 5156 additions and 5517
multiplications. The number of additions in the AVQ is just

. This involves an overhead
of 5156 additions and 5517 multiplications if we search only
25% of the window.

Unsupervised learning can decide which window has the
closet center to the zero point. It needs nine additions and
ten multiplications if we assume five search windows. If we
divide this by three, then we get only three additions and four
multiplications. Table I summarizes these results.

V. FUZZY OVERLAPPED BLOCK MOTION COMPENSATION

This section shows how a “fuzzy” conditional mean can
predict each pixel intensity. Standard motion compensation
views the sent motion vectors as fixing a motion field for the
decoder. This assumes that each block of pixels moves with
uniform translational motion. This assumption often does not
hold and produces block artifacts.

Orchard and Sullivan [22] have viewed the sent motion
vectors as giving information about an underlying random
motion field. They described this information with an inferred
probability density that models the decoder uncertainty about
the true motion at each pixel given the sent data. Then, motion
compensation predicts the intensity of each pixel with respect
to this inferred probability density.

Motion-compensated coding somehow represents a motion
to create a prediction for each pixel and then encodes
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Fig. 8. “Miss America” image. Top: First frame. Middle: Fourth frame.
Bottom: Seventh frame.

the compensated frame difference (CFD)

CFD (11)

We often send only a block motion field rather than an
exact pixel motion field . The standard blockwise motion
compensation approach forms the prediction for all pixelsin
a block by using the same encoded motion vector

(12)

Estimation theory can view any data that the decoder
received prior to the decoding of frameas a source of infor-
mation about the true motion field. This information allows us
to define ana posterioriprobability density function
that gives the probability that is the correct vector to apply
at given all information that the decoder received.
Block motion compensation deals with the case .
Orchard and Sullivan [22] define ideal motion compensation
as an optimal estimator of pixel intensity with respect to the
probability density . Therefore the minimum mean-
squared error estimate is the conditional expected value [22]

(13)

but a general optimal solution to (13) may be quite complex.
Orchard and Sullivan proposed an optimallinear solution
called overlapped block motion compensation (OBMC) to
reduce this complexity [22].

A. Overlapped Block Motion Compensation

Orchard and Sullivan proposed OBMC to simplify the
solutions to (13). They used linear filtering (Wiener filter)
for (13) and an ordered set of integer displacements

:

(14)

where is a set of weights for the displacements
.

Rule-based motion compensation often restricts to
consist of just one vector and . This
gives a probability density function that assigns probability one
to and probability zero to all other vectors. It assumes the
correct vector applied at pixel is with certainty. The sum
(14) improves over (12) since the new model the does not
assume that the coded block motion vector field can pick the
true pixel-by-pixel motion vector field.

OBMC defines to include motion vectors from blocks
in some neighborhood ofinstead of restricting to consist
of the single vector . It assigns a set of motion vectors
for blocks in the neighborhood ofto predict . The
OBMC scheme computes the mean-squared-error prediction of
weight vector by estimating the relevant cross correlations.
The weight vector consists of the elements .
The cross correlation vector for pixel locationbetween the
prediction pixel intensities and the true pixel intensity has the
form

(15)

for each and where stands for the expecta-
tion operator. The autocorrelation matrix has the form

(16)
with the finite variance

(17)
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Fig. 9. Ellipsoids created from the local means and covariances of the motion vectors from “Miss America.” These ellipsoids act as search windows
for the next frame.

The term is the variance of the desired output
that we assume has zero mean. Then the mean-squared-error
of prediction has the form [22]

(18)

Solving (18) with orthogonality conditions gives [29]

(19)

This is just the Wiener weight vector.
OBMC assumes symmetric motion to form windows that

are symmetric with respect to the location of pixels in a block
quadrant. It also assumes that how the system predicts each
quadrant of a block should be similar except for a mirroring
of the weight vector.

B. Fuzzy Overlapped Block Motion Compensation

OBMC needs the normal equation of least squares to
solve for the Wiener weight vectors but the estimation of
the correlations in (15)–(17) has a high cost in computation.
OBMC uses 215 frames of scene for training in [22]. OBMC
may not work well if the correlations of the test sequences
differ from those of the training sequences. We cannot assume
the same correlations for the test sequences as those for the
training sequences. We propose instead a fuzzy estimator.
Samples give probabilities associated with pixel intensities
between two consecutive frames that motion vectors link. The
learned probability density functions serve as fuzzy rules in
the fuzzy system [24]. The number of blocks in a frame picks
the number of rules.

We seek rules that relate the current pixel value to the prior
frame’s pixel values. To find them we use the motion vectors

of neighboring blocks rather than estimate the Wiener weight
vector. OBMC limits the size of the set by 4 to control
the complexity. The optimal motion vector fordepends on
motion vectors assigned to the eight nearest neighbors of. We
choose the four nearest motion vectors per pixel that depend
on , as in Fig. 7. Therefore the sample data will give rules
of the form IF is and is and is and
is THEN is .

Then, the fuzzy system defines the map . The
’s stand for the pixel values that the four motion vectors

point to and stands for the predicted pixel value. We change
these rules slightly to reduce their dimension. We compute the
differences between and the other variables by taking as
a reference. This gives the reduced fuzzy system
with rules of the form IF is and is
and is THEN is . The fuzzy system

uses 196 rules of this form.
We factor the joint set function as the

product for the vector input
. The combined output fuzzy set becomes

(20)

We use triangular scalar set functions
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Fig. 10. Search windows obtained from the neural AVQ algorithm with unsupervised weighting for the “Miss America.” The system used these windows
for the next frames until intra-frame coding reset them.

(21)

where stands for a triangular fuzzy set centered
at with base and height 1.

Parzen [26] showed how one may construct a family of
estimates of a probability density function from
samples

(22)

Here, are independent realizations of the random
variable . The estimator is consistent at all points, where
the density is continuous. The weighting function must
obey Parzen’s conditions

(23)

(24)

(25)

and

(26)

Our set functions satisfy Parzen’s conditions if we choose
. Parzen also proved that the estimateis consistent

in the mean-squared sense that

(27)

Cacoullos [1] has extended Parzen’s results to cover the
multivariate case

(28)

This estimator uses sampled data points from
random variables and and uses triangular weighting
functions. Therefore, the combined output fuzzy “set”with
integrable set function becomes the consistent
estimator or joint density except for a scaling constant.

The conditional mean is the least-mean-square nonlinear
estimate of the random variable in terms of the observed
value of the random variable [25]

(29)

Centroid defuzzification maps to the conditional mean
estimate [17]–[19]

(30)

(31)

(32)
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(33)

since

(34)

for all , even though may hold. Therefore
the centroid defuzzifier plays the role of the conditional mean
estimator. Putting (21) into (33) gives (35)–(39), shown at
the bottom of the page, in the notation of the SAM in (2).
Therefore, (39) can compute the conditional expected value
in (13). Neural learning can tune the if-part sets, the rule
weights , or the then-part set centroids.

We do not need to store the weights as in the OBMC
scheme since the rules come from the prior decoded frame.
The neural fuzzy system also learns and tunes its rules as it
decodes the image. This improves the prediction if the images
are stationary over a small number of consecutive frames.

VI. SIMULATION RESULTS

A. Motion Estimation

This section shows the simulation results we obtained for
the neural AVQ motion estimation algorithm applied to the In-

ternational Committee on Telegraph and Telephones (CCITT)
test sequences “Miss America” and “mobile1.” We applied
this algorithm to forward prediction only. We can apply the
same algorithm to backward and bidirectional predictions if
we choose the proper reference frames. We set the frame rate
at 10 Hz rather than the original 30 Hz. Therefore we used
the first, fourth, seventh, frames in the simulation. They
correspond to I frames and P frames in Fig. 2.

Fig. 8 shows the first, fourth, and seventh frames for “Miss
America.” We computed the motion vectors from the first two
frames of “Miss America” using the full-search block match-
ing technique. Fig. 6 shows the motion vector histogram that
the first two frames gave. We estimated the local means and
covariances using AVQ based on these motion vectors. Fig. 9
shows the ellipsoids that arise from AVQ and the directions
of motion vectors. The directions of motion vectors do not
reflect the number of occurrences in that directions. The local
means and covariances of the motion vectors choose these
ellipsoids. We chose five ellipsoids for the simulation. The
maximum displacement and the ellipsoids pick the common
set of the boundary. This in turn picked the size and shape of
the search windows for the next frames until intraframe coding
reset them. Fig. 10 shows the windows the system grew from
the next frames.

Simulation results compared the full-search block matching
technique, AVQ window without unsupervised weighting, and
AVQ window with unsupervised weighting. We used

(35)

(36)

(37)

(38)

(39)
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Fig. 11. Motion vector histogram obtained for the full-search algorithm for the seventh frame in the “Miss America” image. Note the randomness
of the motion field.

Fig. 12. Motion vector histogram obtained for the AVQ search algorithm for the seventh frame in the “Miss America” image.

pixels as a block size and pixels for maximum dis-
placement. The simulation ran for one period until intraframe
coding reset it. Fig. 11 shows the motion vector histogram
obtained from the full-search algorithm for the seventh frame.
It shows the randomness of the motion field because it searches
only for the least-error position. Fig. 12 shows the motion
vector histogram obtained for AVQ search with unsupervised
weighting for the seventh frame of “Miss America.” This gave
a smooth and clustered motion field with almost the same
prediction error. We can also decrease the side information
to transmit the entropy-coded motion vectors. We compared
the average sum of absolute difference (SAD) and entropy
for “Miss America.” We compute the entropy of the

discrete probability density as

(40)

where stands for the occurrence probability of the motion
vectors. Table II shows the results. The SAD increased about
0.4 to 1.7% as a result of a 70 to 74% reduction of the search
area and decreased entropy.

Next, we applied our algorithm to the “mobile1” image.
Fig. 13 shows the first, fourth, and seventh frames for “mo-
bile1.” Fig. 14 shows the motion vector histogram obtained
for the full-search algorithm for “mobile1.”
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Fig. 13. “Mobile1” image. Top: First frame. Middle: Fourth frame. Bottom:
Seventh frame.

Fig. 15 shows the search windows obtained for AVQ algo-
rithm with unsupervised weighting for “mobile1.” Table III
shows the results. The SAD increased about 0.9 to 1.7% as
a result of a 79 to 81% reduction of the search area and
decreased entropy.

B. Fuzzy Motion Compensation and Supervised Learning

This section shows the simulation results we obtained when
we applied the FOBMC to the CCITT test sequence “Miss

America.” All tests used a block size of and reflect the
results of only the motion-compensating original frames. The
tests used integer-searched block motion fields. We excluded
the border blocks from all test scores so that the measurements
would not depend on how we treated the border regions. The
test began with a full-search integer pixel minimum-MSE
block matching estimation.

Simulation results compared the standard motion compen-
sation, FOBMC without SAM learning, and FOBMC with
supervised SAM learning. We did not need to store the weights
in the FOBMC system without learning since the rules come
from the prior decoded frame. We used (64) in Appendix B to
update the centroid in the FOBMC. This further increased
the compensation accuracy and the system complexity. We
also tuned the weights in (2) and then-part set centroids

using (57) and (64). Our fuzzy systems had the same then-
part set volumes. Therefore . We did not
tune the then-part set volumes. Tuning bothand further
increased the compensation accuracy but at a greater cost of
computation. Table IV and Fig. 16 show the results. We also
tuned the mean and “variance” of the triangles with (68) and
(69) as explained in Appendix B. Tuning the if-part sets did
not improve over tuning only the rule weights and then-part
centroids but it did require much more computation.

VII. CONCLUSION

Neural fuzzy motion estimation and compensation offer new
tools for video compression. They helped reduce the com-
plexity for motion estimation using the temporal correlation
of the motion field and decreased transmission entropy of
motion vectors. Tuning the fuzzy compensator with super-
vised learning further increased the compensation accuracy
without side information. The real advantage of the fuzzy
system is that it computes amodel-freenonlinear conditional
mean.

We applied the neural-fuzzy motion estimation and com-
pensation schemes to image sequences with fast motion. We
had problems when we tried to estimate motion vectors with
small search windows. Our scheme may best apply to systems
like video conferencing where the motion is moderate and the
bit budget for motion vectors is tight. The side information for
motion vectors makes up a large portion of the total bit stream.

Very low-bit-rate coding requires improved motion estima-
tion and compensation techniques since it creates annoying
blocking artifacts as bit rates fall. We need to estimate more
meaningful motion vectors than simple scalar optimization
may provide. The mean-squared-error score may not estimate
true motion vectors because it locates only the minimum of
the prediction error.

Future fuzzy systems may estimate motion vectors using
prior knowledge of the moving objects. Fuzzy systems allow
the user to state knowledge in rules and insert these rules in
a numerical function approximator. The same or new neural
learning laws can tune these rules.

Future neural fuzzy systems for motion compensation may
also use more complex learning laws to tune their sets and
rules for better compensation accuracy. The supervised SAM
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TABLE II
MEAN-ABSOLUTE ERROR (AND ENTROPY) FOR THE “M ISS AMERICA” I MAGE

Fig. 14. Motion vector histogram obtained for the full-search algorithm for the “mobile1” image.

TABLE III
MEAN-ABSOLUTE ERROR (AND ENTROPY) FOR THE “MOBILE1” IMAGE

learning laws in the Appendix may not allow real-time learning
for large imaging problems. That real-time barrier recedes
as computer systems become faster and more parallel. Cus-
tomized fuzzy chips can improve the speed and on-line learn-
ing of the fuzzy motion compensators but perhaps not enough
for fuzzy systems that use many input variables. Even the best
fuzzy systems face a prohibitive exponential rule explosion
in high enough dimensions. Real-time neural learning only
compounds this complexity. New learning schemes may ease

this burden and may tune the black-box approximators without

gradient descent.

APPENDIX A

THE FUZZY STANDARD ADDITIVE MODEL (SAM) THEOREM

Theorem: Suppose the fuzzy system is

a standard additive model: Centroid

Centroid . Then is a convex sum of
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Fig. 15. Search windows obtained for the AVQ algorithm for the “mobile1” image. The system used these windows for the next frames until intra-frame
coding reset them.

the then-part set centroids

(41)

The convex coefficients or discrete probability weights
depend on the input through

(42)

where is the finite positive volume (or area if ) and
is the centroid of then-part set

(43)

(44)

Proof: There is no loss of generality to prove the theorem
for the scalar-output case when . This
simplifies the notation. We need but replace the scalar integrals
over with the -multiple or volume integrals over in the
proof to prove the general case. The scalar case gives
(43) and (44) as

(45)

(46)

Then, the theorem follows by expanding the centroid of
and invoking the SAM assumption Centroid
Centroid to rearrange terms

Centroid (47)

(48)

(49)

(50)

(51)
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Fig. 16. Mean-squared error for neural-fuzzy motion compensation of the “Miss America” image. Solid line: Standard motion compensation. Dotted line:
FOBMC without learning. Dashdot line: FOBMC with supervised SAM learning for then-part set centroidscj . Dashed line: FOBMC with supervised learning
for both rule weightswj and then-part set centroidscj . Further tuning the if-part set trianglesAj did not significantly improve the motion compensation.

(52)

(53)

Q.E.D.

APPENDIX B
LEARNING IN SAMS: SUPERVISED GRADIENT DESCENT

Supervised gradient descent can learn or tune SAM systems
[19], [20] by changing the rule weights in (54), the then-
part volumes , the then-part centroids , or parameters of
the if-part set functions . The rule weight
enters the ratio form of the general SAM system

(54)

in the same way as does the then-part volumein the
SAM Theorem. Both cancel from (54) if they have the same
value—if or if .

Therefore, both have the same learning law if we replace the
nonzero weight with the nonzero volume or

(55)

(56)

(57)

for instantaneous squared error with
desired-minus-actual error . The volumes then
change in the same way if they do not depend on the weights
(which they may in some ellipsoidal learning schemes)

(58)

(59)

The learning law (57) follows since and since
from the SAM Theorem we have

(60)
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TABLE IV
MEAN-SQUARED ERROR FOR “M ISS AMERICA” M OTION COMPENSATION

(61)

(62)

The centroid in the SAM Theorem has the simplest
learning law

(63)

(64)

Therefore, the terms , , and do not change when
, and thus, when the th if-part set barely fires,

.
Tuning the if-part sets involves more computation since

the update law contains an extra partial derivative. Suppose
if-part set function is a function of parameters

. Then we can update each parameter with

(65)

(66)

Exponential if-part set functions can reduce the learning
complexity. They have the form and obey

. Then, the parameter
update (66) simplifies to

(67)

This can arise for independent exponential or Gaussian sets

. The exponential set function
has partial derivatives

and .
The Gaussian set function

has mean partial derivative
and variance partial derivative
. Such Gaussian set functions reduce the SAM

model to Specht’s [28] radial basis function network. We
used these smooth update laws (67) in the motion compen-
sation simulation to update the nondifferentiable triangles. We
viewed their centers and widths as the Gaussian means and
standard deviations and tuned them with the laws

(68)

(69)
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