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Identifying genes within large regions of uncharacterized DNA 
is a di@cult undertaking and is currently the focus of many 
research efforts. We describe a gene localization and modeling 
system, called GRAIL. GRAIL is a multiple sensor-neural network- 
based system. It localizes genes in anonymous DNA sequence 
by recognizing features related to protein-coding regions and the 
boundaries of coding regions, and then combines the recognized 
features using a neural network system. Localized coding regions 
are then “optimally” parsed into a gene model. Through years of 
extensive testing, GRAIL consistently localizes about 90% of cod- 
ing portions of test genes with a false positive rate of about 10%. 
A number of genes for  major genetic diseases have been located 
through the use of GRAIL, and over 1000 research laboratories 
worldwide use GRAIL on regular bases for localization of genes 
on their newly sequenced DNA. 

I. INTRODUCTION 
One of the most fundamental questions that can be 

asked about a deoxyribonucleic acid (DNA) sequence is 
whether or not it encodes protein. Localization of protein- 
coding regions in ’anonymous DNA sequence by pure 
biological means is both time-consuming and costly. A 
number of computational methods have been proposed and 
used to predict protein-codmg regions and gene structures 
in the past few years [1]-[SI. Though the performance 
of these computational methods is currently imperfect, the 
computer-based approach may soon be the only one capable 
of providing analysis and annotation at a rate compatible 
with worldwide DNA sequencing throughput. 

Computer-based gene prediction methods range from 
database searches for homology with known proteins to 
the more general and fundamental pattem recognition ap- 
proaches. Though as more and more proteins are known 
and put into the database homology-based approaches will 
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become increasingly useful, approximately 50% of the 
newly discovered genes have no detectable homologs in 
the protein databases. This means that pattem recogni- 
tion methods will still play a crucial role in elucidating 
the locations and significance of genes throughout the 
genome. 

The basis for most coding-region recognition methods 
is the positional and compositional biases imposed on the 
DNA sequence in coding regions by the genetic code and by 
the distribution of amino acids in proteins. Though recogni- 
tion of each of these biases provides a useful indication of 
coding regions it is unrealistic to expect a single “perfect” 
indicator, given the incomplete state of our understanding 
of the underlying biological processes around genes. We 
previously proposed an approach to combine information 
from several coding-prediction algorithms, each designed 
to recognize a particular sequence property, using a neural 
network to provide more powerful coding recognition capa- 
bilities, and have implemented the algorithm as an e-mail 
server system, called the Gene Recognition and Analysis 
Internet Link (GRAIL) [2], [9]. While GRAIL has evolved 
considerably since its inception in 1991, the basic design 
principles are retained [lo]-[ 121. 

A D2NA can be considered as a sequence of four 
letters-A, C, G, T-representing four types of nucleotides. 
A typical DNA sequence could range from a few dozen 
bases to millions of bases. Portions of a DNA sequence 
may contain protein-coding regions, and consecutive coding 
regions may form a gene. A gene can be considered 
as an intermixed sequence of exons and introns, where 
exons represent coding regions and introns represent non- 
coding regions which separate exons; each intron starts 
with a donor splice junction and ends with an acceptor 
splice junction. During the process of mRNA maturation, 
introns are spliced out and exons are retained in the 
final message, which can then be translated into protein. 
Mathematically we can define that two exons are spliceable 
if the positions of their boundaries and the frames in 
which they are translated into protein satisfy an equation 
to be given later (each DNA segment has three possible 
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Gene 1 

Fig. 1. A schematic of a DNA with two genes. Each solid rectangle represents an exon and a 
hollow rectangle represents an intron or intergenic region. The boundaries of an intron are donor 
and acceptor junctions. 

Gene 2 

translation frames).’ The goal of gene recognition is to 
recognize exons and to group recognized exons, which 
are spliceable, to form a gene. Fig. 1 is a schematic of 
a DNA sequence showing genes, exons, introns and splice 
junctions. 

To determine the likelihood that a DNA segment is an 
exon involves measuring coding potentials of the region and 
evaluation of the strength of boundary signals of the region, 
e.g., the strength of potential splice junctions bounding the 
region. A number of coding measures have been proposed 
based on the frequency of nucleotide “words” of a fixed 
length. Different types of DNA sequence (exons, introns, 
etc.) have different distributions of word occurrence [ 131. 
In GRAIL, we have used a frame-dependent six-tuple 
preference model [2] and a fifth-order nonhomogeneous 
Markov chain model [ 141 to measure coding potentials. 
A number of measures including a five-tuple preference 
model, long-distance correlations between single bases, etc. 
have been used to measure the strength of a potential 
splice junction. These measures along with a number of 
correction factors are fed into a neural network for the final 
exon candidate evaluation. This neural network is trained, 
based on empirical data, to effectively weigh the various 
features in scoring the possibility of each sequence segment 
(candidate) being an actual exon. The use of empirical 
data for training allows the system to optimally utilize 
each feature in the presence of the others, without a priori 
assumptions about the independence of the features or their 
relative strengths. 

Gene modeling involves selecting a set of most probable 
exon candidates that are spliceable to each other. While 
the neural network scores an exon candidate based on local 
information the gene modeling procedure makes the final 
exon prediction based on more global information, i.e., 
whether exon candidates are spliceable or not in addition 
to the neural network scores. 

The GRAIL gene recognition algorithm can be outlined 
as the following four steps. 

1) Candidate generation. The algorithm first generates 
a large candidate pool consisting of all possible exon 
candidates. 

2) Improbable candidate elimination. A series of heuris- 
tic rules, each of which defines some necessary con- 
ditions a probable exon candidate should satisfy, 
are used to eliminate majority of the improbable 
candidates. 

‘ A  DNA sequence has two strands, forward and reverse complement. 
For each strand there are three possible translation frames. We only 
consider the forward strand in this discussion. 

3) Candidate evaluation. The candidates which have 
passed the rules are then evaluated by a pretrained 
neural network. 

4) Gene modeling. The algorithm selects, from the pool 
of scored exon candidates, a set of highest scor- 
ing candidates such that the adjacent candidates are 
spliceable to form a gene model. 

Four types of exons are recognized based on their dif- 
ferent boundary signals. We use the internal exons as 
examples to explain the basic ideas of exon recognition. 
Other types of exons, initial, terminal and single-exon, can 
be recognized similarly. An internal exon is bounded from 
left by an acceptor splice junction and from right by a donor 
splice junction. 

11. SPLICE JUNCTION RECOGNITION 
Evaluation of the donor and acceptor splice junctions 

is used in each of the first three steps of the GRAIL 
gene recognition algorithm. GRAIL recognizes acceptor 
junctions having the usual YAG (i.e., CAG or TAG) con- 
sensus, as well as the nonstandard AAG consensus, and 
also recognizes donor junctions containing the GT consen- 

Recognition of donor and acceptor splice junctions re- 
mains an imprecise art, due to a very significant background 
of nonfunctional sequences containing a splice consensus. 
Our recognition method is based on a number of relative 
frequency measures of nucleotide “words” appearing in the 
neighborhood of true splice sites versus false splice sites 
(containing minimal splice consensus) as each of those 
measures exhibits some discriminative power among true 
and false splice junctions. A large set of true and false 
splice sites are used to calculate these frequencies. As a 
result, a profile of frequencies is obtained for true and false 
splice sites, respectively. Then a vector of scores can be 
obtained for each true or false splice site based on the 
calculated profiles. For each of the three types of splice 
junctions mentioned above, a feedforward neural network 
is trained using the standard backpropagation learning al- 
gorithm, based on these vectors and their corresponding 
true or false labelings, to score a splice junction as being 
a true or false site. The neural network consists of seven 
inputs, one hidden layer of three nodes and one one 
output. 

The seven frequency measures used in the YAG acceptor 
neural network recognition system are given as follows. Let 
a-60 . . . a35 represent the DNA segment containing a YAG 
consensus with aoala2 = YAG. 

sus. 
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Fig. 2. YAG acceptor prediction. A total of 227 true (top) and 5127 false YAG acceptors (bottom) 
were tested The height represents the percentage of acceptor candidates which were scored in 
the interval. 

1) 
-4 

log(Ft"(az'.'az+4)/Fj(az " 'az+4) )  

%=-23 

where F;() and Fj() represent the positionally 
dependent (position i )  five-tuple frequencies in 
true and false splice junction regions, respec- 
tively. 

2) 
0 4 

t=-27 2=3 

where F t ( )  and F f ( )  are defined similarly to (1) 
except that they are not positionally dependent. 

3) 
0 

i=-27 

for this type of acceptor. Similarly, donor splice junctions 
are recognized. 

After evaluating all potential splice junctions GRAIL 
generates an exon candidate pool. Each exon candidate is 
a DNA segment with an open translation frame bounded 
by a pair of potential acceptor and donor junctions with 
scores larger than defined thresholds. ~ Typically a few 
thousand of candidates are generated on a DNA sequence 
of 10 000 bases long. In the second step of the GRAIL gene 
recognition algorithm, the splice junction scores combined 
with several coding potential scores are used to design a 
number of heuristic rules. Each of these rules defines some 
necessary conditions that a probable exon candidate should 
satisfy. On average application of these rules eliminates 
over 90% of the original candidates with less than 3% of 
true exons being removed; Hence it greatly simplifies the 
learning process in the neural network evaluation step, and 
allows the neural network learning to focus on situations 
where the decision is more difficult. 

111. GENE RECOGNITION 
A coding DNA encodes protein by encoding each amino 

acid of the protein into a triplet of nucleotides, also called a 
codon. Recognition of a coding region essentially involves 
a determination of whether the DNA sequence can be 

where PY(az )  is 1 if uL is a pyrimidine (C or T) 
otherwise 0. 

distance between a0 and the 
nearest upstream YAG. 

4) The 

51 
- I  partitioned into segments of three and this sequence of 

nucleotide triplets may possibly correspond a "valid" pro- 
tein, a sequence of amino acids. A number of models have 
been proposed to measure the coding potential of a DNA 
sequence, based on the distribution of consecutive amino 
acids in a protein. GRAIL uses two of those models, a 
frame dependent six-tuple preference model [2] and a fifth- 
order nonhomogeneous Markov chain model [14], as basic 
coding measures. The coding of amino acids in nucleotide 
triplets means that there are three possible ways to translate 
a DNA to protein, i.e., the three possible translation frames 
(two of which are incorrect). 

4 4  

1% (F," (aza, )/q (w, 1) 
z=-27 122 

where F;() and p;o are defined simil'arly to (1). 
q, 7) Coding potentials in regions of a--6o. a-1 and 

a3 . . . measured using a frame-dependent six- 
tuple preference model (see Section 111). This 
is to give an indication of a transition between 
noncoding and coding sequences. 

Fig. 2 shows the performance statistics on an independent 

Acceptors with nonstandard AAG consensus are recog- A. Extraction 
test set of YAG acceptor prediction system. 

nized using basically the same measures but with different 
frequency profiles. A separate neural network was trained 

The frame dependent six-tuple preference model consists 
of three preference values, p f O ( X ) ,  p f l  (X), p f i  (X), for 

r 
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Fig. 3. The X-axis represents the G + C composition of an exon candidate and Y-axis represents 
the six-tuple scores measured by the frame-dependent preference model. Each tick mark on the 
horizontal axis represents 10% in G + C composition with 0% on the left and 100% on the right. 
The large squares represent the coding regions and the small dots represent the regions flanking 
coding regions. 

each of the 4096 possible six-tuples X ,  which are defined 
as follows: 

where f r ( X )  is the frequency of six-tuple X appearing 
in a coding region and in the actual translation frame 
+T, for T = 0, 1,2, and f n ( X )  is the frequency of X 
appearing in a noncoding region. In GRAIL, all the six- 
tuple frequencies were calculated from a large set of DNA 
sequences.2 

Let a1 + .  'a, be a DNA sequence of n bases long. 
The preference model calculates the coding potential of a 
segment ak . . . a, in each of the three possible translation 
frames, T = 0,1,2,  as 

P f r ( a k  . . . a,) 
= ( P f ( k + 5 - r ) m o d 3 ( a k  ' ' * a k + 5 )  

f P f ( k + G - r ) m o d 3 ( a k + l  ' ' ' ak+6)  

*The set contains 450 DNA sequences with 462608 coding bases and 
2 003 642 noncoding bases. 

+ p f ( k + ' i - r ) m o d 3 ( a k + 2  ' ' ' a k + 7 )  + ' ' ' 
+ P f ( m - r ) m o d 3 ( a m - 5  ' .  ' am))/(m - + 1) (2) 

where mod is the modulo function. 
Under the assumption that a DNA forms a fifth order 

nonhomogeneous Markov chain, GRAIL uses the Bayes 
formula to measure the coding potential of a DNA segment 
ak + . a, in each of the three possible translation frames, 
T = 0,1,2,  as follows (see (3) at the bottom of the page). 
where by the Markov chain assumption 

P, (ak e - e am I coding& 
- - P ( k + 5 - r ) m o d 3 ( a k  ' ' a k + 4  I coding) 

x P(k+,!-r)mod3(ak+5 I ak ' ' ' ak+4,coding) 
x P ( k + G - r ) m o d 3 ( a k + 6  I ak+l ' ' 'ak+5,coding) 
' * * P ( m - r ) m o d 3 ( a m  I a m - 5  .**am-l,coding). (4) 

and 

P, (ak . . . a ,  I noncoding) 
= P,(ak . . . ukt4 I noncoding) 

x P, ( uk+5 I a k  . . . ak+4, noncoding) 

PT(ak e + e a,  I coding) 
E;=,, Pf(ak . . . a, I coding) + CP(ak . . . a, I noncoding) 

P,(coding I a k . .  . U,) = ( 3 )  
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x Pn(uk+~ I u k + 1  . . . uk+5, noncoding) 
".Pn(um 1 am-5 . . .  ~~-1 ,noncoding) .  (5 )  

and C is the estimate of the ratio of coding versus non- 
coding bases in DNA, PT(X I Y )  and P,(X I Y )  are 
the conditional probabilities of X in coding regions (in 
translation frame +r) in the presence of Y and in noncoding 
regions, respectively. These conditional probabilities can be 
estimated using the above p f T  and p f ,  values. 

Though not being totally independent measures, each of 
these two models has its own coding recognition strengths 
and weakness according to our test results. GRAIL uses 
both models as the basic coding feature extraction methods, 
and combines them along with other measures in the neural 
network coding recognition system. 

Coding measures by the six-tuple preference model and 
the Markov chain model are also used to device heuristic 
rules for improbable exon candidate elimination in the 
second step of GRAIL gene recognition algorithm. 

B. Information Fusion 
In this subsection, coding measures refer to measures of 

coding potential using the six-tuple preference model and 
the Markov chain model. The goal of the exon recognition 
process is not just to discriminate exons from nonexonic 
regions but also to score the degree of correctness of an 
exon candidate that overlaps actual exons. For example, we 
consider a candidate which extends past one boundary of an 
exon, but otherwise overlaps it, to be partially correct. To 
achieve this scoring, we use coding measures in the flanking 
areas in addition to the coding measures of a candidate 
region. The rationale is that strong coding indication from 
the neighboring areas indicates that the candidate may be 
just a portion of an exon. As the candidate more closely 
approximates an actual exon, more noncoding elements 
will be included in its surrounding areas and hence the 
surroundings will exhibit a weaker coding score. GRAIL 
uses 60 bases on each side of an exon candidate as the 
flanking regions. 

Splice junction scores are another set of measures used 
to help to determine the correct exon boundaries. Though 
false splice junction prediction m y  occur, in general true 
splice junctions have higher scores than nearby false splice 
junctions. By providing to the exon recognition neural 
network information from coding measures of an exon 
candidate, scores from flanking regions and the scores of 
its bounding splice junctions, GRAIL can fairly accurately 
score the degree of overlap (or correctness) of the candidate 
with the actual underlying exon. 

One interesting observation we made indicates that 
shorter exons tend to have stronger splice junction sites and 
hence higher splice scores. Also short false exon candidates 
may by accident have high coding measures (because of 
statistical limitations). Based on these considerations, we 
have included the (normalized) exon candidate length as 
one of the inputs to the neural network recognizer. We 
have observed that the neural network can learn these 
relationships based on the training data. 
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Fig. 4. A schematic of the neural network for evaluating internal 
protein coding exons in GRAIL. 

The recognition of coding regions using the six-tuple (or 
in general k-tuple, for any fixed k )  method is known to have 
strong dependence on the G + C  (bases G and C) compo- 
sition, and is more difficult in G + C poor domains. Our 
recent observation on the relationship of six-tuple coding 
measures and G + C composition supports this belief. If 
we estimate the frequencies of frame-dependent coding six- 
tuples and noncoding six-tuples in the high G + C domain, 
and use these frequencies to calculate coding measures for 
a set of coding regions and their 60-base flanking regions 
in all ranges of G + C composition, an unexpected pattern 
result is shown in Fig. 3. The coding measures for both the 
coding regions and their flanks are much lower in the G + C 
poor domain compared to the G + C rich domain. A very 
similar behavior is observed if the six-tuple frequencies are 
collected from low G + C DNA sequences. Interestingly, 
though the relative separation between coding regions and 
their flanking regions is similar at both ends of the G + C 
composition range, many nonexonic regions in high G + C 
isochore have higher coding measure than many coding 
regions in G + C poor regions. This certainly highlights the 
necessity to include the G + C  composition as one piece 
of information in the neural network information fusion 
process. GRAIL uses the G + C compositions of both an 
exon candidate region and a 2000-base region centered 
around the candidate as two inputs to the neural network 
coding recognizer. 

A schematic of the neural network used in GRAIL is 
shown in Fig. 4. This feedforward neural network has 13 
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Fig. 5. Exon clusters. The X-axis is the sequence axis and l’-axis is the neural net score axis. 
The rolid bars on the top represent the poritions of the actual exons, and the hollow rectangles 
represent the predicted exon candidates with different boundary assumptions 

inputs, two hidden layers with seven and three nodes, 
respectively, and one output. 

In training the neural network, our goal is to develop 
a network that can score the “partial correctness” of a 
potential exon candidate. A simple matching function M ( )  
is used to represent the correspondence of a given candidate 
with the actual exon(s) during training. 

(6) M(candidate) = c, m, Et ma 
length(candidate) E, length(exon) 

3 

where c, m, is the total number of bases of the candidate 
that overlap some actual exons (in the same translation 
frame), and E, length (exon,) is the total length of all 
the exons that overlap the candidate. Using such a function 
helps “teach” the neural network to discriminate candidates 
with different degrees of overlap with actual exons. The 
network was trained using the standard backpropagation 
algorithm on a training set containing about 2000 true, 
partially true and false exon candidates (a vector of features 
along with its corresponding M ( )  value for each candidate). 
All sequences used for training were from the Genome 
Sequence Database (GSDB) [15]. 

Fig. 5 shows a typical example of GRAIL neural network 
exon predictions. There could be more than one prediction 
for each actual exons. As can be seen, predictions for 
the same exon form a natural cluster, and in general the 
candidate that matches the actual exon exactly has the 
highest neural network score in the cluster. 

C. Gene Modeling 
The GRAIL gene modeling step takes as input the scored 

exon candidates generated by the coding recognition neural 
network and builds a single gene model in a specified region 
by appending a series of nonoverlapping exon candidates 
under the constraints that 1) the first candidate should start 
with a translation start codon ATG and the last candidate 
should end with an in-frame stop codon, TAA, TAG, or 
TGA, 2) adjacent candidates are spliceable (see below), 3) 
no in-frame stop codons can be formed when appending 
two adjacent exon candidates, and 4) the distance between 
two adjacent candidates has to be larger than the minimum 
intron size (60 bases are used in GRAIL). 

Two candidates u3 ...arc and a,...a,, k < m, with 
the preferred translation frames TI  and ~ 2 ,  respectively, are 
said to be spliceable if 

~2 = (m - k - 1 + rl)mod3 (7) 

where the preferred translation frame refers to the frame 
exhibiting the highest coding potential. 

GRAIL builds a gene model with the highest total neural 
network scores using a fast dynamic programming algo- 
rithm [3]. The basic idea of this algorithm is that it scans 
exon candidates in the increasing order of the indices of 
their boundaries, and builds an optimal (highest scored) 
partial gene model that ends with each exon candidate 
by extending the previous optimal partial gene models to 
include the current candidate. When expending an optimal 
partial gene model, the algorithm checks if the constraints 
(1)-(4) are satisfied. A globally optimal solution can be 
obtained when the algorithm finishes scanning all the 
candidates. 

In addition to finding a set of highest scored candidates 
that forms a gene model, the algorithm also helps to 
eliminate false exon candidates as a result of enforcing the 
spliceability. Fig. 6 shows two examples of GRAIL gene 
prediction results. 

D. Sequencing Error Handling 
Performance of the GRAIL gene recognition algorithm 

depends on the correctness of the input DNA sequence. 
Insertion or deletion of DNA bases (or simply indels) may 
change the performance significantly as indels may disrupt 
the translation  frame^,^ and GRAIL basic coding recogni- 
tion methods are highly translation frame-dependent. We 
have developed an algorithm to detect and “correct” in- 
dels appearing in DNA coding regions [ 161. While indel 
detection can be achieved using the information present 
in the DNA sequence, indel correction can be expected 
to be only imperfectly achieved since information may 
have been lost (for example, bases that have been deleted) 
when an indel error occurred. Hence the basic goal in indel 
correction is to recover a consistent translation frame within 

3Here the translation frame of a coding region refers to the preferred 
trandation frame of the region. 
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Fig. 6. GRAIL gene predictions The X-axis is the sequence axis and the Y axis IS the neural 
net score axis. The solid bars on the top represent the actual exons. The solid bars on the second 
row represent predicted exons and gene model Each hollow rectangle denotes an exon candidate. 
(a) sequence HUMATPGG and (b) sequence HUMMHB27D. 

a (presumed) coding region. The key to the indel detec- 
tion and correction algorithm is to localize the transition 
points of translation frames within each (presumed) coding 
region. 

In GRAIL, a coding region is recognized along with its 
translation frame. The indel detection algorithm first finds 
all the transition points of the (preferred) translation frames 
along a given DNA sequence by discovering changes in 
the (preferred) translation frames, and then evaluates the 
coding potential on both sides of each transition point. If 
a transition point occws between regions of high coding 
potential, the point is determined to be an indel. These 
indels are then corrected by adding a base "C" or deleting a 
base at each transition point to make a consistent translation 
frame (within each coding region). "C" is used to avoid the 
potential for creating stop codons. 

To find the transition points, the algorithm divides a 
DNA sequence into segments in such a way that two 
adjacent segments have different translation frames, each 
segment has at least a minimum length (to prevent short 
range fluctuations), and the total coding potential along the 
translation frames are maximized. In this algorithm, coding 
potential is measured using the six-tuple frame-dependent 
preference model. 

More specifically, we want to partition a given DNA 
D into segments D1, Dz, . a , D, such that the following 
objective function is maximized 

m 

under the constraints that each D, has as least K bases and 
there is no 2, 1 5 z < m, with ~ ( 2 )  = T ( Z  + l), where ~ ( i )  
denotes the translation frame of segment D,. Recall from 
Section I11 the definition of p f ,  (0%). 

This optimization problem is solved by a dynamic pro- 
gramming algorithm with K = 30. The potential for each 
transition point to be within a coding region is evaluated 
using the fifth order nonhomogeneous Markov chain model 
(see Section 111) on 30 base regions before and after the 
transition point. 

The indel detection and correction algorithm has greatly 
improved the prediction results of the GRAIL gene recog- 
nition system in the presence of sequencing errors. On 
a test set containing 202 DNA sequences with 1% ran- 
domly implanted indels, this algorithm has helped improve 
the GRAIL coding recognition from a true positive rate 
of 60%-81% with only 1% increase in false positive 
rate. 

IV. SUMMARY 
The performance of multi-agent systems such as GRAIL 

depends critically on how the information from different 
agents is combined. Over a dozen of exon indicators and 
correction factors are used in the GRAIL gene recognition 
process. The relationship between these quantities and the 
presence of exons is complicated, incomplete and clearly 
nonlinear. To develop an effective mechanism to map these 
quantities, some of which may not be independent, to exon 
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Table 1 GRAIL Gene Recognition Performance 

Short 
Long 
Total 

Total 

DNA Predictions Gene Modeling 
# Exons TP % FP % TP % FP % 

229 171 74.7 39 18.6 167 73.0 16 8.7 
600 575 95.8 30 4.9 564 94.0 13 2.3 
829 746 90.0 69 8.5 73 1 88.0 29 3.8 

# Bases 
134814 122885 91.2 I 13048 I 9.6 122404 90.8 I 5972 4.7 

and nonexonic regions is the main goal of our research. By 
training neural networks with hidden layers on empirical 
data, GRAIL seems to have captured some of the most 
essential part of this relationship based on its successful 
applications to gene recognition by molecular biologists 
worldwide over the past four years. 

By using a neural network as the basic means to combine 
information from different sources, we have also obtained a 
flexible framework to include new information in our gene 
recognition system as deeper understanding and hence more 
information about genes are gained. Some recent work [ 171 
has applied neural networks to combine information from 
recognized gene features and data base search information 
in a gene recognition algorithm. 

Since its service being made available to public through 
an e-mail server in 1991 and also through a CUI-based 
clienvserver system in 1993, GRAIL has become one of 
the major tools used by molecular biologists. Over 1000 
research labs worldwide use this system to intelligently 
select and design biological experiments where they are 
most needed and most useful. Among these applications, 
GRAIL has helped to locate a number of genes for major 
genetic diseases [ 181, [ 191. 

Through the years, GRAIL has been extensively tested 
on its performance of gene recognition and modeling. On a 
recent test on I10 Human and Mouse DNA sequences con- 
sisting of 829 exons, 134 814 coding bases and I 257 631 
noncoding bases, GRAIL recognizes over 90% coding 
bases with about a 5% false positive rate as summarized 
in Table 1. 

The high sensitivity and specificity of the GRAIL 
gene recognition and modeling system and its availability 
through the e-mail server and clientkerver system greatly 
increases the viability of the gene hunting strategies 
based on genomic sequencing and informatics analysis. 
We have shown that the detailed structure of genes can 
be characterized with considerable fidelity, and expect 
that, in terms of providing relatively complete information 
about uncharacterized regions of the genome, this overall 
technology will fair well when compared to experimental 
alternatives such as exon trapping and DNA-based methods. 
Computational characterization of genes in their genomic 
sequence context will increasingly provide an important 
framework for understanding aspects of gene regulation 
and larger questions related to the functional organization 
of the genome. 
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