
AND/OR Graph Representation
of Assembly Plans

Luiz S. Honicm de Mcllo aiid Arthur C. Sanderson

CMU-RI-TR-86-8

Department of Electrical and Computer Engincering
The Robotics Institute

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

April 1986

Copyright @ 1986 Carnegic-Mellon University

This rescarch is supported in part by Conselho Nacional de Desenvolvimento Cientifico e Tecnolbgico,
Brazil, and by the Robotics Institute of Carnegie-Mellon University.

L

Table of Contents
1. Introduction
2. Sclictluling and Plaiiriing
3. I’lnnning for I1obotic Asscnibly
4. A N 1)/011 Graph licprcscntation of Asscnibly Plans
5. A Sirnplc Example
6. Finding thc Best Plan as an AND/OR Graph Scarch
7. Oppomnistic Schcduling Using the AND/OR Graph Rcpresentation
8. Conclusion

1
2
3
4
7
13
14
17

i

List of Figures

Figure 1: A simplc product
Figure 2: l’ossiblc scqucnces of opcrations to asscmble the product of figure 1
1;igure 3: ~ ’ ~ C C C ~ C I I C C diagrams: (1) combincs A-Ii-C and 13- A-C; (2) combincs C-13-A

and 1%-A-C: (3) combincs ItA-C and D-C-A
Figure 4: AND/OR graph for Lhc product of figure 1
14gure 5: Solution trce corrcsponding to scqucncc 4 (c-B-A) in fig. 2
1;igure 6: Solution trce corrcsponding to scqucncc 8 (E-C-A) in fig. 2
Figure 7: Solution trcc corrcsponding to scqucncc 3 (13-C-A) in fig. 2
Figure 8: Solution tree corrcsponding to scqucnccs 6 (D-c-A) and 7 (C-D-A) in fig. 2
Figure 9: Solution trcc corrcsponding to scqucnccs 9 (E-A-C) and 10 (A-E-C) in fig. 2
Figure lo: Solution tree corrcsponding to scqucncc 2 (U-A-C) in fig. 2
Figurc 11: Solution trce corrcsponding to sequcnce 5 (DA-C) in fig. 2
Figure 1 2 Sotution trec corrcsponding to scqucnce 1 (A-B-C) in fig. 2
Figure 13: llobotic workstation

4
5
6

a
9
9

10
10
11
11
12
12
15

ii

List of Tables

'I'ahle 1: Assignrncnt of wcights to hypcrarcs
'l'iihlc 2: Numhcr of opciations nccdcd tc) asscmblc thc product of fig. 1 for all

Lhc scqucnccs in which tlic part.. map bc acquircd, and Tor thc thrcc
schcmcs ot'pliln rcprcscntation.

14
16

iii

c

Abstract

'This paper prcscnts a compact rcprcscntation of all possible asscmbly plitns of ;I givcn prodiict using
AND/OR gr;iphs. Such a rcprcscntation forms thc basis Tor cfficicnt planning iilgoritllt1IS which
cnablc iin iiicrcasc in asscmbly systcm Hcxibility by allowing an intclligcnt robot to pick a coursc of
action according to instantaneous conditions. 'lwo applications arc discussed: thc sclcction of the
bcst asscinbly plan (off-linc planning), and opportunistic schcduling (on-linc planning). An
cxamplc of an asscmbly with four parts illustrittcs the use of thc AND/OR graph rcprcscntation to
find thc bcst asscmbly plan based on weighing of operations according to complcxity of
manipulation and stability of subasscmblics. In practicc, a gcncric search algorithm, such its thc AO*
may bc uscd to find this plan. l'hc schcduling cfiiciency using this rcprcscntation is comparcd to
fixcd scqucncc and prcccdcnce graph reprcscntauons. 'I'hc AND/OR graph consistcntly rcduccs tlie
avcragc nurnbcr of opcrations.

1. Introduction

Robotic asscinbly oftcn rcquircs reprogramming or rcconfiguration in order to handlc a variety of designs in
thc same systcm. 'I'hc design and implcmcntation of such flcxiblc systems is difficult, and ai1 toin;itcd planning
techniques may provide major advantagcs. Such task planning for robotic asscmbly is critically dcpcndcnt on
thc task rcprcscntation; a ncw ilpproach to task rcprcscntalion using AND/OR graphs is described in this paper.

Flcxibility in robotic workcclls providcs a number of advantages. Hcxiblc robotic workcclls may be
rcconfigurcd to handlc a wide rangc of styles and products. 12urthcr flcxibility can bc achieved if thosc
workcclls arc ablc to asscmblc the samc product in diffcrcnt ways. In order to rtccomodatc thc assembling of
scvcral diffcrcnt products in the samc shop, it is ncccssary to schcdulc thc available machines to each job. Sincc
differcnt machines may have different capabilities, the asscmbly procedurc may vary depending on what
machine is schcdulcd to do the job. Also, thc samc product may be asscmblcd in diffcrcnt shops that may have
differcnt machinery. Anothcr advantage is an improvement in the ability to recover from errors and other
unexpcctcd cffccts that cause the execution of a task to deviate from thc prcplanncd course of actions. When
deviations occur, it is prcfcrrcd that the task cxecution continue, as cficiently as possible, from the unprcdicted
sme towards thc goal. Many deviations of the desired course of actions arc not necessarily crror conditions, but
are due to the many random factors that affect the whole manufacturing proccss. and flcxiblc shops should be
able to cope with those factors autonomously.

Even with flexibility of thc mechanical hardware, current robotic assembly systems arc not able to follow
many different courses of actions within a given task. A principal reason for this limitation is the inadequate
data structure for the reprcsentation of task plans. Ordered lisk of actions, that have been uscd in early robot
systems, which were developcd outside the manufacturing context, do not permit flexibility in task execution.
Triangle tablcs [4] have been used for the rcpresentation of plans, and they improve the capability to recover
from errors, but only within one fixed sequence. A more significant improvcment was thc use of precedence
diagrams [5] for the representation of plans, but that technique has limitations also, and in most cases allows
only a small amount of flexibility.

This paper presents a compact representation for the set of all possible assembly plans of a given product.
Such a representation enables an increase in assembly flcxibility by allowing an intelligent robot to pick the
more convenicnt course of actions, according to the instantaneous conditions at the shop. In sections 2 and 3,
the necessary background is established. Section 4 shows the representation, and section 5 prescnts its use for
the assembly of a simple product. Two applications are discussed: section 6 shows how the selection of the bcst
assembly plan can be implemented as a graph search, and section 7 shows the use of the rcprcsentation in
opportunistic scheduling. Section 8 summarizes the contribution of thc paper and points to fiirthcr research.

1

2. Scheduling and Planning

Asscmbly of one product rcquircs sclcction of a scqucncc of opcrations and assignmcnt of timcs and
rcsourccs for cach opcration. ‘I’hc problcm is usually dividcd into two parts: planning. or prtwss routing,

which is the sclcction of a scqucncc of operations. and schcduling, which is the assignmcnt of timcs and
rcsourccs.

Sclicduling problcms, including job-shop scheduling. projccr schcduling, and asscmbly-line balancing, havc
bccn intcnsivcly invcstigatcd in Managcmcnt Sciences and Opcrations Rcscarch [l]. Mathematical
programming techiiiqucs havc most oftcn been uscd to solve thosc problcms. Morc rcccntly, the sclicduling
problcm has bccn studied using contraint-dircctcd reasoning [6].

Planning has becn an important rescarch issue in artificial intelligence. BUILD [2] and STRIPS [3,4] are two

early cxamplcs. Both systems aim to gcncrate plans that cnablc robots to perform ccrtain tasks. ‘Typically, the
tasks consist of achicving a state that satisfics some goal condition from a currcnt state of thc wrld (ix., the
robot cnvironment), and the plans consist of ordered scquenccs of actions that will transform the initial state
into a goal state.

The rcpresentation of plans are commonly based on ordered lists of prcprogramincd primitive actions. There
are some cxtensions to that representation scheme that enable the robot to take advantagc of Ihc work alrcady
done in planning, in case unexpected cvcnts happen during the execution of a plan. STRIPS, for cxample, uses a

tabular form, called a triangle table, to store a plan. BUILD associates to each primitive action a REASON list
(subgoals) as well as a description of the states of the world before and after the action is executed. More recent
systems, such as NOAH [9], represent plans as partially ordered sequences of actions with respect to time.

A major emphasis of research work on planning has becn on the scarch aspect of the problem, cspecially
control schemes for the search. Priority has been given to develop cffcient, powerful and gcncral purpose

proccdurcs that can find at least one plan in a wide variety of situations rather than procedures that evcntually
find the most efficient plan in a more restricted type of situation. In applications wherc plans are cxecutcd one
timc only, inefficiencies in the plan do not cause any major harm. Also, if plans are gcnerated on line, high
speed in plan generation is oftcn preferablc to optimal plans.

Search for the most efficient plan requires a criterion to decide whether one plan is better than anothcr. This
decision, however, usually requires information available at execution time only and producing the plan in real
time may dcgradc the robot operation, or even be unfeasible, due to the long computing time it usually takes to
generatc a plan. The choice between planning ahead of time (off line) and planning in rcal time (on line) is
difficult; the former may lead to inefficient plans, whereas the latter may cause a dcgradation in thc robot
operation.

2

3. Planning for Robotic Assembly

‘1’0 ~ I C ~ ~ C V C thc dcsircd high lcvcls of productivity. thc asscmbly plans must bc cllicicnt and kccp wastcd timc
and rcsourccs to ;I minimum. Sliould inefficicncics in thc asscmbly plan of onc product hc niultiplicd by the
sirc of thc lot. which in common robotic asscrnbly applications rangcs from 1,000 to 100.000 units, Ihc icsulting
total wastc may rcducc drastically thc productivity and may jcopardize the wholc prtxcss. Conditions at the
shop, howcvcr. changc with timc (for cxamplc, parts may comc in random ordcr), ilnd, usually, thcre is no
single plan that is cficicnt in cvcry possible situation.

Fox and Kcmpf [5] addrcss thc nccd to act opportunistically, as opposcd to always follow a preprogrammcd
fixcd ordcr of opcrations. They suggest that plans gcncrated off-linc to be givcn to thc robot be a set of
opcrations with minimal ordcring constraints. Such a plan was rcprcscntcd by a prcccdcncc diagram and would
actually encompass several possiblc scquenccs of operations that would perform thc task of asscmbling a given
product. In rcal timc, dcpending on the conditions at the shop, the intelligcnt robot would pick the most
appropriate scqucnce. Using Fox and Kempf notation, the sclcction of one scqucncc. and the assignment of
operations to specific machincs is what is commonly referred to as the scheduling proccss. Sincc that selection
process involvcs much less computing time than the planning process, no degradation in the efficiency of the
robot operation should occur.

Planning, in this sense, should yicld all possible sequences of operations that can be uscd to assemble a
product. That information is the input to the scheduling process, which in rcal time sclects one of those
scquences and assigns the machincs that will do each operation.

The problcm with the precedence diagram formalism, as Fox and Kempf themselves point out, is that for
most products no single partial order can encompass every possible assembly scquence. The asscmbly of the
simple product shown in exploded view in figure 1, for example, may be completed by following one of the ten
different sequences of operations that are represented graphically in figure 2. It is possible to combine some
sequcnces into one partial order using precedence diagrams. Figurc 3 shows three possible ways to combine
two of tiic first four sequences in figure 2; the only restriction is that the insertion of the stick cannot be the last
opcration. It is possible to combine three of those four sequenccs into one partial order by using a dummy
opcration, but it is not possible to combine the four sequences into one partial order, nor it is possible to
combine any of those sequences with the other six sequences in figure 2.

A closer look at the partial ordering representation of plans, in the light of the above asscmbly example,
shows another deficiency of that solution. Two distinct feasible sequences, A-B-C and B-A-C, for cxample, do not
diffcr simply by thc scqucnce of the operations. Inserting the stick first is not the same operation as inserting it
aftcr thc rcccptaclc and the cap have been screwed together. The latter operation is probably casicr to execute.
Similarly, screwing the receptacle and the handle with the stick inside is probably easicr to do if thc rcccptacle

3

UI CAP

SnCK HANDLE

Figure 1: A simple product

and the cap arc screwed. than otherwise. ’The partial ordering approach, however. docs not capture this subtle
difference. ‘Ilie next section will describe another approach to the representation of plans that captures this

difference. and that can combine all possible assembly sequences.

4. AND/OR Graph Representation of Assembly Plans

Planning the assenibly of one product made up of several component parts can be seen as path search in the
state space of all possible configurations of that set of parts. The initial state is that configuration in which all
parts arc disconnected from each other, and the goal state is that in which the parts are properly joined to form
the desired product. The moves that change one state into another correspond to the assembly operations since
they change the relative position of at least one part. There may be many different paths from the initial state
to the goal state. Krogh and Sanderson [7] present an overview of task decomposition and operations.

In this context, any set of parts that are joined to form a stable unit is called an assembly. A component part is
also an assembly, with a special property. The word subassembly refers to an assembly that is part of another,
more complex assembly, and it always carries the subsetlset connotation.

Because there are many configurations that can be made from the same parts, the branching factor from the
initial state to the goal state is greater than the branching factor from the goal state to the initial state. A

backward search, therefore, will be more efficient than a forward search for the assembly planning problem.

The problem of finding how to assemble a given product can be converted to an equivalent problem of finding
how the same product can be disassembled. Since assembly operations are not necessarily reversible, the
equivalence of the two problems will hold only if the operations used in disassembly are the reverse of a feasible

assembly operation regardless of whether these reverse operation themselves are feasible or not. The
expression disassembly operalion, therefore, refers to the reverse of a feasible assembly operation.

4

SCREW
RECFPTACL E
AND HANDLE

INSERT
STICK lNI0

RKWTACLE

RECEPTACLE
ANI) IIANDLE

SCRIW
RIV33"IACLIJ

SCREW
RECEPTACLE
AND HANDLE

REEFTACLE
AND HANDLE ON CAP

RECEPTACLE
AND CAP

*A RECEPTACLE

I ANDHANDLE I
(C-D-A)

(7)

PUCE

ON HANDLE

RECEPTACLE
AND HANDLE

E

AFl RECEPTACLE

RECEPTACLE RECEPTACLE
AND CAP AND HANDLE

(9)

Figure 2: Possible sequences of operations to assemble the product of figure 1

5

Figurc 3: Preccdencc diagrams: (f) combines A-B-C and B-A-C;
(2) combines C-B-A and B-A-C; (3) combines B-A-C and B-C-A

'The backward search suggests a decomposable production system in which the problem of disassembling one
product is dccoinposed into distinct subproblems, each one being to disassemble one subasscmbly. h c h
dccornposition must correspond to a disassembly operalion. If solutions for both subproblcms that result from
the decomposition are found, then a solution for the original problem can be obtained by combining the
solutions to the subproblems and thc operation used in the decomposition. For subassemblics that contain one
part only, a trivial solution containing no operation always exists. Usually thcrc will not be a unique way to
decompose the problem, or to cut the assembly, because there may be several different ways to assemble the
same product.

Structures called AND/OR graphs [8], or hypergraphs, are useful in representing decomposable problems and
they have been used to represent the disassembly problem. The nodes in such a hypergraph correspond to
assemblies; nodes corresponding to assemblies that contain only one part arc the terminal nodes. The
hyperarcs (or k-connectors, k being any integer greater than zero) correspond to the disassembly operafions.

Ehch hyperarc that leaves one node corresponds to a disassembly operalion applicable to the asscmbly of that
nodc. and the successor nodes to which the hyperarc points correspond to the rcsulting subassemblies produced

by the disassembly operation. Because for most products the assembly operations usually mate two
subassemblies, the hyperarcs in the corresponding AND/OR graph are usually 2-connectors. There are cases,
however, of opcrations that mate more than two subassemblies (e.g, assembling a hinge with two wings and one

pin), as well as operations that involve only onc subassembly (e.g., drilling a hole in a part). Hyperarcs in
AND/OR graphs can represent all those possibilities.

A solution tree from a node N in an AND/OR graph is a subgraph that may be defined rccursivcly as either
N itsclf if N is a tcrminal node, or N plus one of its outgoing hyperarcs plus the sct of solution trccs from each

of N's successors through that hyperarc. This definition assumcs that the graph contains no cyclc as is true in

6

'llic uscful feature of die AND/OR graph rcprcscntrition for thc asscmbly problcm is that it cncompasscs rill
possiblc partial ordcrings of asscmbly opcrritions. Moreover, cach partial order corresponds to a solution trce
from thc node corrcsponding to the final (asscmblcd) product. This feature is dcmonstratcd through the

examplc in thc next section.

5. A Simple Example

Figurc 4 shows the AND/OR graph for thc product in figurc 1. Fkli node in that graph is labclcd by a
database that correponds to an asscmbly. In figurc 4, thc databascs are rcprcscntcd by cxplodcd view drawings,
whereas in a computational implementation, the databases are relational data smcturcs. 'To facilitatc the

exposition, both the nodcs and the hyperarcs in figure 4 havc idcntification numbers.

'The root node in figurc 4 (node 1) is labclcd by a database that describcs the asscmblcd product. Ihcre are
four hypcrarcs leaving that node. Each of those four hypcrarcs corresponds to one way the whole asscmbly can
be disassembled and each one points to two nodes that arc labeled by databases that dcscribe the resulting
subasscmblics. Similarly, thc other nodes in the graph have a leaving hyperarc for each possiblc way in which
their corrcsponding subasscmbly can be disassembled.

Any subasscmbly that can be made up of the component parts may appear only once in thc graph, even whcn
it may be the result of different disassenibly Operations. ?he subassembly of node 4, in figure 4, for example,
may rcsult from two different operations, which correspond to hyperarcs 5 and 10. Moreover, those two

hyperarcs come from two distinct nodes.

Nodes corresponding to component parts (nodes 9, 10, 11 and 12) are the terminal or goal nodes since they
correspond to disassembling problems for which a (trivial) solution is known. There arc eight solution trces
from the root node (node 1) and they are shown in figures 5 to 12.

One important feature of the solution trce representation shown in figures 5 to 12 is that the distinction

betwccn operations becomes apparent because distinct operations correspond to distinct hypcrarcs. In other
words, two distinct assembly sequences includc the same Operation only if the two corresponding solution trces
include thc hypcrarc corrcsponding to that operation. Hypcrarc 1, for example, is present in the solution trees
in figures 5 6 , and 7; thercforc, the same asscmbly operation is part of three distinct sequences. Converscly, the
Operations SCREW THE RECEPTACLE AND THE CAP in sequences A-6-C, 6-A-C, and B-C-A O f figUrC 2 corrcspond to

hyperarcs 1, 5, and 13 in figure 4; therefore, they are three different operations. The sequence diagrams in
figure 2 and thc precedence diagrams in figure 3 fail to make this distinction.

7

v

u €3
\

Figure 4: AND/OR graph for the product of figure 1

8

Figure 5: Solution tree corresponding to sequence 4 (C-6-A) in fig. 2

Figure 6: Solution tree corresponding to sequence 8 (E-C-A) in fig. 2

9

MI
Figure 7: Solution trce corresponding to sequence 3 (B-C-A) in fig. 2

d
Figure 8: Solution tree corresponding to sequences 6 (D-C-A) and 7 (c-D-A) in fig. 2

10

/
I

Figure 9: Solution trcc corresponding to sequcnccs 9 (E-A-C) and 10 (A-E-C) in fig. 2

3

Figure 10: Solution tree corresponding to sequence 2 (6-A-C) in fig. 2

11

3

Figure 11: Solution tree corresponding to sequence 5 (D-A-C) in fig. 2

Figure 12: Solution trec corrcsponding to sequence 1 (A-6-C) in fig. 2

12

Filch solutioii trcc shown in figures 8 anti 9 corresponds to two scquenccs, but unlike the prcccilcncc
diagrdms of figurc 3, the operations arc exactly thc samc, rcgardlcss of thc ordcr in which thcy arc cxecuted.

6. Finding the Best Plan as an AND/OR Graph Search

’I’o solve problems that rcquire optimization, such as thc selection of the best assciiibly plan, onc must be ablc
to tra\icrsc thc space of all candidatc solutions, rcgardless of the mettiod used to solve the problem. ‘I’he choice
of tlic rcprescntation is critical since it is often difficiilt to delimit the set of potcntial solutions i n a forin which
enuincrates all the elements.

The AND/OR graph representation encompasses all possiblc ways to assemble one product, ;tiid rhcrcfore
allows one to explore the space of all possible plans. Since plans correspond to solution trces in thc AND/OR

graph, thc selcction of the best plan can be seen as a search problem. Any such search problem requires a
critcrion to compare plans. One possibility is to assign to the hyperarcs wciglits proportional to thc diCficulty of

their corrcsponding opcrations, and then compute the cost of a solution tree from a node, rccursivcly, as:

e zcro, if tlie node has no leaving hyperarc; or

e the sum of the weight of thc hyperarc leaving the node and the costs of tlx solution trecs from thc

successor nodes.
l l i c best plan corresponds to the solution tree tliat has the minimum cost. The search for the best plaii can be

conducted using generic algorithms such as the AO* [SI.

A variety of factors might be considered in assigning weights to hyperarcs, including time duration of their
corresponding operations, requirements for reorientation of fixturing, cost of resources needed, reliability, as
well as production priorities and constraints.

For the product in figure 1, the AND/OR graph (figure 4) has 15 hyperarcs, which correspond to 15 different

assembly operations. ‘Table 1 shows one possible assignment of weights to hyperarcs. Those weights have been

compiitcd by adding two factors. The first factor is the type of assembly operation, with screw operation

weighing 4, insertion 2 and placement 1, in accord with typical time, fixturing and manipulation requirements.
The second factor taken into account is the difficulty of handling the participating subasscmblics, and is

proportional to their number of degrees of freedom; subassemblies with more degrees of freedom are more

unstable, and therefore more difficult to handle.

Using that assignment of weights to hyperarcs, the total cost for the solution trees of figures 5 to 12 can be
computed. The solution trees in figures 5 and 12 have the minimum cost of 11; the solution trees in figures 7,8,

9, and 10 have total cost 13; and the solution trees in figures 6 and 11 have the highest cost of 14.

13

‘I’ablc 1: Assignmcnt of weights to hyperarcs

h ypcrarcs

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
factor

opcration 4 4 4 4 4 4 2 2 4 4 2 1 4 4 1

dcgrccsof 1 4 4 1 2 4 0 0 4 2 0 0 0 0 0
subassembly

freedom

total 5 8 8 5 6 8 2 2 8 6 2 1 4 4 1

For more complex assemblics, instead of a complete cnumeration as done above, search algorithms can be
used to reduce computation. For the product in figure 1, a search using AO* will yield one of the solution trees
shown in figures 5 or 12, depending on how &e partial solutions and tip nodes are ordered for expansion.

7. Opportunistic Scheduling Using the AND/OR Graph Representation

To evaluate how the use of AND/OR graph rcprescntation for assembly plans affccts assembly cficiency, a
comparative analysis among thc thrce representation schemes discussed in this papcr has becn conducted.

The product in figure 1, and the robot workstation of figure 13 have been used as examples. The workstation
is cquipped with two manipulators and the parts are presented in random order. It is assumed that a cap, a

stick, a receptacle, and a handle always come together, varying only in their order. It is also assumed that both
manipulators are controlled by the same central unit and they both are able to execute the following actions:

0 acauire: fetching, by one of die manipulators, of one part from the part feeder

0 buffer: temporararily storing one part into a fixed location within the workstation

0 mate: joining two subassemblies which are currently held by the manipulators

0 retrieve: fetching, by one of the manipulators, one part known to be in the parts buffer

The efficiency of this assembly station depends on the capacity to handle parts in random order. This

requires on-line scheduling of system resources depending on the order of parts arrival. The rclativc impact of
plan reprcsentation schemes on assembly efficiency can be compared by the averagc numbcr of operations
needed; a smallcr average number of op.erations corresponds to more efficiency.

The first sequcnce of figure 2 (A-6-C) has been used as an example of fixed sequence representation and the

14

MANIPUIATORS

'059

Figure 13: Kobotic workstation

first prcccdence diagram of figure 3 (which combines A-6-C and 6-A-C) as an example of prcccdence graph
reprcscntation. Similar results will be produced using the other fixed scqucnces or prccedcnce graphs. The
numbcr of opcrations that would be performcd for each one of the 24 possible orderings in which the four parts
of the simple product can be acquired is shown in Table 2. At least 7 operations are neccssary: four acquisitions
and three matings; depending on the order in which the parts are prcsentcd, buffering. and thcrcfore retrieving
may also bc necessary.

When using the fixed sequcnce representation of plans, extensive buffering is necessary. For example, if the
order the parts come is s H R c (stick, handlc, receptacle, and cap) both the stick and the handlc must be
buffered sincc they are not used in the first operation; adding two bufferings and two retrievings to the four
acquisitions and three matings that are always necessary yields 11 operations. The avcragc number of
Operations for all 24 possible orders is 9.8.

Using prccedcnce diagrams for the reprcscntation of plans avoids some of the buffering and reduces the
average numbcr of operations to 9.2. For the sequence S H R c, for example, only the handle must be buffcred
since the inscrtion of the stick into the receptacle may be the first operation.

Using the AND/OR graph rcpresentation of plans, however, avoids most of the buffering, and yields the
average of 8 operations. For the same S H R c sequence, for example, no buffering is needcd because the robot
can follow the sequence of operations corrcsponding to the solution tree shown in figure 6.

15

' l * a l ~ l ~ ~ 2: Nuinbcr of oi)cr;rlions ncedcd to asscinblc thc prodiict of' fig. 1 for i l l 1 t l~c scqucnccs
in which tllc parts mily bc acynircd, and I1)r lhc rhrcc sci1cincs of' plan rcprcscntiition.

C =cap S = stick I< = rcceptirclc I4 = handlc

first scqucncc first prcccdcncc diagrams AND/OR graph
scqucnce of figure 2 of figure 3 of figure 4

CSKH
CSHK
C R S H

C R H S

C H S K

C H R S

S C R H

S C H R

S K C H

S R H C

S H C R

S H R C

R C S H

R C H S

R S C H

R S H C

R H C S

R H S C

H C S R

H C R S

H S C R

H S R C

H R C S

H R S C

9

11

7
9
11

9

9
11

9

11

11

11

7
9

9
11

9

11

11

9

11

11

9

11

9

11

7
9
11

9

9

11

7
9
11

9

7
9

7

9
9

9
11

9

11

9

9

9

7

9

7

9

9

9

7

9

7

7

9

7

7

9

7

7

9

7

9

9

9

7

9

7

average 9.8 9.2

~

8

16

8. Conclusion

A compact rcprcscntation for thc sct of all possible asscmbly plans of a product has bccn prcscntcd, dong
with its appliciltio~~s in tlic sclcction of thc best asscmbly plan and in opportunistic schcduling. Onc important
fcaturc of thiit rcprcscntation is that it allows onc to travcrsc the spscc of all possible asscmbly plms. and
thcreforc providcs an opportunitj to sclcct an optimal schedulc and dynamically adapt schcduling to changing

conditions. 130th thc fixcd scqucnce rcprcscntation and tlic prccedence diagram rcprcscntation arc vcry limited
in this aspcct.

A numbcr of issues rclalcd to this rcprcscntation arc under investigation. One important issue is the
dcvclopmcnt of algorithms for opportunistic scheduling suitable for rcal time operation. As pointed out in
scction 7, sonic buffering could not be avoided, cven with the usc of AND/OR graph rcprcscntation of plans. For
complcx products, thc choicc of which part or subassembly to buffer may affect thc ovcrall asscmbly cfficicncy
and criteria for that decision will be ncccssary. These criteria will certainly dcpend on evaluation hnctions, also
under invcstigation, used to sclcct a plan, espccially hnctions that do not posscss thc recursivc property like the
one uscd in scction 6.

A n additional important ongoing research issue is the dcvelopment of a representation of assemblics suitable
for the automatic generation of plans. Such automation can be helphl in design of both new products and
assembly systems. In designing new products, the designcr can quickly asscss the difficulty of asscmbling and
eventually modify the design to facilitatc the assembly. In designing new assembly systems, the designcr can
evaluate thc performance of a proposed design for a given set of products.

17

References

171

i81

[91

Ikllman, It. et al.
Maihc.rnc~~ical Aspects ofSchetliding arid Applications
i’crgamon t’rcss, 1982.

Fahlman, Scott 13liott.
A Planning Systcin for Robot Construction Tasks.
Arlrficid lnrelligence 5(1): 1-49, 1974.

Fikcs, Itichard E. and Nilsson. Nils J.
S’I’KIB: A Ncw Approach to the Application of ‘I’hcorcm Proving to Problcm Solving.
Arrificial Inlclligcnce 2: 189-208, 1971.

Fikcs, Itichard E. et al.
Ixarning and Exccuting Gcncralized Robot Plans.
Artificial lntdigcnce 3:251-288.1972.

Fox, 13. R. and Kcmpf, K. G.
Opportunistic Schcduling for Robotics Asscmbly.
In I985 IEIX International Conference on Robotics and Automation, pagcs 880-889. IEEE Computer

Society, 1985.

Fox, Mark S .
Constraint-Direclcd Search: A Case Study of JobShop Scheduling.
PhD thesis, Camegie-Mcllon University, dcccmber, 1983.
Also publishcd as technical rcports CMU-CS-83-161 and Ch4U-RI-1R-83-22.

Krogh, Bruce H. and Sandcrson. Arthur C.
Modeling and Cotirrol of Assetnbly Tasks and Systems.
Technical Report CMU-RI-‘I’R-86-1. Robotics Institute - Carncgie-Mellon University, 1985.

Nilsson, Nils J.
Principles of Artificial Intelligence.
Springer-Verlag, 1980.

Sacerdoti, h r l D.
A Struclure for Plans and Behavior.
Elsevier North-Holland, 1977.

18

AND/OR GRAPH REPRESENTATION OF ASSEMBLY PLANS

Luiz S. Hornem de Mello and Arthur C. Sanderson

Department of Electrical and Computer Engineering
and Robotics Institute

Caniegic-Mellon University
Pittsburgh PA 15213

This research is supported in part by Conselho Nacional de Desenvolvitnento Cientifico e
Tecnolbgico (Brazil) and by the Robotics Institute of Carnegie-Mellon University.

Table of Contents
1. Introduction
2. Schcduling and Pl;inning
3. Planning for I<obotic Asscmbly
4. ANI)/OR Graph I<cprcscnt;ition of Asscnibly Plans
5. A Simple Examplc
6. Finding the 13cst Plan as ;in ANIWOR Graph Search
7. Opportunistic Schcduling Using thc AN I)/OR Graph Kcprcscntation
8. Conclusion

* .

1
2
3
4
7

13
14
17

I

Abstract

This pnpcr presents a compact reprcscntation of all possible assembly plans of a given pioduct using
AND/OR graphs. Such a rcprescntation forms the basis for efficient planning algorithms which
enable an increase in assembly systcm flcxibiliry by allowing an intelligcnt robot to pick a coiirse of
action according to instantancous conditions. Two applications are discusscd: thc selcclion of the
bcst assembly plan (off-line planning), and opportunistic scheduling (on-line planning). A n
exarnplc of an asscmbly with four parts illustrates the use of the AND/OR graph rcprcscntation to
find the best assembly plan based on weighing of operations according to coinplcxity of
manipulation and stability of subasscmblies. In practice, a generic search algorithm, such as the AO*

may be used to find this plan. The scheduling efficicncy using this rcprcscntation is compared to
fixed scqucncc and prccedence graph representations. l h e AND/OR graph consistently reduces the
average number of operations.

1. Introduction

Robotic asscmbly oftcn rcquircs reprogramming or reconfiguration in ordcr to hnndlc a varicty of dcsigiis in

the snmc system. ‘Ilic dcsign and implementation of such flexible systems is difficult, and automatcd planning

tcchniques may proijidc major advantagcs. Such tiisk planning for robotic assembly is critically dcpcndent on
the task rcprcsentation; a iicw approach to task rcpresentation using AND/OR graphs is dcscribcd in this pnpcr.

Flexibility in robotic workcells provides a number of advantages. Flcxiblc robotic workcclls may be
recoilfigured to hijndlc a wide range of styles and products. Furthcr flexibility can bc achieved if those
woikcclls arc ablc to assemble thc same product in different ways. In order to accomodatc the asscmbling of

scvcral diffcrcnt products in the same shop, it is necessary to schedulc the available machincs to c x h job. Since
diffcrent machines may have different capabilities, thc assembly procedure may vary dcpcnding on what

machine is schcdulcd to do the job. Also, the same product may be assembled in different shops that may have
diffcrent machinery. Another advantage is an improvement in the ability to recover from crrors and other
unexpcctcd effects that cause the cxecution of a task to deviate from the preplanncd coursc of actions. Whcn

deviations occur, it is preferred that the task execution continue, as efficiently as possible, from thc unprcdicted
statc towards the goal. Many deviations of the desired course of actions are not necessarily error conditions, but
arc duc to thc many random factors that affect the whole manufacturing process, and flexible shops should be
ablc to cope with those factors autonomously.

Evcn with flexibility of the mechanical hardware, current robotic assembly systems are not able to follow

many different courses of actions within a given task. A principal reason for this limitation is the inadequate
data structure for the representation of task plans. Ordered lists of actions, that have been used in early robot
systems, which were developed outside the manufacturing context, do not permit flexibility in task execution.
Triangle tables [4] have been used for the representation of plans, and they improve the capability to recover

from crrors, but only within one fixed sequence. A more significant improvement was the use of precedence

diagrams [SI for the rcpresentation of plans, but that technique has limitations also, and in most cases allows
only a sinal1 amount of flexibility.

This paper presents a compact representation for the set of all possible assembly plans of a givcn product.

Such a rcprcsentation enables an increase in assembly flexibility by allowing an intelligent robot to pick the
more convenient course of actions, according to the instantaneous conditions at the shop. In sections 2 and 3,
the nccessary background is established. Section 4 shows the representation, and section 5 presents its use for

the assembly of a simple product Two applications are discussed: section 6 shows how the selcction of the best
assembly plan can be implemented as a graph search, and section 7 shows the use of the representation in
opportunistic scheduling. Section 8 summarizes the contribution of the paper and points to further research.

1

2. Scheduling and Planning

Asscnibly of one product rcquircs sclcction of a scqucncc of operations and assignment of timcs and
rcsoiirccs for each opcration. ‘The problem is usually dividcd into two parts: planning, or proms routing,

which is thc selcction of a sequence of operations, and scheduling, which is the assignnicnt of tinics arid
rcsourccs.

Schcduling problems, including job-shop schcduling, project schcduling, and asscmbly-linc balancing, have
been in tensivcly invcstigatcd in Managcment Sciences and Operations Kcsearch [l]. Mathcmatical

programming techniques have most often been used to solve those problems. Morc recently, the schcduling
problcrn has been studied using contraint-directcd rcasoning [6].

Planning has been an important research issue in artificial intelligence. BUILD [2] and STRIPS [3, 41 are two
early examples. Dotli systcms aim to generate plans that enable robots to perform certain tasks. Typically, the

tasks consist of achieving a state that satisfies some goal condition from a current state of thc world (it., the
robot cnvironmcnt), and the plans consist of ordered sequences of actions that will transform the initial state
into a goal state.

The rcpresentation of plans are commonly based on ordcred lists of preprogrammed primitive actions. There
are some extensions to that rcprcsentation schcme that enable the robot to take advantage of the work already

done in planning, in case unexpected events happen during the execution of a plan. STRIPS, for example, uses a

tabular form, called a triangle table, to store a plan. BUILD associates to each primitive action a REASON list
(subgoals) as well as a description of the, states of the world before and after the action is executed. More recent

systems, such as NOAH [9], represent plans as partially ordered sequences of actions with respect to time.

A major emphasis of research work on planning has been on the search aspect of the problem, especially

control schemes for the search. Priority has been given to develop efficient, powerful and general purpose

procedures that can find at least one plan in a wide variety of situations rather than procedurcs that eventually
find the most cfficient plan in a more restricted type of situation. In applications where plans are executed one
time only, inefficiencies in the plan do not cause any major harm. Also, if plans are generated on line, high

speed in plan generation is often preferable to optimal plans.

Search for the most efficient plan requires a criterion to decide whether one plan is better than another. This

decision, however, usually requires information available at execution t h e only and producing the plan in real
time may degrade the robot operation, or even be unfeasible, due to the long computing time it usually takes to
generate a plan. The choice between planning ahead of time (off line) and planning in real time (on line) is
difficult; the former may lead to inefficient plans, whereas the latter may cause a degradation in the robot

operation.

2

3. Planning for Robotic Assembly

‘1‘0 achicvc tlic dcsircd high lcvcls of productivity, the assembly plans must bc cficicnt and kccp wdstcd time

and rcsourccs to a minimum. Should incfficiencics in the assembly plan of one pruduct bc multiplicd by the
s i x of the lot, which i n common robotic assembly applications ranges from 1,000 to 100,000 units, the rcsulting
total wastc may rcducc drastically thc productivity and niay jeopardize the whole proccss. Coiiditions at the

shop, howcvcr, changc with time (for example, parts may come in random order), and, usually, thcre is no
singlc plan that is cfficicnt in every possible situation.

Fox and Kcmpf [SI address the need to act opportunistically, as opposed to always follow a prcprogrammed
fixcd order of opcrations. They suggest that plans generated off-line to be givcn to the robot bc a sct of
opcrations with minimal ordering constraints. Such a p l m was represented by a prcccdcnce diagram and would
actually encompass several possible sequenccs of operations that would perfonti the task of asscmbling a given

product. In real timc, depending on the conditions at the shop, the intelligent robot would pick thc most
appropriate sequence. Using Fox and Kempf notation, the selection of one sequencc, and thc assignmcnt of

opcrations to specific machines is what is commonly referred to as the scheduling process. Siiicc that selection
proccss involves much less computing time than the planning process, no degradation in the efficicncy of the
robot operation should occur.

Planning, in this sense, should yield all possible scquences of Operations that can be used to assemble a

product. That information is the input to the scheduling process, which in real time selects one of those
sequences and assigns the machines that will do each operation.

The problem with the precedence diagram formalism, as Fox and Kempf themselves point out, is that for

most products no single partial order can encompass every possible assembly sequence. The assembly of the
simple product shown in exploded view in figure 1, for example, may be completed by following one of the ten

different sequences of operations that are represented graphically in figure 2. It is possible to combine some

sequences into one partial order using precedence diagrams. Figure 3 shows three possible ways to combine
two of the first four sequences in figure 2; the only restriction is that the insertion of the stick cannot be the last

Operation. It is possible to combine three of those four sequences into one partial order by using a dummy

operation, but it is not possible to combine the four sequences into one partial order, nor it is possible to
combine any of those sequences with the other six sequences in figure 2.

A closer look at the partial ordering representation of plans, in the light of the above assembly example,
shows another deficiency of that solution. Two distinct feasible sequences, A-6-C and B-A-C, for example, do not
differ simply by the sequence of the operations. Inserting the stick first is not the same operation as inserting it

after the receptacle and the cap have been screwed together. The latter operation is probably easier to execute.

Similarly, screwing the receptacle and the handle with the stick inside is probably easier to do if the rcccptacle

3

CAP STICK RECEPTACLE IIANDI E

Figure 1: A simple product

and the cap ate screwed, than otherwise. The partial ordering approach, however, does not capture this subtle

difference. ‘I’he next section will describe another approach to the representation of plans that capturcs this
difference, and that can combine all possible assembly sequences.

4. AND/OR Graph Representation of Assembly Plans

Planning the assembly of one product made up of several component parts can be seen as path search in the

state space of all possible configurations of that set of parts. l h e initial state is that configuration in which all
parts are disconnected from each other, and the goal state is that in which the parts are properly joined to form
the desired product. The moves that change one state into another correspond to the assembly operations since
they change the relative position of at least one part. There may be many different paths from the initial state

to the goal s tm. Krogh and Sanderson [7] present an overview of task decomposition and operations.

In this context, any set of parts that are joined to form a stable unit is called an assembly. A component part is
also an asscmbly, with a special property. The word subassembly refers to an assembly that is part of another,
more complex assembly, and it always carries the subse tk t connotation.

Because there are many configurations that can be made from the same parts, the branching factor from the

initial state to the goal state is greater than the branching factor from the goal state to the initial state. A

backward search, therefore, will be more efficient than a forward search for the assembly planning problem.

The problem of finding how to assemble a given product can be converted to an equivalent problem of finding

how the same product can be disassembled. Since assembly operations are not necessarily reversible, the
equivalence of the two problems will hold only if the operations used in disassenzbly are the reverse of a feasible

assembly operation regardlcss of whether these reverse operation themselves are feasible or not. The
expression disassembly operation, therefore, refers to the reverse of a feasible assembly operation.

4

ON CAP

+, RECEPTACLE

RECEPTACLE
AND HANDLE

KECl3'TAC:I.E s r m iwro

SCREW
RECEPTACLE

AND HANDLE

RECElTACLJ2
ANDCAP

SCREW
RFCWPTAC1.E
AND HANDLE

RECEPTACLE

STICK
ON CAP

RECEJTACLE

(C-DA)

(7)

NICK INTO

SCREW
RKB'TACLE

RECEPTACLE
AND CAP

ON HANDLE 7-
AND HANDLE

SCREW
RECEPTACLE

@€-A)

(8)

RECFYTACL E

SCRkW
RECUTACE

AND CAP

(C-B-A)

(4)

L ON HANDLE
RECEPTACLE

AND CAP T
STICK

cP-l SCREW
RECEPTACLE.
AND HANDLE

(A-E-C)

(10)

Figure 2: Possible sequences of operations to assemble the product of figure 1

5

c
SCREW

RliCFPTACLE
AND HANDLE

RECWIACLE WCFPTACLE
AND CAP AND W

Figure 3: Prccedcncc diagrams: (I) combines A-B-c and 8-A-C;

(2) combines C-6-A and B-A-C; (3)combines 6-A-C and 6-C-A

The backward search suggests a decomposable production system in which the problem of disussenzbling one
product is dccomposcd into distinct subproblcms, each one being to disassemble one subassembly. Each

dccoinposition must correspond to a disassembly operafion. If solutions for both subproblems that result from
thc decomposition are found, thcn a solution for the original problem can be obtained by combining thc

solutions to the subproblems and the operation uscd in the decomposition. For subassemblies that contain one

part only, a trivial solution containing no opcration always exists. Usually there will not be a unique way to

decompose thc problem, or to cul the assembly, because there may be scvcral diffcrent ways to assemble the
same product

Structures callcd AND/OR graphs 181, or hypergraph, are usehl in rcpresentiiig decomposable problems and

tlicy have been uscd to represent the disassedly problem. The nodes in such a hypergraph correspond to

asscmblics; nodes corresponding to assemblies that contain only one part are the terminal nodcs. The
hyperarcs (or k-connectors, k being any integer greater than zero) correspond to the disassanbZy operalions.

Each hyperarc that leaves one node corresponds to a disassembly operation applicable to the assembly of that

node, and the successor nodes to which the hyperarc points correspond to the resulting subassemblies produced

by the disassembly operation. Because for most products the assembly operations usually mate two

subassemblies, the hyperarcs in the corresponding AND/OR graph are usually ,?-connectors. There are cases,

however, of operations that mate more than two subasscrnblies (e.g, assembling a hinge with two wings and one
pin), as well as operations that involve only one subassembly (e.g., drilling a hole in a part). Hypcrarcs in
AND/OR graphs can represent all those possibilities.

A solulion free from a node N in an AND/OR graph is a subgraph that may be defined recursively as either

N itself if N is a tcnninal node, or N plus one of its outgoing hyperarcs plus the set of solution trccs from each

of N's SUCCCSSO~S through that hyperarc. This definition assumes that the graph contains no cycle as is true in

6

thc discrssenrbly problcm. ‘I’hcre may bc nonc, onc, or scveral solution trccs from a node in an AND/OR graph.

The useful fcaturc of thc AND/OR graph rcprcsentation for the assembly problem is that it cncotnpasses all

possible partial ordcrings of assembly opcrations. Moreover, each partial order corresponds to a solri tion trcc
from the node corrcsponding to tlie final (assembled) product. This fcature is demonstrated through the

examplc in the next section.

5. A Simple Example

Figurc 4 shows thc AND/OR graph for the product in figure 1. h c h node in tliat graph is labcled by a

database that correponds to an assembly. In figure 4, thc databases are represented by cxplodcd vicw drawings,
whereas in a computational implementation, thc databases are relational data structures. To facilitate the

exposition, both the nodes and the hyperarcs in figure 4 have identification numbers.

The root node in figure 4 (node 1) is hbclcd by a database that describes the assembled product. ‘T’hcrc are

four hypcrdrcs leaving that node. Each of those four hyperarcs corresponds to one way the whole assembly can
be disassembled and each one points to two nodes that are labeled by databases that describe the resulting
subassemblies. Similarly, the other nodes in the graph have a leaving hyperarc for each possible way in which

their corresponding subassembly can be disassembled.

Any subassembly that can be made up of the component parts may appear only once in the graph, even when
it may be the result of different disassembly operations. The subassembly of node 4, in figure 4, for example,
may result from two different operations, which correspond to hyperarcs 5 and 10. Moreover, those two

hyperarcs come from two distinct nodes.

Nodes corresponding to component parts (nodes 9,10, 11 and 12) are the terminal or goal nodes since they
correspond to disassembling problems for which a (trivial) solution is known. There are eight solution trees

from the root nodc (node 1) and they are shown in figures 5 to 12.

One important feature of the solution tree representation shown in figures 5 to 12 is that the distinction

bctwcen operations becomes apparent because distinct operations correspond to distinct hyperarcs. In other
words, two distinct assembly sequences include the same operation only if the two corresponding solution trees

include the hypcrarc corresponding to that operation. Hypcrarc 1, for example, is present in the solution trees

in figures 5,6, and 7; therefore, the same assembly operation is part of three distinct sequences. Conversely, the

Operations SCREW THE RECEPTACLE AND THE CAP h Sequences A-B-C, B-A-C, and B-C-A Of figure 2 correspond to

hyperarcs 1, 5, and 13 in figure 4; therefore, they are three different operations. The scqucnce diagrams in
figure 2 and the precedence diagrams in figure 3 fail to make this distinction.

7

/

.
Figure 4: AND-OR graph for the product of figure 1

a

Figure 5: Solution tree corresponding to sequence 4-(C-B-A) in fig. 2

Figure 6: Solution tree corresponding to sequence 8 (E-C-A) in fig. 2

9

Figure 7: Solution tree corresponding to sequence 3 (B-C-A) in fig. 2

Figure 8: Solution tree corresponding to sequences 6 (D-C-A) and 7 (c-D-A) in fig. 2

10

Figure 9: Solution tree corresponding to sequences 9 (E-A-C) and 10 (A-E-C) in fig. 2

I r! 3

Figure 10: Solution tree corresponding to sequence 2 (B-A-C) in fig. 2

11

Figurc 11: Solution trce corrcsponding to sequence 5 (D-A-C) in fig. 2

Figure 12: Solution tree corresponding to sequence 1 (A-6-C) in fig. 2

12

Each solution trcc shown in figurcs 8 arid 9 corrcsponds to two scqucnccs, but iinlikc the prcccdcnce
diagrams of figure 3, thc opcrations arc cxactly thc samc, rcgardlcss of thc ordcr in wliich they arc cxccuted.

6. Finding the Best Plan as an AND/OR Graph Search

To sol\lc problcms that rcquirc optimiiation, such as thc sclcction of thc best assembly plan, onc must bc able
to traverse the space of all candidate solutions, rcgardlcss of the method uscd to solve thc problem. 'lhc choice
of the rcprcscntation is critical since it is ofien difficult to delimit the set of potcntial solutions in a form which
enumcratcs ill1 the elements.

The AND/OR graph reprcscntation encompasses all possible ways to asscmblc onc product, and thcrcfore
allows onc to explore thc space of all possible plans. Since plans correspond to solution trecs in the AND/OR

graph, thc sclcction of thc best plan can be seen as a search problem. Any such scarch problcm rcquircs a
criterion to compare plans. One possibility is to assign to the hyperarcs weights proportional to the difficulty OF
their corrcsponding operations, and then compute the cost of a solution trcc from a nodc, recursively, as:

0 zero, if the node has no leaving hyperarc; or
0 the sum of the weight of thc hyperarc leaving the node and the costs of the solution trees From the

succcssor nodes.
The best plan corresponds to the solution tree that has the minimum cost. The search for the best plan can be
conducted using generic algorithms such as the AO* [8].

A variety of factors might be considered in assigning weights to hyperarcs, including time duration of their
corresponding operations, requirements for reorientation of fixturing, cost of resources needed, reliability, as
well as production priorities and constraints.

For thc product in figure 1, the AND/OR graph (figure 4) has 15 hyperarcs, which correspond to 15 different
assembly operations. Table 1 shows one possible assignment of weights to hyperarcs. Those weights havc been
computed by adding two factors. The first factor is the type of assembly operation, with screw opcration
weighing 4, insertion 2 and placement 1, in accord with typical time, fixturing and manipulation requirements.
The second factor takcn into account is the difficulty OF handling the participating subassemblies, atid is
proportional to their number of degrees of freedom; subassemblies with more degrees of freedom are more
unstable, and therefore more difficult to handle.

Using tliat assignment of weights to hyperarcs, the total cost for the solution trees of figures 5 to 12 can be
computed. The solution trees in figures 5 and 12 have the minimum cost of 11; the solution trecs in figurcs 7,8,
9, and 10 have total cost 13; and the solution trees in figures 6 and 11 havc the highest cost of 14.

13

'Table 1: Assignment of weights to liypcrarcs

hypcrarcs

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
factor

operation 4 4 4 4 4 4 2 2 4 4 2 1 4 4 1

siibasscmbly

freedom
dcgreesof 1 4 4 1 2 4 0 0 4 2 0 0 0 0 0

total 5 8 8 5 6 8 2 2 8 6 2 1 4 4 1

For more complex assemblies, instead of a complete cnurneration as done abovc, search algorithms can be
used to rcduce computation. For the product in figurc 1, a scarch using AO* will yicld onc of thc solution trccs
shown in figiircs 5 or 12, dcpending on how the partial solutions and tip nodes arc ordcrcd for cxpansion.

7 . Opportunistic Scheduling Using the AND/OR Graph Representation

To evaluate how thc use of AND-OR graph representation for assembly plans affects assembly cfficiency, a
comparative analysis among the three rcpresentation schemes discussed in this paper has been conducted.

The product in figure 1, and the robot workstation of figure 13 have becn used as cxamples. 'Thc workstation
is equipped with two manipulators and the parts are presented in random order. It is assumed that a cap, a

stick, a receptacle, and a handle always come together, varying only in their order. It is also assumed that both
manipulators are controlled by the same central unit and they both are able to exccute the following actions:

0 acauire: fctching, by one of the manipulators, of one part from the part feeder

0 buffer: ternporararily storing one part into a fixed location within the workstation

0 mate: joining two subassemblies which are currently held by the manipulators

0 rcuieve: fetching, by one of the manipulators, one part known to be in the parts 'buffer

The efficiency of this assembly station depends on the capacity to handle parts in random order. This
requires on-line scheduling of system resources depending on the order ofparts arrival. The relative inipact of
plan representation schemes on assembly efficiency can be compared by the average number of operations

nceded; a smaller average number of operations corresponds to more efficiency.

The first scqucnce of figure 2 (A-B-C) has been used as an example of fixed sequence representation and the

14

CAMERA v
Figure 13: Robotic workstation

first prccedcnce diagram of figure 3 (which combines A-6-c and B-A-C) as an example of prcccdcncc graph
representation. Similar results will be produced using the other fixed sequences or preccdencc graphs. The

number of operations that would be performed for each one of the 24 possible orderings in which the four parts
of the simple product can be acquired is shown in Table 2. At least 7 opcrations are necessary: four acquisitions
and three rnatings; depending on the order in which the parts are presented, buffering, and thercfore retrieving

may also be necessary.

When using the fixed sequence representation of plans, extensive buffering is necessary. For example, if the

order the parts come is s H R c (stick, handle, receptacle, and cap) both the stick and the handle must be

buffered since they are not used in the first operation; adding two buffcrings and two rctrievings to die four
acquisitions and three rnatings that are always necessary yields 11 operations. The average number of
operations for all 24 possible orders is 9.8.

Using precedence diagrams for the representation of plans avoids some of the buffering and reduces the

average number of operations to 9.2. For the sequence s H R c, for example, only the handle must be buffered

since the insertion of the stick into the receptacle may be the first operation.

Using the AND-OR graph representation of plans, however, avoids most of the buffering, and yields the
average of 8 operations. For the same s H R C sequence, for example, no buffering is needed becausc the robot

can follow the sequence of operations corresponding to the solution tree shown in figure 6.

15

‘I’iIbIC 2: Nurnl)cr of operations iiecdcd to asscmblc the pr-odltct of fig. 1 for d l thc SC~LICIICCS
in which thc parts may bc acquircd, and for the three schcmes of plan I-eprescntation.

C = cap S =stick R = rcccptacle I-I = handlc

first scqucnce first prcccdence diagrams AND/OR graph
scquciice of figure 2 of figure 3 of figurc 4

C S R H

C S H R

C R S H

C R H S

C H S R

C H R S

S C R € I

S C H R

S R C H

S R H C

S H C R

S 1-1 R C

K C S H

R C H S

R S C H

R S H C

R H C S

R H S C

H C S R

H C R S

H S C R

H S R C

9

11

7

9

11

9

9

11

9

11

11

11

7

9

9

11

9

11

11

9

11

11

H R C S 9

H R S C 11

9

11

7

9

11

9

9

11

7

9

11

9

7

9

7

9

9

9

11

9

11

9

9

9

7

9

7

9

9

9

7

9

7

7

9

7

7

9

7

7

9

7

9

9

9

7

9

7

average 9.8 9.2 8

16

8. Conclusion

A compact rcprcscntntion for thc sct of all possiblc asscmbly plans of a product has bccn prcscntcti, along
with its applications in tlic sclcction of the best assembly plan and in opportunistic schcduling. Onc impcirtant
featurc of that rcprcsentation is that it allows one to traverse the space of all possiblc asscmbly plans, and
thcreforc provides an opportunity to sclcct an optimal schcdule and dynamically adapt schcduling to changing

conditions. noth the fixcd scqucnce representation and the precedcnce diagram rcprescntation are vcry limited
in this aspcct.

A number of issiies related to this representation are under investigation. One important issue is the

devclopmcnt of algorithms for opportunistic scheduling suitable for real time operation. As pointcd out in
section 7, some buffering could not be avoided, even with the use of AND/OR graph rcprcscntation of plans. For
complcx products, the choice of which part or subassembly to buffer may affect the overall asscmbly efficiency
and criteria for that dccision will be nccessary. These critcria will certainly dcpend on cvaluation functions, also
undcr invcstigation, used to sclect a plan, cspccially hnctions that do not possess the recursive property like the

one uscd in section 6.

An additional important ongoing research issue is the development of a representation of assemblies suitable
for the automatic generation of plans. Such automation can be helpful in design of both new products and
assembly systems. In designing new products, the designer can quickly assess the difficulty of assembling and
eventually modify the design to facilitate the assembly. In designing new assembly systems, thc designer can
evaluate the performance of a proposed design for a given set of products.

17

References

Ikllinnn, R. et al.
hlathei?iniicnl Aspects of Sc/ieduling and Applications.‘
Pcrgamon Press, 1982.

Fahlmnn, Scott Elliott.
A l’lanning System for Kobot Constniction Tasks.
Arlijiciul Ititelligence 5(1):1-49, 1974.

Fikes, Richard E. and Nilsson, Nils J.
STRIPS: A Ncw Approach to thc Application of Theorcni Proving to Problem Solving.
At-tiJiciul Ititelligence 2: 189-208, 1971.

Fikcs, Richard E. et al.
Lcarning and Executing Generalized Robot Plans.
Artificial Intelligence 3: 251-288, 1972.

Fox, 13. R. and Kempf, K. G.
Opportunistic Scheduling for Robotics Assembly.
In 1985 IEEE International Conference otz Robotics and Aulomation, pages 880-889. IEEE Computer

Society, 1985.

Fox, Mark S.
Conslmint-Directed Search: A Case Study of JobShop Scheduling.
PhD thesis, Carnegie-Mellon University, december, 1983.
Also published as technical reports CMU-CS-83-161 and CMU-KI-TR-83-22.

Krogh, Bnice H. and Sanderson, Arthur C.
Modeling arid Conrrol of Assembly Tasks and Syslems.
Tcchnical Report CMU-RI-TR-86-1, Robotics Institute - Carnegie-Mellon University, 1985.

Nilsson, Nils J.
Principles of Artificial Intelligence.
Springer-Verlag, 1980. ’

Saccrdoti, Earl D.
A Structure for Plans and Behavior.
Elscvier North-Holland, 1977.

18

