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Abstract

One of the perennial goals in computer graphics is realism in realtime. Handling geometrically complex scenes and physically faithful descriptions
of their appearance and behavior, clashes with the requirement of multiple frame per second update rates. It is no surprise then that hierarchical modeling
and simulation have already enjoyed a long history in computer graphics. Most recently these ideas have received a significant boost as wavelet based
algorithms have entered many areas in computer graphics. We give an overview of some of the areas in which wavelets have already had an impact on
the state of the art.
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I. I NTRODUCTION

Research in computer graphics (CG) has recently seen considerable activity centered around the use of wavelets. As in many
other disciplines, the ideas of multiple levels of resolution, or so called “level of detail” modeling, have been around in CG for a
long time. Thus when wavelets moved from a mathematical analysis tool to a practical computational tool they were quickly put
to use in CG.

There are several reasons for the enthusiastic welcome wavelet based algorithms have received in CG. Foremost stand the huge
computational demands of CG applications. Geometric models, for example, are often built from a large number of primitive
elements in order to achieve some desired level of fidelity with respect to a real world object. At the same time users want all
manipulations and computations involving these objects to occur interactively, i.e., with screen updates occurring multiple times
per second. Similarly, shading and motion of these objects should appear realistic. Depending on the number and complexity of
objects occurring in the scene this can lead to very expensive algorithms. Examples include the modeling of constrained dynamical
systems, deformation of objects under forces, and indirect illumination effects. Performing the necessary computations under
the constraints of interactivity demands the most efficient algorithms possible, and shrewd approximations without sacrificing
perceived realism.

Due to the ability of wavelets to represent functions and datasets compactly within user specified error bounds they are a natural
tool to consider. Their “zooming in” ability allows the use of “just enough” precision in a given region of interest while at
the same time allowing coarse representations in regions outside the immediate area of interest. Even more importantly, they
facilitate a smooth tradeoff between computation time, and resulting simulation quality. Often the algorithms which manipulate
these hierarchical objects become asymptotically faster as well, allowing the use of much larger and more complicated scenes than
previously possible.

In this paper we to give a brief overview of the many applications in CG to which wavelets have already made a contribution.
Since the areas are numerous we favor breadth over depth at times and refer the interested reader to the original papers and the
references therein for more details. We begin with a more in depth description of the use of wavelets in illumination computations,
since there has been considerable activity in that area in particular. This is followed by a review of the use of wavelets in modeling
curves, surfaces, and animation paths, their extension to more general domains, and scientific visualization and processing of 3D
data sets.

II. I LLUMINATION COMPUTATIONS

Computing the illumination in a virtual scene is one of the basic problems of CG. It can be computed at many different levels
of fidelity. At the high speed but low quality end, we find graphics workstation hardware capable of shading more than 1 million
polygons per second with simple local illumination models. On the other hand, algorithms which are capable of capturing the
subtle gradations due to indirect illumination and area light sources require considerably larger resources. High fidelity images
based on a whole range of reflection phenomena described by therendering equation[32] often take hours or days to compute. The
high complexity of such computations is a consequence of the fact that each surface in a scene can potentially affect the appearance
of every other surface, leading to very large and dense linear systems.

One algorithm known asradiosity [13] makes the simplifying assumption that all reflection in an environment occurs diffusely
to reduce the general case to a manageable, albeit still very expensive, simulation. Diffuse reflection is a reasonable assumption for
such interior surfaces as matte walls, but more problematic for polished wood, for example. In spite of this limitation, algorithms
that compute radiosity solutions, for example in architectural environments, have been very popular, and in this particular area
wavelets have had a large impact.



2

I

IR

E

x

r

y

R

E

Box (nodal) basis

RE

θ

yθ

x

Fig. 1. On the left the geometry for the interaction between pointx andy on some pair of surfaces. On the right a simple environment in “flatland,” two parallel
line segments and the resulting matrix of couplings using 32 constant elements (adapted from [49]).

Radiosity,B(y), with units[W/m2], is a function defined over all surfacesM2⊂ R3 which make up a given scene. It is governed
by a Fredholm integral equation of the second kind

B(y) = Be(y)+ ρ(y)
∫
M 2

G(x,y)B(x)dx with G(x,y) =
cosθx cosθy

π r2
xy

V(x,y), (1)

which states that radiosity at surface pointy is the sum of an emitted part,Be(y), and a reflection term due to radiosities on all other
surfaces. The fraction of light reflected is given byρ, and the irradiance by an integral over all other surfaces in which the radiosity
is weighted by a geometry termG(x,y). It accounts for relative orientation through the cosines of the local surface normals with
the line connectingx andy, the falloff, r−2

xy , with distance, and a visibility functionV, which takes on the values 1 and 0 ifx can
or cannot “see”y respectively (see Figure 1, left). To simplify the exposition we will assume that the world is monochrome. In
practice Equation 1 is typically solved for 3 representative wavelengths,(r,g,b).

A common approach to solve such integral equations is the use of finite elements. Classically [22], [46] constant elements have
been used in CG. The scene is meshed into many small surfaces, each with a constant radiosity, resulting in a discrete approximation
of Equation 1

∀i : bi = be
i + ρi ∑

j

Gi j bj where Gi j =
∫ ∫

G(x,y)Nj (x)Ni(y)dxdy. (2)

This linear system is characterized bycouplingcoefficientsGi j . The solution to this system is a set of coefficientsbi of an
approximationB̂= ∑i biNi to the actual solutionB, where{Ni}i=1,...,n is the basis corresponding to the elements chosen. In the case
of piecewise constant radiosity theNi would simply be box functions whose support ranges over a given mesh element.

To appreciate the size of these linear systems, consider a very simple environment, perhaps a room, consisting of a few hundred
polygons. In order to get a visually pleasing result the number of elements into which these polygons are meshed can easily surpass
10000. The matrix we are trying to invert would then be of order 10000×10000. Since these systems are generally dense—almost
all elements can “see” almost all other elements—the cost of solving these systems naively is prohibitive.

Obviously the order of the elements, i.e., the choice of subspaceV = span{Ni}i=1,...,n, will have an impact on the size of the
system. For example, one will generally need considerably more constant elements than linear or higher order elements to achieve
some desired fidelity [29], [30], [65], [62].

Given the space spanned by some set of elements, e.g., a piecewise polynomial space, we can still choose one of many possible
bases for this space. In particular one can choose a wavelet basis. The resulting linear system will then be approximately sparse
due to the vanishing moment property of wavelets [5]. Such sparse systems can be solved asymptotically faster.

The observation that multiresolution representations can greatly accelerate radiosity computations was first made by Hanrahanet
al. [27]. Based on geometric considerations and without reference to wavelets they showed that a suitable hierarchy of interactions
leads to a solution algorithm with complexity linear rather than quadratic in the number of elements. This approach was later shown
to be equivalent to the use of a Haar wavelet basis and extended to higher order wavelets in [49], [23].

To appreciate how wavelets can exploit the structure of the linear system(Gi j )i, j=1,...,n consider a very simple example from
“flatland”, i.e., radiosity between lines in the plane (Figure 1). On the left we have two parallel lines which can be thought of as an
emitter and receiver. Each is cut into 32 constant elements. The resulting matrix is blocked with identity matrices on the diagonal.
The off diagonal block is shown enlarged on the right with dot sizes proportional to the magnitude of the coupling coefficients. The
matrix is dense and its entries vary smoothly due to the smoothness of the kernel functionG(x,y) itself. Instead of using piecewise
constant functions at resolution level 32 (in this example) one can use a wavelet basis for the same space, resulting in a rather
different matrix as shown in Figure 2. In that matrix many entries are rather small and can be set to zero while still maintaining
control of the induced error.
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Fig. 2. Coupling matrices for the parallel lines flatland environment (see Figure 1) expressed in wavelet bases using the so callednon-standardoperator realiza-
tion[5]. On the left the coupling matrix expressed in the Haar basis and on the right in theF2 basis [23], which has 2 vanishing moments. Note how the sparsity
increases with increasing vanishing moments.

Choosing a wavelet basis will pay off for integral operators whose kernel satisfies estimates of “falloff with distance.” In that
case onlyO(n) coupling coefficients will be larger in magnitude than someδ(ε) when using a wavelet basis. All other coefficients
can be set to zero and one can still compute an answer to within the user specifiedε> 0 [5]. The kernelG of the radiosity integral
operator satisfies such a falloff property,r−2

xy .
Using a wavelet basis for a finite element method can be interpreted as wavelet transforming the original nodal basis matrix

and then thresholding the result. This procedure is not unlike many image compression algorithms, which similarly begin with an
image, wavelet transform it, and then threshold without creating too much distortion after reconstruction. Given the smoothness of
the original matrix (“image”) of Figure 1 it is not surprising then that one can threshold out many of the coefficients after wavelet
transforming, without creating too much error in the final result.

Given such a sparse representation in the wavelet basis one can use iterative techniques to solve the resulting system in linear
time. The ability to sparsify, or compress, the original matrix is related to the number of vanishing moments of the wavelet used.
In the matrices in Figure 2 more entries are small—and can be ignored—as we go from 1 to 2 vanishing moments (Haar to Flatlet
2).

This suggests a straightforward algorithm: Compute the initial matrix of coupling coefficients at some finest level (Figure 1),
wavelet transform it (Figure 2), threshold, and iteratively solve the remaining sparse system inO(n) time. This approach has a
number of drawbacks. In practice it is often not clear how fine the finest level has to be as a function ofε. One also often finds
that some regions need finer meshing than others. More importantly though, setting up the initial matrix at some finest resolution
requiresO(n2) work, destroying all benefits of anO(n) solution method. What is needed is a general procedure which finds and
computes only thoseO(n) entries in the transformed system which are needed for a given accuracy threshold. The difficulty is that
it is not a priori clear where these entries are. For a fixed configuration this is easy to determine, but a real application code has to
be able to deal with any input geometry.

This problem of finding exactly those entries which are important was elegantly solved in the hierarchical radiosity algorithm
of Hanrahanet al. [27] using reasoning similar to linear time n-body algorithms [25]: Interactions between elements which are
well separated can be approximated at a coarser level of resolution. Two elements are well separated when their distance to each
other is significantly larger than their size. Hanrahanet al. describe a recursive procedure for the case of piecewise constant basis
functions. Given two elementsi and j, an error estimator determines whether those elements can interact directly. If the error is
acceptableGi j is computed and the recursion stops. If the error is found to be too large, one of the elements is subdivided and
the function recurses on the potential child interactions. This procedure results in a number of interactions which is linear in the
number of elements. Since the recursive enumeration scheme starts at the coarsest level, no finest level needs to be fixed a priori.

Hanrahanet al. in effect used the Haar basis. These ideas of recursive coarse to fine enumeration, coupled with an appropriate
error estimator, were extended to wavelets with more vanishing moments by Gortleret al. [23], [49] who used Alpert wavelets [1]
andFlatlets, which are specially designed, piecewise constant, biorthogonal versions of Alpert wavelets [23].
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Fig. 3. A diffusely emissive source (far end) as reflected in a floor of varying reflectivity, ranging from purely diffuse (left) to highly specular (right). The solution
was computed with Alpert wavelets of 2 vanishing moments using the more general radiance algorithm [50].

Fig. 4. Example of a complex radiosity solution computed with Alpert wavelets of 2 vanishing moments. On the left a floor of an architectural database containing
40000 polygons meshed into over 1265000 elements. On the right a detail image showing some of the induced meshing. In both cases the ceiling, which was
present during the simulation, was removed for visualization purposes. (Images courtesy Seth Teller.)

A. Extensions

Here we briefly list a number of extensions to the basic method which have been proposed.
The original wavelet radiosity work used only tree wavelets, i.e., wavelets for which the supports of neighboring functions

do not overlap. The resulting numerical discontinuities at element boundaries lead to visually objectionable blocking artifacts.
Experiments with classical wavelets have been reported by Pattanaik and Bouatouch [47] who used Coiflets [17] and interpolating
scaling functions [18].

Adapting the wavelets to features in the final solution has been pursued throughdiscontinuitymeshing [38]. Instead of adaptive
but dyadic subdivision to approximate shadow boundaries [27], [49], [23], Lischinskiet al. [38] used geometric analysis to induce
subdivision along shadow boundaries with piecewise constant bases. Bouatouch and Pattanaik [6] explored the application of these
ideas to higher order Alpert [1] bases.

Hierarchical techniques have also been applied to the more generalradianceproblem. In these approaches reflection and emis-
sion are allowed to be directionally varying. Figure 3 shows examples of reflectivity ranging from perfect diffuse (left) to highly
directional (right). This leads to an integral equation with the basic structure as before, but this time relating radiance functions of 4
(2 surface and 2 direction) variables to each other via a kernel which is a function of 6 variables. Aupperle and Hanrahan [2] were
the first to give a hierarchical finite element algorithm for radiance computations extending their earlier work [27]. Higher order
Alpert wavelets were used in [50]. Christensenet al. [9], [8] used a different parameterization and explored the use of different
operator decompositions for radiance with piecewise constant bases.

All the algorithms described so far have only consideredsubdivisionof surfaces. Consequently the complexity is still quadratic
in the number of input surfaces and linear only in the number of elements produced. In order to remove the quadratic dependence
on the number of input surfaces the hierarchy of interactions must be extended to scales coarser than the initial set of input surfaces.
Algorithms which perform suchclusteringhave recently appeared [56], [55], [7], [54]. The main difficulty with clustering in the
context of radiosity is due to visibility. For example, the light emitted from a cluster of elements is not equal to the sum of the
individual emissions. Similarly, the reflective behavior of a cluster is not uniform in all directions even though each individual
reflection may be uniform. Thus even in the case of radiosity one is immediately led to consider the more general, direction
dependent, radiance case. Another challenge is the implementation of an error estimator with the proper time complexity, since its
cost must not be a function of the number of surfaces in a given cluster.

B. Summary

Wavelet based algorithms are now firmly established as a basic tool in radiosity simulations and are quickly becoming a funda-
mental tool in the more general radiance case. Some of the largest simulations reported to date were made possible with higher
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Fig. 5. Examples of wavelet based curve editing. On the left a curve at some finest resolution (a), its coarse representation (b), editing of the coarse representation
(c), and result at the finest level (d). On the right an example of keeping the overall shape the same while manipulating the fine detail. (From [20], used with
permission.)

order wavelet radiosity algorithms. For example, Telleret al. [60] report on a solution computed with an out-of-core solver on
a workstation involving 40000 input polygons, which were meshed into over 1265000 elements, with a total of only 23529000
couplings (see Figure 4). As clustering algorithms mature the size of input scenes which can be handled on workstation class
machines is likely to increase significantly. Similarly, custom designed wavelets useful for discontinuity meshing for example, will
likely help continue the trend to larger and faster simulations. As the numerical computation part of these algorithms becomes
faster, more attention needs to be devoted to other aspects, such as global visibility analysis. First steps to address these issues are
already being undertaken [53] and this area of research is likely to see increasing activity.

III. CURVES, SURFACES, AND MOTION PATHS

The construction and manipulation of curves and surfaces is another core area of CG. Basic operations such as interactive editing,
variational modeling, and compact representation of geometry, provide many opportunities to take advantage of the unique features
of wavelets. Similar observations apply to the area of animation, where the manipulation and optimization of motion trajectories
are considered. To all of these areas wavelets have already made important contributions which we briefly review below.

A. Wavelet Based Curve and Surface Editing

A common paradigm for curve and surface editing is direct manipulation in an interactive editing environment. Examples
include popular drawing programs which often provide B-spline drawing primitives for curves. Similar tools are available in CAD
modeling packages for the design of surfaces. To achieve a desired shape the user moves a set of control vertices with the help of
the mouse.

When building complicated shapes one is quickly led to the idea of multiple levels of resolution. For example the user may want
to specify the overall shape of a curve as well as fine detail in specific regions. One way to achieve this is through hierarchical
B-spline modeling as proposed by Forsey and Bartels [21]. They present the same curve at multiple levels of resolution exposing
a set of control vertices appropriate for each level. This representation does not correspond to a basis and a given curve does not
possess a unique representation. If instead we encode thedifferencebetween successive levels of resolution a representation with
respect to a B-spline wavelet basis results. This representation is unique and results in a number of computational advantages, such
as preconditioning.

Finkelstein and Salesin [20] describe a system which uses semi-orthogonal cubic B-spline wavelets [11] adapted to the inter-
val [10] in an interactive curve editing environment. A curve,γ(t) = (x(t),y(t)) is given as a sequence of B-spline control knots at
some finest resolutionL. Performing a wavelet transform on these coefficients results in a wavelet representation of the underlying
curve. While all internal computations are performed in the wavelet domain, the user is not presented with the wavelet coefficients
for direct manipulation. The results of directly manipulating wavelet coefficients for editing purposes is non-intuitive. This is
due to the shape of the wavelet functions. “Pulling” one of their control vertices results in a “wiggly” shape change, when one
typically expects a smoother shape change. This is easily remedied by performing an inverse wavelet transforms to a desired level
of resolution and displaying the resulting B-spline control vertices. This way it becomes possible to intuitively alter the overall
sweep of a curve by moving control knots on coarse levels rather than moving many knots on a finer level. Conversely, small detail
can be added at finer levels without disturbing the overall sweep of the curve. Figure 5 shows examples of these editing modes. On
the left, editing the overall sweep of a curve at a coarse level, and on the right maintaining the overall sweep while changing the
details.

Some difficulties arise from the fact that the curve and its wavelet representation are given coordinatewise. Thus detail with
a particular orientation, say alongx, will maintain its orientation even if the underlying sweep is changed radically. This is
counterintuitive in applications and Finkelstein and Salesin use a local parameterization of detail with respect to coarser level
tangent/normal frames to remedy this. A given detail coefficient refers to a B-spline wavelet which is oriented with respect to the
overall shape of the curve at a coarser level but the same location. Other enhancements include a notion of fractional levels of
resolution for editing and accommodation of highly uneven knot sequences. The resulting curves are easily displayed at a level
appropriate for a given display size, in effect realizing some compression as well.



6

0 4 16 64 256

b−splines

wavelets

1024

Fig. 6. A simple point interpolation problem subject to a smoothness constraint. Going left to right the solution is presented after some number of iterations
(0−1024). The top row shows the convergence in some finest level B-spline basis, while the bottom row shows the convergence in the associated wavelet basis
with preconditioning. (From [24], used with permission.)

B. Variational Curve and Surface Modeling

Another curve and surface modeling paradigm has the user specify a number of constraints, such as “interpolate these points,”
to which the system responds by finding a solution which is in some sense pleasing. The latter is typically defined as a curve or
surface which minimizes some energy functional while satisfying the constraints. A possible algorithmic approach decomposes the
curve into a number of small segments and solves a discretized version of the continuous problem. The resulting systems can be
very ill-conditioned and, although sparse, lead to long solution times. The ill-conditioning in particular can be addressed through
the use of wavelets.

Gortler and Cohen [24] describe a system for hierarchical and variational geometric modeling. Instead of a nodal B-spline
basis they use biorthogonal cubic B-splines [12] and consider both editing by moving control points as Finkelstein and Salesin
did, and constrained modeling subject to a quadratic energy functional. In particular for the latter problem, wavelets offer many
advantages. Gortler and Cohen use thin plate energyE( f ) = ‖D2 f‖ as their functional, i.e., they aim to find the curve (or sur-
face) which interpolates a set of points while having minimal thin plate energy. Since the functional involves second parametric
derivatives it tends to be ill-conditioned when discretized in a nodal basis at some finest resolution. Solving such a constrained
optimization problem over some finest subdivision using B-splines as bases, for example, requires many iterations of an iterative
solver. This ill-conditioning gets worse with increasing subdivision. If the same problem is instead solved in the wavelet basis
diagonal preconditioners can be applied which lead to systems whose condition number is uniformly bounded independent of the
size of the mesh [14]. This preconditioning is easily absorbed right into the wavelet transform. Figure 6 shows a simple example
of the consequence of preconditioning. In the top row the convergence history of satisfying a simple interpolation constraint in the
B-spline basis, in the bottom row the same interpolation constraint when solved in the wavelet basis with preconditioning.

Wavelets have another important advantage for these kinds of problems. They naturally lead to an error estimator driven, adaptive
meshing strategy. The basic idea is as follows. The original task of finding a curveγ(t) (or surfaceΓ(s,t)), which has minimum
energyE, is a search over an infinite dimensional space. For a given tolerance we can find a solution in a finite dimensional space.
However, given a toleranceε it is not a priori clear how fine the mesh needs to be to find a solution which is withinε of the optimal
solution. Furthermore, it may be that only some parts of the curve or surface need to be meshed finely while other parts require
only a coarse mesh. An algorithm that takes advantage of this observation is given by Gortler and Cohen. Initially the optimization
is attempted over a very coarse resolution curve. Next a refinement step based on the magnitude of the already used wavelet
coefficients is performed. This takes advantage of the ability of wavelets to characterize local smoothness. Wherever wavelet
coefficients are large in magnitude finer level wavelets are entered as new parameters. Gortler and Cohen [24] demonstrate that
an adaptive wavelet basis with preconditioning leads to vastly faster solution algorithms than naive methods. This is particularly
useful for interactive applications.

Careful implementation is required to reap all these benefits. For example, they find that it is significantly more efficient to never
explicitly form the constraint matrix in the wavelet basis, but rather implement it as an algebraically equivalent sequence of inverse
wavelet transforms and the discretized functional evaluated in the nodal basis representation.

C. Variational Modeling of Motion Paths

A different but closely related application is the constrained solution of systems of ordinary differential equations as is required
in automatic animation systems, for example. In this scenario the user specifies the geometry and degrees of freedom (DOFs) of
some creature. These DOFsΘi typically describe such quantities as joint angles, orientations, and locations. All DOFs are subject
to Newtonian dynamics and a set of constraintsCj(Θi ,Θ̇i ,Θ̈i) given as equalities or inequalities. Examples include attachments of
one body to another, or maximum joint accelerations. Typically the user will then ask for a feasible motion satisfying some goal,
such as moving from some location to another while consuming a minimal amount of fuel, or in a particularly graceful way. This
results in a large search space over which to optimize the user specified requirements.

For the same reasons as described above wavelets can be helpful both for their ability to lead to better conditioned systems
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Fig. 7. Examples of wavelet expansions over spherical domains. On the left half an environment map, i.e., a function of the set of directions. The first image shows
the original map the second the same map enhanced through diagonal scaling in the wavelet domain. On the right half topography data for the earth. First
the original data set and next to it a smoothed version. The smoothed version maintains perfect reconstruction along the coastlines, an example of a constraint
which is easily expressed due to the local support of the wavelets. (Adapted from [52].)

and because they enable adaptive refinement. Liuet al. [39] describe such a system in which wavelets play a crucial role in the
numerical solver. They demonstrate how both the preconditioning available through wavelets as well as the error estimator driven
adaptivity of wavelets can significantly reduce overall runtime.

D. Summary

These few applications already indicate the large potential wavelets have to accelerate basic graphical manipulation and construc-
tion tasks. The main advantage they offer here is the twofold acceleration due to preconditioning, and adaptivity. A disadvantage
is the fact that they all use wavelet expansions of the coordinate functions of the curves and surfaces, leading to artifacts due to the
choice of coordinate frame. An interesting challenge is the construction of wavelet like expansions which areintrinsic to the curve
or surface under consideration. This may be one way to avoid some of the parameterization artifacts still present in the current
formulations.

Users continue to ask for more complexity in the geometric models and their behavior. At the same time fast update rates are
particularly important for geometric modeling tasks. Because of the large computational demands of these applications wavelet
technology will continue to play an important and expanding role. In particular generalizations of wavelet constructions as dis-
cussed in the next section will extend the reach of many wavelet algorithms.

IV. WAVELETS OVER GENERAL DOMAINS

A particular challenge that graphics applications pose to wavelet technology is the generality of the domains over which one
would like to apply wavelet techniques. For many of these domains, e.g., a chair, classical dilation and translation constructions
are not applicable. Instead constructions which capture the essential features of wavelets, such as fast transforms, and locality in
space and frequency, are soughtof andovermore general domains.

As an example of a complicated domain consider the output of a laser range scanner. Such devices can generate fine polygonal
meshes of objects with 100000s of polygons. An example might be a person’s head. Clearly such a fine representation is not
necessary in smooth regions while some areas of the object can easily require a very fine mesh. Similarly, functions defined over
such a surface, e.g., illumination, would themselves benefit from a hierarchical representation. Neither for the surface itself nor for
functions defined on it classical constructions are applicable.

Wavelet like decompositions of surfaces would be useful for compression of the original dataset. Making the compression
ratio adaptive would allow algorithms to choose the most appropriate resolution, e.g., objects viewed from a distance could be
compressed considerably more than objects near by. These ideas were some of the motivation behind the work of Lounsberyet
al. [40], [41]. They describe a wavelet construction whose domain is a triangular base complex of arbitrary genus. In the case of
a bust this might be an octahedron, for example. Recursive subdivisions, i.e., the different levels of resolution, are easily defined
by subdividing each triangle into four. This is typically done by edge midpoint subdivision. Different rules can now be designed
to describe the difference between successive levels of resolution, in effect describing wavelet bases for such shapes. Generally
these will not be orthogonal to avoid globally supported bases. Lounsberyet al. used a pseudo-orthogonalization procedure, i.e.,
orthogonalization over some small neighborhood, to derive finite analysis and synthesis filters.

In their original work they required the finest resolution mesh to have subdivision connectivity, i.e., to be derivable through
recursive subdivision of a base triangulation. In more recent work by Ecket al. [19] this requirement was removed. They remap
arbitrary connectivity meshes onto meshes with subdivision connectivity through the use of a harmonic map.

More recently Sweldens [57], [58] introduced the “lifting scheme,” a very general construction scheme for “second generation
wavelets.” The idea behind second generation wavelets is the observation that scaling and dilation are not really fundamental to
reap all the benefits of wavelets, such as space/frequency localization and fast transforms. The lifting scheme provides a versatile
tool to construct wavelets which still have all the desirables of traditional wavelets but allow for the accommodation of such custom
constraints as boundary conditions, weighted measures, irregular sampling, and adaptive subdivision. For example, this technique
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Fig. 8. Example of a volume data set rendered in the spatial domain (left) and in the (compressed) wavelet domain (right). (Images courtesy of R¨udiger
Westermann.)

was employed to construct wavelets on the sphere in [51], where both irregular sampling and adaptive subdivision were required.
Applications of spherical wavelets include modeling of reflection off of surfaces, compression and processing of large spherical
data sets such as topography data for the earth (see Figure 7, right side), and spherical image processing. In [52] spherical wavelets
are used to selectively sharpen and blur environment maps, i.e., images which are defined over the set of directions (see Figure 7,
left side). Other examples of generalizations of classical constructions are described in [59].

A. Summary

These generalizations of classical wavelets to more general domains including irregular samples, weighted measures, and possi-
bly non-smooth manifolds, will increase in importance as we attempt to make the advantages enjoyed by wavelet based algorithms
available for a wider set of problems. While simple constructions are already available not much is yet known about the analytical
properties of some of the more radical generalizations. Clearly a deeper understanding coupled withimplementableconstructions
is required to move these techniques forward. A fruitful direction could be wavelet based algorithms for the solution of PDEs over
general surfaces. Such algorithms would have importance well beyond the particular needs of CG.

V. VOLUME MODELING AND RENDERING

An application of computer graphic techniques that has reached users in many scientific disciplines is that of volume visual-
ization. Volumetric data sets can arise from acquisition devices such as MRI machines or CT scanners, or they are the result of
scientific simulations such as stress analysis or fluid flow. They represent some variable, which may be scalar or vector valued, over
some 3D extent. Typically users are interested in particular features which may or may not be present in the data set. Examples
include tumor detection in medical scans, or structural features buried in a large flow simulation. In either case the challenge is to
map the data set onto comprehensible visualization parameters such that the user can quickly find and comprehend the interesting
features.

Because of the wide variety of applications data sets come in many different forms. In the following discussion we will make
some simplifying assumption. Data sets are assumed to be a regular sampling of some scalar functionf (~x). A typical example
might be a 2563 array of 8 bit CT numbers, although sizes can easily reach 10243, for example in seismic processing.

A basic technique of visualizing such data sets is to treat them as a semi transparent gel with spatially varying density and
emission. Images can then be rendered through the evaluation of a linear transport model [33], which models the gains and losses
as light travels through this “medium.” To make the resulting images comprehensible many possible mappings of the scalar data set
onto the absorption, scattering, and emission parameters of the transport model can be performed. For concreteness, let us assume
we have a CT data set. To examine the bones, for example, one could map CT numbers corresponding to bone to strong absorption
ρ and emissionQ, while mapping all other values to no absorption and no emission. Similarly one could map values corresponding
to muscle tissues to a red color and some semi transparency. Other enhancements might be an absorption term which accounts for
gradient magnitude to enhance the interface between different tissue types.

Once such a mapping of data values onto model parameters has been made, the light reaching the eye can be modeled to a first
approximation as a line of sight integral starting at the eye and extending through the volume

I(~x, ~d) =
∫ ∞

0
τ(~x,s, ~d)Q(~x+ s~d)ds and τ(~x,s, ~d) = exp(

∫ s

0
ρ(~x+ t~d)dt).

In essence the intensityI reaching the eye at~x from direction~d is given as the sum of all (generalized) emissionsQ along the line
of sight, each attenuated by the optical depthτ. The optical depthτ is given by the exponential (losses are assumed proportional to
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density) of the accumulated losses along the ray~d, where the densityρ is defined in terms of the data set. Finally the generalized
source termQ is often given as a simple emission, which is directly related to the data, and a term accounting for an imaginary light
source scattering in the direction of the eye. For simplicity we will assume a monochromatic image, otherwise there are typically
three such integrals for(r,g,b).

Evaluation of these path integrals has to be performed for every image pixel and a given view direction. This is typically done
with a simple Euler integration stepping through the volume at some sufficiently small step size, to avoid missing important detail.
Clearly this can be very compute intensive and the generation times of high fidelity images are measured in minutes. Depending
on the application high end graphics hardware can be employed to generate images in seconds [34].

Because of the high computational demands of volume rendering many acceleration techniques have been considered. Foremost
amongst these are hierarchical data structures which encode the fact that large subregions of the volume are either empty or homo-
geneous [35], [36], [15]. This knowledge can be used to adjust the step size in the evaluation of the integral. These techniques,
although not posed as wavelet transforms correspond to the use of a Haar transform of the original dataset. More recently Mu-
raki [44] used a Battle-Lemarie [3] wavelet decomposition for compression purposes. He exploited the spatial locality of the bases
to control the reconstruction fidelity based on areas of interest. Noting how various enhancement tasks can be facilitated in the
wavelet domain in another paper Muraki [45] used a difference-of-Gaussian wavelet to find and enhance multi scale edge structures
in the dataset.

While compression of the ever larger data sets is already very useful, one would also like to render the compressed datasets
directly in the wavelet domain. However, due to the exponential attenuation factor this is not entirely straightforward. Wester-
mann [63], [64] considers directly rendering from wavelet transformed and compressed volumes. Figure 8 shows an example of
an image directly volume rendered in the spatial domain (left) and one rendered in the compressed wavelet domain (right). He
experimented both with Daubechies [16] and semi-orthogonal B-spline [11] wavelets. Rendering from the wavelet representation
is achieved by recursive reconstruction on the fly. This avoids a complete reconstruction to the size of the original data set. Ad-
ditionally, the wavelet coefficients can be used to control the integration stepsize. Larger stepsizes are easily realized by moving
to coarser levels of the wavelet pyramid. Related work was reported by Grosset al. [26] who used Daubechies, Coiflet, and
Battle-Lemarie wavelets.

A different approach was put forth by Lippert and Gross [37]. They perform the rendering in the Fourier domain [42], [61],
taking advantage of the Fourier projection slice theorem. As a result for any given wavelet and view they only need to compute
a prototypical slice of the wavelet in Fourier space. An inverse Fourier transform then yields a semi-transparent texture. The
rendering of a wavelet transformed volume can now be performed rapidly on high end graphics hardware by compositing suitably
scaled and translated versions of this prototype texture. This allows for all the compression and analysis benefits of wavelets.
However, the set of rendering effects which can be modeled in the Fourier domain is limited since the exponential attenuation
cannot be accounted for.

A. Summary

As the number of sources and the sizes of 3D data continue to grow the relative importance of multiresolution based techniques is
expected to grow. Already the first explorations into their use for volume data have shown them to be useful tools for compression
and analysis. Furthermore, selective detection and enhancement of features, together with locally controlled reconstruction error is
very desirable in 3D visualization applications. Many techniques developed for image analysis applications will likely be applicable
to volumes as well. Directly evaluating the path integral in the wavelet domain remains a challenge, but will ultimately need to be
addressed to realize the full potential of wavelets for volume rendering.

VI. CONCLUSION

We have given a brief overview of some of the areas in CG to which wavelets have already made a contribution. Among
these are illumination computations, curve and surface modeling, animation, and volume visualization. Other applications include
multiresolution painting and compositing [4], [48], image query [31], volume reconstruction [43], and volume morphing [28].

This multitude of activities and contributions illustrates the advantages that wavelet constructions can bring with them in an area
so dominated by large data sets and expensive computational problems as computer graphics. With the added flexibility of second
generation wavelet constructions and a better understanding of efficient andpractical implementations many more applications
will likely benefit from these techniques.

To be sure, we are still far from realism in realtime, but wavelet based techniques have carved out a niche for themselves as an
important tool towards this ultimate goal.
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