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Neural Fuzzy Motion Estimation and Compensation

Hyun Mun Kim and Bart Kosko

Abstract—Neural fuzzy systems can improve motion estimation ~ Fig. 1 shows the typical structure of the Moving Picture
and compensation for video compression. Motion estimation and Experts Group (MPEG) encoder. The MPEG standard depends
compensation are key parts of video compression. They help 5 1o basic algorithms. Motion-compensated coding uses
remove temporal redundancies in images. But most motion es- ] . . .
timation algorithms neglect the strong temporal correlations of block-based motion vector_ estlmatlon_and compe_nsatlon to re-
the motion field. The search windows stay the same through the Mmove temporal redundancies. Block discrete cosine transforms
image sequences and the estimation needs heavy computation. Areduce spatial redundancy. The MPEG standard defines and
neural vector quantizer system can use the temporal correlation forms the bit-stream syntax to achieve interoperability among
of the motion field to estimate the motion vectors. First- and yitferent blocks. Standards improve interoperability among

second-order statistics of the motion vectors give ellipsoidal . :
search windows. This algorithm reduced the search area and video systems and help speed the development of high-volume

entropy and gave clustered motion fields. Motion-compensated 0W-cost hardware and software solutions [7].

video coding further assumes that each block of pixels moves Most current research in video compression seeks new
with uniform translational motion. This often does not hold and algorithms or designs high-performance encoders that work
can produce block artifacts. We use a neural fuzzy system 10 it existing standards. These standards give a bit-stream
compensate for the overlapped block motion. This fuzzy system e

uses the motion vectors of neighboring blocks to map the prior syntax and a deCOder_ and thus allow some flexibility in how
frame's pixel values to the current pixel value. The neural fuzzy One designs a compatible encoder. The MPEG standards do not
system used 196 rules that came from the prior decoded frame. give a motion estimation algorithm or a rate-control mecha-

The fuzzy system learns and updates its rules as it decodesnism. This leaves manufacturers free to use the flexibility of
the image. The fuzzy system also improved the compensationpeq syntax.

accuracy. The Appendix derives both the fuzzy system and the Our neural quantizer system uses the first- and second-

neural learning laws that tune its parameters. e - . : .
order statistics of the motion vectors to give ellipsoidal search
windows. This method reduces the search area and gives
I. MPEG SrANDARDS FOR VIDEO COMPRESSION clustered motion fields. It reduces the computation for motion

HIS PAPER presents new schemes for motion estimgstimation and decreases the entropy that the system needs to

tion and compensation based on neural fuzzy systeri@nsmit the entropy-coded motion vectors. _
We also propose a neural fuzzy overlapped block motion

Motion estimation and compensation help compress video . , X
images because they can remove temporal redundancie§qAPensation (FOBMC) scheme for motion compensation.

the image data. Motion estimation schemes often neglect fi#2Zy Systems use a set of if-then rules to map inputs to
strong temporal correlations of the motion field. The sear@ytPuts. Neural fuzzy systems learn the rules from data and
windows remain the same through the image sequences Hief the rules with new data. The FOBMC estimates each
the estimation may need heavy computation. We designed%mel intensity using the block-based motion vectors available
unsupervised neural system that uses the temporal correlaf@dh€ decoder. The fuzzy system uses the motion vectors of
of the motion field to estimate the motion vectors and to reduBgighboring blocks to map the prior frame’s pixel values to the
the entropy of source coding. current pixel value. The 196 rules come from the prior decoded
Motion-compensated video coding uses the motion of offame. The neural fuzzy system tunes its rules as it decodes

jects in the scene to relate the intensity of each pixel in thge image. The fuzzy system defined a nonlinear "black
current frame to the intensity of some pixel in a prior framd©X" function approximator that improved the compensation

It predicts the value of the entire current block of pixeldccuracy. The Appendix derives the supervised learning laws
as the value of a displaced block from the prior frame. [fiat tune the parameters of the fuzzy system.

also assumes that each block of pixels moves with uniform

translational motion. This assumption often does not hold Il. MOTION ESTIMATION AND COMPENSATION

and can produce block artifacts. We designed a neural-fuzzyThis section briefly reviews the standard technigues of
system that uses motion vectors of neighboring blocks baotion estimation and compensation.

improve the compensation accuracy.

A. Motion Estimation
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Fig. 1. Block diagram of the Moving Picture Experts Group (MPEG) encoder.

transmit the prediction error image. The schemes may also
need to transmit the motion field if the motion estimation
algorithm uses information that the receiver does not have.
The prediction error often contains much less information than
does the original frame if the motion estimates are accurate.
The MPEG standard uses three types of pictures that depenc
on the mode of motion prediction. The intra (I) picture serves
as the reference picture for prediction. Block discrete cosine
transforms (DCT’s) code the intra pictures, and no motion
estimation prevents long range error propagation. Coding the T
predicted (P) pictures uses forward prediction of motion. We PR
divide each image into macroblocks of siagx 16 pixels and
search blocks of the same size in the prior reference | frame

EROTIEE
IR

or P frame. ) ) i o~ 5
A second type of picture is the bidirectional interpolated = uoer | 412 | Jd [ daB | el | de2 ) Jeb | Jed -“-“|
> X ™ | B | B r| A i} " B| B
(B) picture. We perform both forward and backward motion . .
prediction with respect to the prior or future reference | or Fig. 2. Ordering of video sequences in MPEG.

P frames. Averaging these two predictions gives the interpo-
lation. Bidirectional interpolation can handle just covered gfardware. Exhaustive search within a maximum displacement
uncovered areas since the system cannot predict an area jgisfe leads to the absolute minimum for the energy of the
uncovered from the past reference. The system can still pregigédiction error and is optimal in this sense. This acts as a type
the areas from the future reference frame. The one that hasgheodeword search in vector quantization (VQ) [10]. VQ finds
smallest mean-square error among the forward, backward, ahgodeword from the codebook that minimizes some criteria
interpolated prediction gives the best motion prediction. Thgich as mean-squared error (MSE). It locates the minimum for
encoding and decoding orders of video sequences can difies energy of the prediction error and tends to have a heavy
from that of the original sequences due to the three types s@@mputational load.
frames. Therefore, the/ + 1)th and(J + 2)th frames follow  Accurate modeling of the motion field becomes more im-
the (J 4 3)th frame as in Fig. 2. The decoder needs to reordgortant under the constraint of a very low bit rate [21]. Here,
the frames to display them. however, full block search technique tends to produce noisy
The two main types of motion estimation use pel-recursivaotion fields that do not correspond to the true 2-D motion
algorithms or block matching algorithms [23]. Pel-recursivin the scene. Noises in real video images can also affect
algorithms predict the motion field at the decoder based tie locations of the smallest distortion. Noise gives rise to
how neighboring pixels decoded in the current frame relate &oblocky effect in motion-compensated prediction images and
pixels in the prior frame. Block-based motion estimation ddvas no physical meaning in terms of the estimated motion
rives from the need for relatively accurate motion fields whileectors. These artificial discontinuities lead to an increase of
keeping low the side information one needs to represent te side information to transmit the entropy-coded motion
motion vectors. Image sequence coding often uses full-seavgttors. A decrease in this side information while keeping
block matching among the block-based motion estimatighe same accuracy for the motion fields improves low bit rate
techniques. This scheme is simple and easy to implementaipplications [5]. Therefore, we propose a new adaptive scheme
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to estimate motion vectors that have spatial consistency. Tieem A; x B; ¢ X x Y = R® x R. The if-part fuzzy
scheme uses the temporal correlation of the motion field sets A; ¢ R™ and then-part fuzzy set®; C R have set
reduce the computation and to give a clustered motion fieldunctionsa;: R* — [0, 1] andb;: R — [0, 1]. The system

can use the joint set function;: R™ — [0, 1] [11] or

B. Motion Compensation some factored form such as(z) = a}(a:l) v af(zy), or
— : 1 n H H
Motion-compensated video coding relates the intensity 6f(*) = min [a;(z1), -+, aj(a,)], or any ortlher conjunctive
each pixel in the current frame to the intensity of some pix{@'M for input vectorz = (zy, ---, &) € R".

in a prior frame. It links these pixels by predicting the motion AN additive fuzzy system [17]-{20] sums the *fired” then

/
of objects in the scene. However, the transmission overhdt Sets5;

needed to inform the decoder of the true motion at every m n
pixel in the image may far outweigh the gains of motion B= Z B, = a;(z)B;. (1)
compensation. Motion compensation assigns only one motion j=1 j=1

vector to each square (ofteri@&x 16-pixel) block in the frame. .
The encoder selects this motion vector to minimize the mednd- 3 shows the parallel fire-and-sum structure of the SAM

squared prediction error. It predicts the value of the entifyStém. The additive system is standard if the if-part value
current block of pixels by the value of a displaced block frorfti () Scales the then-part sBy; to give the fired seB;: B; =

the prior frame. Therefore, it assumes that each block of pixélg)B;- These systems can uniformly approximate any con-
moves with uniform translational motion. This assumptioffnuous (or bounded measurable) functignon a compact
often does not hold and can produce block artifacts. domain [17].

Orchard and Sullivan [22], proposed overlapped block mo- Fig. 4 shows how th_ree rule patches can cover part of the
tion compensation (OBMC) to overcome this problem. Thigraph of a scalar functioff: k — K. The patch cover shows
linear scheme estimates each pixel intensity using the blodRat all fuzzy systems™: k™ — R suffer fromrule explosion
based motion vectors available to the decoder. It predi¢fshigh dimensions. A fuzzy systeri needs on the order of
the current frame of a sequence by repositioning overlappifig” " "ules to cover the graph and thus to approximate a
blocks of pixels from the prior frame. Then, it compute¥€ctor functionf: k™ — k. Optimal rules can help deal with
the coefficients of the linear estimator by solving the notl€ exponential rule explosion. Lone or local mean-squared
mal equations of least squares, but this scheme has at |€{mal rule patches cover the extrema of the approximand
two problems. The coefficients computed from the training8]- They “patch the bumps.” Better learning schemes move
sequences may not work well for the test sequences, dH.&F patches to or near extrema and then fill in between extrema
the coefficient calculation is computationally heavy and tH#ith extra rule patches if the rule budget allows.
decoder must store these values. The scaling choiceB; = a;(z)B; leads to astandard

We propose duzzyoverlapped block motion compensatiorfdditive model(SAM). Appendix A shows that taking the
(FOBMC). A fuzzy rule-based system estimates pixel inteig€ntroid of B in (1) gives [16]-{20] the SAM ratio
sities using the block-based motion vectors available to the m
decoder. Fuzzy systemB: R" — R compute a model-free ijaj(a:)vjcj
conditional meank[Y'| X] [16], [20], [24] and thus compute Flz) = j=1
a least-mean-square nonlinear estimate of the random variable - m
Y based on our knowledge of the random vecfor The ijaj(x)vj
FOBMC system uses the conditional mean to predict each i=l1
pixel intensity. It uses the motion vectors of neighborin@ihere
blocks to map the prior frame’s pixel values to the current pixe .. _—
value. This has at least two advantages. The rules come frorjﬁj positive rule weight ]
the prior decoded frame, and the neural fuzzy system tuness "NONZ€r0 volume or area of then-part dgf
its rules as it decodes the image. Simulation results showed?” centroid of B; or s center of mass.
that the FOBMC improved the compensation accuracy. Thigeérefore, a SAM has the form of a convex suiiX) =

(2)

method also shows how to insert expert knowledge into tRe;—1 17’7{(37)01 for convex coefficientsp;(x) = wja;(x)
compensation process. Vil > k=1 wrar(z) Vi so thatp;(x) > 0 and} i1, p;(z) =1
for eachz € R".
. ADDITIVE FUZZY SYSTEMS AND LEARNING The SAM theorem (2) implies that the fuzzy structure of

. : . .y the then-part set®; does not matter for a first-order function
This section reviews the standard additive model (SA'\@pproximator. The ratio depends on just the rule weighand

fuzzy system and how SAM's learmn with and without Supefpe o1 mey: and location or centroid; of the then-part sets

vision. The Appendix derives the ratio structure of the SAI\ﬁ_gj_ Our SAM has then-part sets of the same area and weight

and supervised learning laws that tune its parameters. Vi=..=V,>0andw, = --- = w,, > 0. Therefore
. the volume termd/; and the weightv; cancel from (2). We
A. Additive Fuzzy Systems need pick only the scalar centersto define theB; sets. The

A fuzzy systemF: R* — R storesm rules of the then-part structure does affect the second-order structure or
word from “If X = A;, thenY = B;” or the patch uncertainty of the outpuf'(x) [19]-[20].



2518 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 10, OCTOBER 1997

o 1A THENE

b
a L} "-
% H
L] L} I" :
- ‘ll._
B e 1 B :
vl . PHEN T L Fy
— WA THENB PR ™ Dedugzifice ™™ "
. A
" ¥ v
i .-l.-.l-. le
L] ¥ i
! A
i [ ] L ] &

o WA THENER,_

Fig. 3. Architecture of an additive fuzzy systeft R™ — RP with m rules. Each input:g € R™ enters the systeni’ as a numerical vector. At the
set levelzg acts as a delta puls&(x — xq) that combs the if-part fuzzy set$; and gives then set valuesu;(xo) a;(x0) = [, 6(x — xo)a;(x) da.
The set values “fire” the then-part fuzzy sef§ to give B;. A standard additive model (SAM) scales eaBh with «;(x). Then the system sums the
B;- sets to give the output “setB. The system outpuf(z¢) is the centroid ofB.

B. Learning in SAM’s: Unsupervised Clustering Y od
and Supervised Gradient Descent

A fuzzy system learns if and only if its rule patches move
or change shape in the input—output product spdce Y. IF X=4; THEK ¥=H, T
Learning might change the centers or widths of triangle oy | %, s
trapezoidal or bell-curve sets. These changing sets then chan s L o~
the shape or position of the Cartesian rule patches built out ¢ |, A
them. The mean-value theorem and the calculus of variatiorsi; | ,-*’?. .
show [18] that optimal lone rules cover the extrema or bump: K T ——
of the approximand. Good learning schemes [3], [4] tend t® > e "
quickly move rules patches to these bumps and then mo\ y el | Az
extra rule patches between them as the rule budget allow
Hybrid schemes use unsupervised clustering to learn the fir {
set of fuzzy rule patches in position and number and tc T
initialize the gradient descents of supervised learning. - e e

Learning changes system parameters with data. Unsupe. b 2 L T
vised learning amounts to blind clustering in the systemig. 4. Each fuzzy rule defines a Cartesian-product patch or fuzzy subset of
product spaceX x Y to learn and tune the: fuzzy rules or the input-output state space. The fuzzy system approximates a function as it
the sets that compose them. Thérguantization vectors; € covers its graph with rule patches. Lone optimal rule patches cover extrema.
X x Y move in the product space to filter or approximate the

stream of incoming data paifs(t), y(t)] or the concatenated %(t+1)
data pointsz(t) = [z(¢)|y(t)]*. The simplest form of such q;(t) + pelz(t) — q;(t)] fi=j
product space clusterinfl.5] centers a rule patch at each data = {qi(t) if i £ j (4)
point and, thus, puts = m. In general, both the data and the Ki(t+1)
quantizing vectors greatly outnumber the rules, and therefore, ~° () +u[{a(8) — (VT at)
k> m. J g J - .
A natural way to grow and tune rules is to identify a rule = —a; (1)} — K;(1)] ti=j (5
patch with the uncertainty ellipsoid [2], [3] that forms around Ki(t) it iy

each quantizing vectay;. The ellipsoid stems from the inverse ) y y )

of the vector's positive definite covariance mati. Then, for the Euclidean normjiz(|* = 27 +--- + 2z,

sparse or noisy data grows a patch larger and, thus, a Iesghe_ f_|rst step (3) is the compeut!ve step. It picks the nearest
certain rule than does denser or less noisy data. Unsupervi§egntizing vectorg; to the incoming data vectog(¢) and

competitive learning [15] can learn these ellipsoidal rules fgnores the rest. Some schemes may count nearby vectors
three steps: as lying in the winning subset. We used just one winner per

datum. This correlation matching approximates a great deal of

the competitive dynamics of nonlinear neural networks. The

12(t) = ¢; (D)l second step updates the winning quantization or “synaptic”
=min [||z(&) — @ @), -+, [|12(8) — a(®)]l] (3) vector and drives it toward the centroid of the sampled data
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pattern class [14]. The third step updates the covarian A
matrix of the winning quantization vector. We initialize the
quantization vector with sample daf@(0) = z(i)] to avoid
skewed groupings and to initialize the covariance matrix wit
small positive numbers on its diagonal to keep it positiv
definite. Then, projection schemes [2]-[4] can convert tf
ellipsoids into coordinate fuzzy sets. Other schemes can use
unfactored joint set function directly and preserve correlatior
among the input components [11]. Supervised learning ¢
also tune the eigenvalue parameters of the rule ellipsoids.
Supervised learning changes SAM parameters with err -
data. The error at each timeis the desired system output
minus the actual SAM output, = d; — F(z;). Unsupervised
learning uses the blind data poinft) instead of the desired
or labeled valuei;. The teacher or supervisor supervises th
learning process by giving the desired vadljeat each training
time ¢. Most supervised learning schemes perform stochas
gradient descent on the squared error and do so throt
iterated use of the chain rule of differential calculus. Appendix
B derives the supervised learning laws that tune the parameters
in (2). We do not know in advance which parameters to tur N
or which mix of parameters to tune.

IV. MOTION ESTIMATION USING
ADAPTIVE VECTOR QUANTIZATION

Motion vector estimation removes the temporal correlatio
of video images. Block matching methods often neglect tt
fact that the motion field itself has strong spatial and tempor
correlation. We propose an unsupervised neural system tl
uses the temporal correlation of the motion field to estima 4 o - - -
the motion vectors. The neural system acts as an adapt
vector quantizer.

A. Competitive AVQ Algorithm for Local
Means and Covariances

First- and second-order statistics of the motion vectol
combine to pick the search windows. Adaptive vector quan-
tization (AVQ) determines the local means and covariances of ()
the .mOIIO!’I vectors fF)r th_e prior frame,' Th,e covariance ma,tr Ig. 5. (a) Search window for full-search block matching. Such window
again defines an ellipsoid [2]. The ellipsoids from the motiofvoives heavy computation and tends to produce noisy motion fields. (b)
vectors of the prior frame pick the search windows for thélipsoidal search window gives a smooth and meaningful motion field. The
current frame based on the temporal correlation in the motigffrch Window hops about more in the presence of noisy motion vectors and,

. . . . . . . us, has a larger “error” ball. The covariance mafiix measures this error
field. The ellipsoidal windows give a clustered motion fielgg.
that has lower computational load than that of the full search

method. Fig. 5 shows the search windows for full-search block , . AT . . o

matching and the ellipsoidal method. The ellipsoidal windo@d 18ts” = (2’, /)" stand for a pixel position within a block.
uses the spatial consistency of the motion field. Define a2 x 2 diagonal matrle. with diagonal element$V

Define each frame of an image sequence on a 2-D rect&fd H such thats = s’ + Ab with 2" = z(modulgW" and
gular latticeS of pixels with members = (z, )% Let I (s) y' = y(modulo H. Let v} stand for a motion vector for block
stand for the intensity at pixel of frame & of the sequence. 0 in frame k. We call the set of motion vectorsu }ucp @

Let I,(s) stand for the pixel intensity of the correspondinglock motion field for framek and write it asV}.

decoded frame. Lat = (Az, Ay)T stand for a motion vector ~ Vector quantizers can use competitive learning to estimate
andv* stand for a motion vector for pixel of frame k. We the local mean and conditional covariance matrix for each
call a set of motion vectorfu*} ;< 5 for all pixels in the lattice pattern class [16]-[20]. Motion vectqiAz, Ay) drives the

a pixel motion field and write the entire field a8*. Let B competitive learning process. We first form the concatenated
stand for a partition of into a lattice of blocks of widtHV  vectorv = (Az, Ay)? in the product spac& x R. Then we
and heightHd. Let b = (2, y”)* stand for a block fromB, assignp quantization vectorsn; to the same product space.
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Fig. 6. Motion vector histogram from the full-search algorithm for the “Miss America” image. We use these motion vectors to estimate the local
means and covariances.

These vectors learn or adapt as they code for the local sample where|| - || denotes the Euclidean norfjw||? = Az? +
statistics and give rise to an AVQ. The AVQ vectaens act as A2,

the synaptic fan-in columns of a connection matrix in a neural 3) Update the winnem; (k)

network withp competing neurons [14]. The points; learn

if and only if they move in the product space. The points m;(k+1)

track the distribution of the incoming motion vectars and mj(k) + cx[v(k)

tend to be sparse or dense where theare sparse or dense. = —m;(k)] if the jth neuron wins (8)
Each AVQ vectom; converges to the local centroid of the m;(k) if the jth neuron loses

motion vectorsy’s. Therefore the AVQ vectors:; estimate ) . . )
the local first-order moments of some unknown probability ~ and update its covariance estimatg(k) as shown in
densityp(v) that generates the motion vectars. The AVQ (9), at the bottom of the page.

algorithm is a form of nearest-neighbor pattern matching or The sequences of learning coefficiefts } and{dj } should
K-means clustering. The:; are random estimators since thélecrease slowly [20] in the sensepJ;”,; ¢ = oo but not too
motion vectora’s are random. The AVQ point:; hops about Slowly in the sense 0p~;2, ¢ < co. In practice,cx =~ 1/k.
more in the presence of noisy or sparse data and thus hakhg covariance coefficients obey a like constraint as in our
larger “error” ball. The covariance matrik; measures this choice ofd; = 0.2[1—k/(1.2V)] wherel is the total number
error ball. The competitive AVQ algorithm in (7)—(9) belowof data points.

updates the positive-definite matriX;. The inverse matrix

K1 defines an ellipsoid in the product spac& x R as the B. Motion Estimation Using Adaptive Vector Quantization

locus of all pointsy that obey This section shows how we obtain a smooth and meaningful
2 =(v— mj)TKj—l(v —m;) (6) motion field. The fact that the motion field has strong spatial

i . . i and temporal correlation [12] motivates our algorithm. Fig. 6

for centering constant > 0. Then thejth ellipsoid defines gy, s the motion vector histogram we obtain if we use the
the jth search window. full-search algorithm. It shows the scattered motion field. The

The following scheme describes the competitive adaptif§ search with the MSE criterion locates just the minimum
vector quantization algorithm for local means and covariances the prediction error

1) Initialize cluster centers from sample daia(0) = v(¢) We assume that the objects in motion move with an almost
er t=1.p _ constant velocity within a few consecutive frames. Therefore,
2) Find the “winning” or closest synaptic vector;(k) o we model the motion vector field}; in frame k using the
sample motion vector(k) motion vector fieldv’* in frame k — 1
([ (k) = v(k)|| = min [jmi (k) = v(k)]] (7) R (10)
K;(k) + di[{v(k) — m;(k)Hv(k) — m;(k)}¥ — K;(k)] if the jth neuron wins
Kij(k+1)= . . ©)
K;(k) if the jth neuron loses.
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where n" L is the noise field in frame: — 1. The noise TABLE |

may come from an acceleration or deceleration of the block COMPLEXITY ANALYSIS OF MOTION ESTIMATORS
of pixels in consecutive image frames. We assume it has a
zero mean and finite variance. The noise may result from

Full block search | AVQ search

many sources: poor camera handling, misfocus, nonideal filmumber of additions | 125,960,192 31,490,048
materials, camera zooming, scene cut, or sudden light intensity,, .. none 5,156 additions and
changes [12]. o
AVQ estimates the motion vector field;™*. The area of ~°verhead 5,517 multiplications
the search window depends on this motion vector field so thatnsupervised none 3 additions and
learning can reduce the search windows with centers that shift e
weighting overhead 4 multiplications

and window sizes that vary. However, the full-search method
always chooses a fixed-size search window with the center

at the origin. It simply locates the energy minimum of the ! 16 pixels
prediction error and does so without outside information.

C. Unsupervised Weighting for AVQ Algorithm

We can also add an unsupervised weighting scheme to the
AVQ algorithm. We need to minimize the calculation overhead
since we want to decrease the complexity of the full-search
algorithm. We add a simple weighting scheme to the AVQ
algorithm to help achieve this.

The search window hops about more in the presence of
noisy motion vectors and, therefore, has a larger “error” ball.
This presents a problem since noisy motion vectors will have
a larger search window than smaller and more certain motion
vectors have. We give more weight to the window that has the
closet center to the zero point. Fig. 7. Eight nearest neighbors bfssigned for optimal motion vectors for

The unsupervised weighting scheme has a simple form. \Me center block. The pixels in the second quadrantiohave four motion
useec = 2 in (6) for the window that has the closet center tgectors selected for the shaded blocks.
the zero point and use= 1 in (6) for the other windows.

overhead by three then this gives 5156 additions and 5517
D. Complexity Analysis multiplications. The number of additions in the AVQ is just
J25960192 x 0.25 = 31 490 048. This involves an overhead
f 5156 additions and 5517 multiplications if we search only
5% of the window.

Unsupervised learning can decide which window has the
&loset center to the zero point. It needs nine additions and
ten multiplications if we assume five search windows. If we
divide this by three, then we get only three additions and four
mmultlpllcatmns Table | summarizes these results.

The AVQ algorithm has less complexity than the full-searc
technique. Consider the number of additions and multiplic
tions. We nee@56 x 2 = 512 additions for each search point.
Therefore, we need12 x 961 = 492032 additions for each
macroblock using the full block search technique if we assu
a31x31 window size. This gived92032x 256 = 125 960 192
additions for the full block search technique.

Suppose We have five ellipsoids for the AVQ algorith
We need3 x 5+ 4 = 19 additions and2 x 5 = 10
multiplications to find the winning vector in (7). We need V- FUZZY OVERLAPPED BLOCK MOTION COMPENSATION
four additions and two multiplications to update;(k) and This section shows how a “fuzzy” conditional mean can
eight additions and eight multiplications to updak& (k). predict each pixel intensity. Standard motion compensation
There are 256 motion vectors if we assume 286 x 256 views the sent motion vectors as fixing a motion field for the
image. We first use five motion vectors to initialize thelecoder. This assumes that each block of pixels moves with
mean and covariance and then use the other 251 motimiform translational motion. This assumption often does not
vectors to update them. Therefore we n&édx 251 = 7781 hold and produces block artifacts.
additions and20 x 251 = 5020 multiplications to find the  Orchard and Sullivan [22] have viewed the sent motion
local means and covariances. We also need to compute \(6ktors as giving information about an underlying random
to pick the search points. This takes eight additions and fribtion field. They described this information with an inferred
multiplications. Therefore we neetix 961 = 7688 additions probability density that models the decoder uncertainty about
and 12 x 961 = 11532 multiplications to pick search pointsthe true motion at each pixel given the sent data. Then, motion
inside the window. Therefore the extra calculations using AV@ompensation predicts the intensity of each pixel with respect
come to 15469 additions and 16 552 multiplications. Howeven this inferred probability density.
we use this search window for the whole image sequenceMotion-compensated coding somehow represents a motion
until intraframe coding resets it. Therefore if we divide théo create a predictiot (s) for each pixels and then encodes
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Estimation theory can view any dafa, that the decoder
received prior to the decoding of frankeas a source of infor-
mation about the true motion field. This information allows us
to define ara posterioriprobability density functiory; (v|Dy)
that gives the probability that is the correct vector to apply
at s given all information D, that the decoder received.
Block motion compensation deals with the cabg = V.
Orchard and Sullivan [22] define ideal motion compensation
as an optimal estimator of pixel intensity with respect to the
probability densityf;(v|Dy). Therefore the minimum mean-
squared error estimate is the conditional expected value [22]

() = / Fo 0D Ts (s +0) o (13)

but a general optimal solution to (13) may be quite complex.
Orchard and Sullivan proposed an optinadear solution
called overlapped block motion compensation (OBMC) to
reduce this complexity [22].

A. Overlapped Block Motion Compensation

Orchard and Sullivan proposed OBMC to simplify the
solutions to (13). They used linear filtering (Wiener filter)
for (13) and an ordered set of integer displacemets =

{vF @ Yier:

fk(s) = Z hs(i, Dk)fk_l[s + U?(L)] (14)

where{h,(i, Dy)}icr is a set of weights for the displacements
MY = {vl(i)}ier.

Rule-based motion compensation often restrigtg’ to
consist of just one vectar* (0) = v} andhs(0, Dy) = 1. This
gives a probability density function that assigns probability one
to v} and probability zero to all other vectors. It assumes the
correct vector applied at pixelis v}’ with certainty. The sum
(14) improves over (12) since the new model the does not
assume that the coded block motion vector field can pick the
true pixel-by-pixel motion vector field.

OBMC definesM¥ to include motion vectors from blocks
in some neighborhood afinstead of restricting/* to consist
of the single vectow}. It assigns a set of motion vectoid?
for blocks in the neighborhood éfto predicti, (s’ + Ab). The
OBMC scheme computes the mean-squared-error prediction of
weight vectorh,s by estimating the relevant cross correlations.
The weight vectoh consists of the elementé (i, Dy)}icr.

The cross correlation vector for pixel locatishbetween the

Fig. 8. _ “Miss America” image. Top: First frame. Middle: Fourth frame'prediction pixel intensities and the true pixel intensity has the
Bottom: Seventh frame. form

the compensated frame difference (CFD) vor (i) = E{Ii(s' + Ab) Iy 1 [s' + Ab+oF ()]} (15)

CFDy(s) = In(s) — Ii(s). (11) for eachv’(i) € MF and whereE{.} stands for the expecta-
tion operator. The autocorrelation matrix has the form
We often send only a block motion field% rather than an B B
exact pixel motion fieldV’¥. The standard blockwise motion ®/ (i, j) = E{l;_1[s’ + Ab+v* (i) [1—1[s' + Ab+ ()]}
compensation approach forms the prediction for all pixels (16)
a blockd € B by using the same encoded motion veetpr  with the finite variance

~

In(s) = Dimi(s +vp). (12) 0, (1) = E{I}(s' + Ab)}. (17)
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Fig. 9. Ellipsoids created from

for the next frame.

X

25

the local means and covariances of the motion vectors from “Miss America.” These ellipsoids act as search windows

The term¥, (¢) is the variance of the desired outgiy{s’+Ab)

of prediction has the form [22]

eg, =0y — 2h£fysr + hf@srhsr.

Solving (18) with orthogonality conditions gives [29]

h: = @ v,

This is just the Wiener weight vector.

(18)

(19)

of neighboring blocks rather than estimate the Wiener weight
that we assume has zero mean. Then the mean-squared-axeotor. OBMC limits the size of the sét/* by 4 to control

the complexity. The optimal motion vector férdepends on
motion vectors assigned to the eight nearest neighbdrs\viué
choose the four nearest motion vectors per pixel that depend
on s, as in Fig. 7. Therefore the sample data will give rules
of the form IF X, is A} and X, is A3 and X3 is A? and X,

is A‘} THEN Y is B;.
Then, the fuzzy systeri defines the mag’: R* — R. The

quadrant of a block should be similar except for a mirroring

of the weight vector.

B. Fuzzy Overlapped Block Motion Compensation

solve for the Wiener weight vectors but the estimation eroduct aj(z) = a}(azl)

OBMC assumes symmetric motion to form windows tha‘)t(

are symmetric with respect to the location of pixels in a blo
guadrant. It also assumes that how the system predicts e

&O

.'s stand for the pixel values that the four motion vectors
int to andY” stands for the predicted pixel value. We change
these rules slightly to reduce their dimension. We compute the

i

Ifferences betweei; and the other variables by takidg as
reference. This gives the reduced fuzzy sysfenk® — R
with rules of the form IFX,; — X is AE} andX; — X is Af
and X, — X, is A3 THEN Y — X, is B;. The fuzzy system
F: R? — R uses 196 rules of this form.

OBMC needs the normal equation of least squares towe factor the joint set functiom;: R®> — [0, 1] as the

(z2)a(x3) for the vector input

the correlations in (15)—(17) has a high cost in computatiop.— (z,, z,, 23). The combined output fuzzy sé& becomes
OBMC uses 215 frames of scene for training in [22]. OBMC
may not work well if the correlations of the test sequences
differ from those of the training sequences. We cannot assume
the same correlations for the test sequences as those for the
training sequences. We propose instead a fuzzy estimator.
Samples give probabilities associated with pixel intensities

between two consecutive frames that motion vectors link. The

learned probability density functions serve as fuzzy rules {fe yse triangular scalar set functions
the fuzzy system [24]. The number of blocks in a frame picks

the number of rules.

We seek rules that relate the current pixel value to the prior
frame’s pixel values. To find them we use the motion vectors

bz, y) = Z wja; ()b (y)

bz, y) =Y wik
j=1

196

= Z wja} (a:l)a?(azg)a?(azg)bj(y).

196

(20)

371—37]1» I .’172—37]2»
A A
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search windows generated using AVQ
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Fig. 10. Search windows obtained from the neural AVQ algorithm with unsupervised weighting for the “Miss America.” The system used these windows
for the next frames until intra-frame coding reset them.

T3 — 13 — Cacoullos [1] has extended Parzen’s results to cover the
B B multivariate case

. . n 1 1 2 2

wherea[(z — 2%)/A] stands for a triangular fuzzy set centered s, 1 2 _ 1 pl T (T o8

at «% with base2X and height 1. fula?, &%) = nA2 ; A A - (28)
Parzen [26] showed how one may construct a family of

estimates fn of a probability density functionf from =

This estimator uses: sampled data point$z}, z3) from

samples . . L
P random variablesX; and X, and uses triangular weighting
. 1 & T — functions. Therefore, the combined output fuzzy “sBtiwith
Inla) = — /f< . ) (22) integrable set functioh: R — [0, o) becomes the consistent
i=1 estimator or joint density except for a scaling constant.
Here,z,, -, x,, are independent realizations of the random The conditional mean is the least-mean-square nonlinear

estimate of the random variabl in terms of the observed

variable X. The estimator is consistent at all pointswhere .
poa’s value z of the random variableX [25]

the densityf is continuous. The weighting functioh must
obey Parzen’s conditions

=EBYIX =z = dy. 29
o )] <o - M) =BV =al= [ wiGlo)dn. (@9
—oo< <o
/Oo |k(x)| dz < oo, (24) CentroidAdefuzzification map® to the conditional mean

—oo estimate¢(x) [17]-[19]

lim |zk(z)| =0, (25)
and r i) = [ ufio)dy (30)

k(x)dz =1. (26) AN
oo z,
=/ yf(A ) dy (31)

Our set functions satisfy Parzen’s conditiqns if we choose —o f(@)
A = 1. Parzen also proved that the estimgtés consistent /Oo yf(x, y)dy
in the mean-squared sense that _J-x ’ (32)

lim E{] fo=f1?}=0. (27) /_ Oof(w, y) dy
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/OO yb(z, y) dy ternational Committee on Telegraph and Telephones (CCITT)
—oo ’ test sequences “Miss America” and “mobilel.” We applied
= (33) . . o
b J this algorithm to forward prediction only. We can apply the
. (@, y) dy same algorithm to backward and bidirectional predictions if

we choose the proper reference frames. We set the frame rate
at 10 Hz rather than the original 30 Hz. Therefore we used
B(z) « b(z, y) (34) the first, fourth, seventh,.. frames in the simulation. They
correspond to | frames and P frames in Fig. 2.
for all y € R, even thoughb(z, y) > 1 may hold. Therefore  Fig. 8 shows the first, fourth, and seventh frames for “Miss
the centroid defuzzifier plays the role of the conditional meafinerica.” We computed the motion vectors from the first two
estimator. Putting (21) into (33) gives (35)(39), shown §fames of “Miss America” using the full-search block match-
the bottom of the page, in the notation of the SAM in (2}ng technique. Fig. 6 shows the motion vector histogram that
Therefore, (39) can compute the conditional expected valygs first two frames gave. We estimated the local means and
in (13). Neural learning can tune the if-part sets, the rule  coyariances using AVQ based on these motion vectors. Fig. 9
weightsw;, or the then-part set centroids. shows the ellipsoids that arise from AVQ and the directions
We do not need to store the weights as in the OBMGt motion vectors. The directions of motion vectors do not
scheme since the rules come from the prior decoded framgfect the number of occurrences in that directions. The local
The neural fuzzy system also learns and tunes its rules agkans and covariances of the motion vectors choose these
decodes the image. This improves the prediction if the imaggfinsoids. We chose five ellipsoids for the simulation. The
are stationary over a small number of consecutive frames. ,5ximum displacement and the ellipsoids pick the common
set of the boundary. This in turn picked the size and shape of
VI. SIMULATION RESULTS the search windows for the next frames until intraframe coding
reset them. Fig. 10 shows the windows the system grew from
the next frames.
Simulation results compared the full-search block matching
This section shows the simulation results we obtained ftechnique, AVQ window without unsupervised weighting, and
the neural AVQ motion estimation algorithm applied to the INnAVQ window with unsupervised weighting. We useé x 16

oo 196 x1 —ak o — 22 3 — 5 Y — Y
) /_Ooyjzz:lea< 3 J)a( 3 J)a( 3 J)a( 3 J)dy

since

A. Motion Estimation

P2) = ——5 _ 1 — 2 -z )
LEAE e
e A A A A
196 T — a:} To — a:? T3 — a::;’
jz_:l wja )\ a )\ a )\ y]
£ (36)
196 T — a:} To — a:? T3 — a::;’
2w\ =5 Jol T3 )l S
J=1
196
ija}(azl)a?(xg)a?(x?))yj
o
ija}(a?l)%z(x?)a?(x?’)
j=1
196
Z w;a;(x)y;
S >
ijaj(a:)
j=1
196
Z wja;(x)c;
j=1
= 1% )

Z wja;(x)
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herep; stands for the occurrence probability of the motion
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Motion vector histogram obtained for the full-
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of the motion field.

Fig. 11.

dx
5 pixels for maximum dis- discrete probability density’

Fig. 12. Motion vector histogram obtained for the AVQ search algorithm for the seventh frame in the “Miss America” image.
to transmit the entropy-coded motion vectors. We comparegy. 13 shows the first, fourth, and seventh frames for “mo-
the average sum of absolute difference (SAD) and entropilel.” Fig. 14 shows the motion vector histogram obtained

weighting for the seventh frame of “Miss America.” This gave) 4 5 1,79 as a result of a 70 to 74% reduction of the search
for “Miss America.” We compute the entrop¥{ (P) of the for the full-search algorithm for “mobilel.”

a smooth and clustered motion field with almost the samgea and decreased entropy.
prediction error. We can also decrease the side informationnext, we applied our algorithm to the “mobilel” image.

coding reset it. Fig. 11 shows the motion vector histogram

obtained from the full-search algorithm for the seventh frame.
It shows the randomness of the motion field because it searches

only for the least-error position. Fig. 12 shows the motiopn
vector histogram obtained for AVQ search with unsupervisgg,

placement. The simulation ran for one period until intraframe

pixels as a block size ane:1
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America.” All tests used a block size o6 x 16 and reflect the
results of only the motion-compensating original frames. The
tests used integer-searched block motion fields. We excluded
the border blocks from all test scores so that the measurements
would not depend on how we treated the border regions. The
test began with & 15 full-search integer pixel minimum-MSE
block matching estimation.

Simulation results compared the standard motion compen-
sation, FOBMC without SAM learning, and FOBMC with
supervised SAM learning. We did not need to store the weights
in the FOBMC system without learning since the rules come
from the prior decoded frame. We used (64) in Appendix B to
update the centroid; in the FOBMC. This further increased
the compensation accuracy and the system complexity. We
also tuned the weighta; in (2) and then-part set centroids
¢; using (57) and (64). Our fuzzy systems had the same then-
part set volumes. Thereforg = --- = V,,, > 0. We did not
tune the then-part set volumes. Tuning bathandc; further
increased the compensation accuracy but at a greater cost of
computation. Table IV and Fig. 16 show the results. We also
tuned the mean and “variance” of the triangles with (68) and
(69) as explained in Appendix B. Tuning the if-part sets did
not improve over tuning only the rule weights and then-part
centroidsc; but it did require much more computation.

VIl. CONCLUSION

Neural fuzzy motion estimation and compensation offer new
tools for video compression. They helped reduce the com-
plexity for motion estimation using the temporal correlation
of the motion field and decreased transmission entropy of
motion vectors. Tuning the fuzzy compensator with super-
vised learning further increased the compensation accuracy
without side information. The real advantage of the fuzzy
system is that it computesraodel-freenonlinear conditional
mean.

We applied the neural-fuzzy motion estimation and com-
pensation schemes to image sequences with fast motion. We
had problems when we tried to estimate motion vectors with
small search windows. Our scheme may best apply to systems
like video conferencing where the motion is moderate and the
bit budget for motion vectors is tight. The side information for
motion vectors makes up a large portion of the total bit stream.

Very low-bit-rate coding requires improved motion estima-
tion and compensation techniques since it creates annoying
blocking artifacts as bit rates fall. We need to estimate more
Fig. 13. “Mobilel” image. Top: First frame. Middle: Fourth frame. Bottommeaningful motion vectors than simple scalar optimization
Seventh frame. may provide. The mean-squared-error score may not estimate

true motion vectors because it locates only the minimum of

Fig. 15 shows the search windows obtained for AVQ algdhe prediction error.
rithm with unsupervised weighting for “mobilel.” Table Ill Future fuzzy systems may estimate motion vectors using
shows the results. The SAD increased about 0.9 to 1.7% pi#r knowledge of the moving objects. Fuzzy systems allow
a result of a 79 to 81% reduction of the search area afite user to state knowledge in rules and insert these rules in
decreased entropy. a numerical function approximator. The same or new neural
learning laws can tune these rules.

Future neural fuzzy systems for motion compensation may

This section shows the simulation results we obtained whalso use more complex learning laws to tune their sets and
we applied the FOBMC to the CCITT test sequence “Misalles for better compensation accuracy. The supervised SAM

B. Fuzzy Motion Compensation and Supervised Learning
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TABLE I
MEAN-ABSOLUTE ERROR (AND ENTROPY) FOR THE “MISS AMERICA” | MAGE

Full-Search Window | AVQ AVQ
Window without un- | Window with unsu-

supervised weighting | pervised weighting

Search Points 961 253 289

7th frame 754.6 (1.7939) 767.1 (1.6199) 758.3 (1.6925)
10th frame 699.3 (1.7583) 703.7 (1.6073) 702.3 (1.6622)
13th frame 670.4 (1.6936) 681.0 (1.5600) 673.5 (1.6194)
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Fig. 14. Motion vector histogram obtained for the full-search algorithm for the “mobilel” image.

TABLE 1l
MEAN-ABSOLUTE ERROR (AND ENTROPY) FOR THE “MOBILE1” IMAGE

Full Search Window | AVQ AVQ
Window without un- | Window with unsu-

supervised weighting | pervised weighting

Search Points | 961 179 206

7th frame 3788.9 (1.3453) 3853.0 (1.3013) 3848.0 (1.3013)
10th frame 3636.5 (1.2364) 3671.7 (1.2077) 3671.7 (1.2077)
13th frame 3767.1 (1.1397) 3811.0 (1.1211) 3802.2 (1.1211)

learning laws in the Appendix may not allow real-time learninthis burden and may tune the black-box approximators without
for large imaging problems. That real-time barrier recedegadient descent.

as computer systems become faster and more parallel. Cus-

tomized fuzzy chips can improve the speed and on-line learn- APPENDIX A

ing of the fuzzy motion compensators but perhaps not enougHe Fuzzy STANDARD ADDITIVE MODEL (SAM) THEOREM

for fuzzy systems that use many input variables. Even the beStI'heorem' Suppose the fuzzy systedi: R® — RP is

fuzzy systems face a prohibitive exponential rule explosion
zzy sy . P P xP ] standard additive model /'(z) = CentroidB(z)] =
in high enough dimensions. Real-time neural learning or;é/

compounds this complexity. New learning schemes may edsgntroid>_52, a;(x)B;)]. Then F(x) is a convex sum of
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search windows generated using AVQ
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Fig. 15. Search windows obtained for the AVQ algorithm for the “mobilel” image. The system used these windows for the next frames until intra-frame
coding reset them.

the m then-part si'f centroids / b, () dy
> wiai@)Vic; G (46)
ot m / bi(y) dy.

Flz)=— = Z pi(x)c;. (41) —co _ .
waa,»(x)Vx =1 Then, the theorem follows by expanding the centroidibf
= o ’ and invoking the SAM assumptiafi(z) = CentroidB(x)] =

The convex coefficients or discrete probability weightgentroidZ}":lwjaj(w)Bj] to rearrange terms
pi(x), -+, pm(z) depend on the input through F(z) =Centroid B) (47)
w,a;(x)V; Oo
pifa) = s (42) / ybly) dy
Z wyar(z) Vi === (48)
= | s
whereV; is the finite positive volume (or area jf = 1) and .
c; is the centroid of then-part sé#; / yzwjb}(y) dy
Vim [ bndn ey >0 @) e (49)

[ wnwa
gy

/R ybi(ys, -+, Yp) dyr -+ dyy

Cj = (44) 0o m
/ bi(ys, -5 Yp) dyr -+ dyp / y > wia;(@)b;(y) dy
RP —oo i1
Proof: There is no loss of generality to prove the theorem - (50)
for the scalar-output case = 1 when F: R* — RP. This / ijaj(a:)bj(y) dy
simplifies the notation. We need but replace the scalar integrals =1

over R with the p-multiple or volume integrals oveR? in the i o0
proof to prove the general case. The scalar gasel gives Zwﬂ'aﬂ' () / Ooybj (y) dy
j=1 B

(43) and (44) as =—
v, :/ b;(y) dy (45) ;waﬂj(w)/ bi(y) dy

oo
—0

(51)

— o0
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Fig. 16. Mean-squared error for neural-fuzzy motion compensation of the “Miss America” image. Solid line: Standard motion compensation.eDotted lin
FOBMC without learning. Dashdot line: FOBMC with supervised SAM learning for then-part set centroidashed line: FOBMC with supervised learning
for both rule weightsv; and then-part set centroids. Further tuning the if-part set triangles; did not significantly improve the motion compensation.

/Oo ybi(y) dy Therefore, both have the same learning law if we replace the
- oo nonzero weighty; with the nonzero volumé’; or V/
D wjay(a)V; / 7o
_ =1 ’ OE
B L 2) w;(t + 1) =w;(t) — a—t (55)
Y wjai(x)V aw] ;
i L, or
. =wi(t) = 1t B g (56)
J
> wjai(@)Vie; p;(xe)
— =w;(t) + prey —2 c; — Fx 57
= 53 () + e o ey = Pl (67)
z_:le“j(”“")vj' for instantaneous squared errék = 1[d, — F(z,)]* with
= ED desired-minus-actual erref = d; — F/(z;). The volumes then
Q.E.D. change in the same way if they do not depend on the weights
A 8 (which they may in some ellipsoidal learning schemes)
PPENDIX
: L
LEARNING IN SAMS. SUPERVISED GRADIENT DESCENT Vi(t+1) =Vi(8) OE, (58)

-y —
Supervised gradient descent can learn or tune SAM systems ' av;
[19], [20] by changing the rule weights; in (54), the then- — Vi) + e py(xe) [c; — F(z))].  (59)

part volumesV}, the then-part centroids;, or parameters of Vi(t)
the if-part set functions;;: R* — [0, 1]. The rule weightw,
enters the ratio form of the general SAM system The learning law (57) follows sinc@E;/dF = —¢ and since
m from the SAM Theorem we have
> wiai(@)Vic; OF
Fa) = (54)  Ou
jz=:1 vl a;(z)Vje; ; wia;(z)V; — a;(x)V; ; wia;(z)Vic;

_ ; ; (60)

in the same way as does the then-part voluijein the 2

SAM Theorem. Both cancel from (54) if they have the same lz wiai(x)V;
value—ifw; = --- = w,, >0o0rif Vv = ... =V, > 0. i=1
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TABLE IV
MEAN-SQUARED ERROR FOR“MIss AMERICA” M OTION COMPENSATION
Standard MC FOBMC without | FOBMC with su- | FOBMC with su-
learning pervised learning | pervised learning
for centroid ¢; for weightw; and
centroid ¢;
7th frame | 3409 3170 2965 2937
10th frame | 3376 3126 3046 3032
13th frame | 3904 3633 3572 3558
~ Wi model to Specht's [28] radial basis function network. We
wia;(2)V; € ;wzaz(w) i szaz G used these smooth update laws (67) in the motion compen-
= = sation simulation to update the nondifferentiable triangles. We
w, Zwiai(a?)Vi Zwiai(a?)Vi Zwiai(a?)Vz viewed their centers and widths as the Gaussian means and
= = = standard deviations and tuned them with the laws
(61)
k
: mj(t+1)
2 e, _ pa] ©@ _—
wj K ¢j = Flae) | |22 —my
. . i = mj (t) + HtetPy (xt) k k (68)
The centroidc; in the SAM Theorem has the simplest 7y i
learning law af(t +1)
OF, OF k k]2
t+1) = = A 63 ; c; — F(ay Ty —m;
( +1)= CJ( ) — He oF dc; (63) Uf(t) +ut€tpj($t) J ak( ) [ 5 J] . (69)
=c;(t) + mep; (). (64) ’ ’
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