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Numerical Aspects of Spatio-Temporal Current
Density Reconstruction from EEG-/MEG-Data

Uwe Schmitt, Alfred K. Louis*, Felix Darvas, Helmut Buchner, and Manfred Fuchs

Abstract—The determination of the sources of electric activity
inside the brain from electric and magnetic measurements on the
surface of the head is known to be an ill-posed problem.

In this paper, a new algorithm which takes temporal a priori
information modeled by the smooth activation modell into account
is described and compared with existing algorithms such as
Tikhonov—Phillips.

Index Terms—Electronencephalography, inverse source recon-
struction, magnetoencephalography, spatial-temporal current
density reconstruction.

. INTRODUCTION

and forward calculated potentials, respectively, magnetic
fluxes [6], [7]. This is a nonlinear problem and regulariza-
tion is achieved by the small number of parameters. An
important problem is the correct estimation of the number
of dipoles. Also, in general, only the cross product of lo-
cation and moment of dipole is determined [17].

« Alternatively, in the current density reconstruction (CDR)

the distribution of the currents is determined. Being an
under-determined problem further information about the
currents is needed, introduced as additional constraints.
One possible constraint is the minimum norm criterion

[8], [9]. Current CDR procedures reconstruct sources
NVERSE source reconstruction has many applications in  seperatly for each time slice. We present a new CDR
clinical and theorectical medicine. Examples are the nonin-  method by introducing a temporal constraint, §mooth
vasive localization of focal epileptogenic discharges [1], [2]and  temporal activation modelThis constraint also achieves
the study of somato sensoric evoked potentials (SEPs) [3]. An  reconstructions with a deeper insight into the time dy-
overview of reconstruction methods is given in [4]. The same  namics of the sources. CDR techniques lead in some
techniques can be applied to the human heart, e.g., in order to cases to linear problems. For a survey of different CDR
localize the origin of premature and extrasystolic beats [5]. techniques, see [10]. CDR methods are getting more and
Measurements of the electromagnetic activity of the brain  more importantin EEG/MEG-source localization practice
with electroencephalography (EEG) or magnetoencephalog- since the estimation of the number of unknown dipoles in
raphy (MEG) provide an excellent temporal resolution, dipole-fit methods is problematic.
compared with positron emission tomography (PET) or func-
tional magnetic resonance imaging (fMRI). EEG and MEG Il. THE EEG/MEG FORWARD MODEL
have a considerable lack of spatial resolution and are strongly. ) . . .
affected by noise. As we will see, the problem of determinin _The fundamental equation governing the Interaction of_elec-
electrical sources inside the scalp from EEG/MEG-meE?JcaI sourceg ar_ld the electrical fiel@ is the P0|_s_son equation
surements is ill posed. Thus, we need additional spatial afdcOnnection with a Neumann boundary condition
temporal information about the brain activity in order to tackle div(oV®) =divj inQ
this problem. . .

There are two different strategies for the solution of the in- (oV@n) =0 atl'=59. @)
verse problem. Here,s is the conductivity tensor and the open and bounded set
« By optimization techniques a small number of dipole® describes the geometry of the heads the outward normal

and their parameters (location, orientation and magnitucaf)os?2.
are calculated ensuring best fit between measured dat&or the following discussion, we have to introduce the
so-called Sobolev spac#s' andH}. These are Hilbert spaces

, . . . of functions which are differentiable in a generalized sense
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Here, S is the weak solution operator of (1j,is the trace If we now discretizg by j = Zf;l Zizo JitrN€iL, We get
operator from2 to I'g [12], [13].

. N 2
We define Anyei) =D divknAnypein(&)
T —vy i=1 k=0
@) = [ 1w x St ® v
Q lz -yl .
= Z Z]i-i—kNLu,i-i—kN

According to the Biot—Savart law the MEG-measurements are i=1 k=0

modeled by = (Lj)o-
B(z) = (T(j + o V®)(z), 1) 4) Thus, the producL; yields the datan belonging to the dis-

retized current distributiof.
with 2 € I'; andn,, is the outward normalvector in. Thus, the  In practice 2 ando can be obtained from MRI pictures. The
MEG forward model can be described as columns(L). ; of L are then computed by the finite element
method according to [14]. For isotropig, the boundary ele-
L*(;) mentmethod can be used too [15]. Analytical formulas are only
(5) available for simplified geometries as, e.g., concentric ellipses
or spheres [16], [17].

Ay s (@) T @) T (1@

jr—®+— j+0oVd+— B.

T-na)
—

Theorem 1: The operators
IV. CONVENTIONAL CDR METHODS

. 1 3 2
Ap: (Hy ()" — L*(To) As we already mentioned source reconstruction methods are

and classified as dipole reconstruction methods and current recon-
An (Hé(Q))?’ — L2(1“1) struction methods. The first one tries to determjraipoles at
locationsp; with momentd; and unknownry such that this con-

are compact and have nontrivial nullspaces. figuration explains the measured data. This leads to a nonlinear

Proof: The trace operatoty is compact for the given optimization problem. Current reconstruction methods (CDR
spaces [13]7" is compact, as the kernel in (3) is continuougnethods) try to determingfrom datarm:. The problenij = m
andI'; N Q = (. The remaining operators in (2) and (5)s a linear problem.
are continuous [13]. Thusd; and Ag are compact. As the In practice, the number of influence poimsis much larger
divergence operator has a nontrivial nullspace, the same is vahdn the number of measurementsThus, the system; = m

for Ap andA,,. m isunderdetermined. Due to the ill posedness of the problem, the
Corollary 2: The problems matrix L is ill conditioned. Thus, we need additioralpriori
_ information to achieve a unique and stable solution. One possi-
Apj = ®o, respectivelyAyj = By bility is Tikhonov—Phillips regularization [14], [18], [19]
and the combined problem J = minarg{||Lj — m||h + )\2||Tj||j11} . (6)
Apj=®o A Apj = Bo T is called spatial model operator. Due to the large range qf the
norms of the columns of. one has to use a depth-weighting
are ill posed. matrix W in order to get bias-free reconstructions (see [10]).

Here, “ill posed” means that the involved operators are n8t= ¢ = 2,7° = W yields minimum norm least squares solu-

continously invertible which has the consequence that noiselians.p = ¢ = 2,7 = AW is in this field of application the
the data has strong effects on the reconstruction results. ~ SO called LORETA method [21]. In the first case, one achieves

so called zero-order spatial smoothness, in the second case one
. THE LEADFIELD MATRIX achieves second order spatial smoothnésss a discrete ver-
) ) ] sion of the Laplace operatak. For an implementation of\,
To discretize the problem we represent the curreft @s a oo [20]. Both cases lead to linear problems, dyeog = 2.

sum of a fixed number of dipoles, located at poit&n {2,1 < 1his approach does not take temporal information into con-
¢ < N, and we use point collocation at the measurement poiniiyeration. Calculations only use one timeslice of data.
The set{p; | 1 < i < N} is calledinfluence space

It is assumed that measurements are takenp@intsé; on
Iy U I';. The so-calledeadfield matrixL € R™*3N contains
in the ith column the data vectan; of sizen belonging to
a dipole with moment1,0,0)T located at influence point;. In this section, we assume the dataare given as a function
Columnsi + N andi + 2N contain data belonging to dipolesof timem(t). Hence the solutiogi(t) of (1) is also a function of
with moments(0,1,0)" and(0,0,1)", respectively. In detail, time. Notice that the model is assumed to be stationaryeiis.,
if we definec,, as thekth unit-vector and; ,, as a dipole with not a function of time. So we can apply the methods discussed

the momeng;y, located at poinp; we get in Section IV for each time instance.
A coupling of different time instances is achieved by the

Lyitin = AA4/Eei7k(£,,). assumption that the electrical sources do behave temporally

V. SPATIO-TEMPORAL CDR: THE SMOOTH ACTIVATION
MODEL
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Fig. 1. Sketch of the simple problem. Fig. 3. Synthetic data.
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Fig. 2. The activation curves of the dipoles. 10

. . . Fig. 4. L-curve for the determination of.
smoothly. Hence we make the pysiologically motivated as-

sumption
We introduce the so callddonecker producby
d .
H@J(t)H — min. (7 a1 B - apmB
A® B .= :
Assume that the data; are given forl’ timeslicest;. The an 1B B

current at timet; is termed ag;.
In order to achieve a temporal coupling according to (7), odéow (8) can be formulated as follows:
approximates

L (1) ~ G0+ A1) — (1)

and we get an additional model term which extends the mini-
mization problem (6) in the following way:

j = minarg{||Lzj — ml}3 + X?||Bj[I3 + w2 | KSlI3} . (9)
Here

j = (jlv"'va)T

m = (ml,...,mT)T
T T .
Vi) mmarg{ZnLji w32 Y r)r L= e ® L= blodkdiag(L, ., L)
=1 i=1 K= D@Ig]\f
T-1 IgN —IgN 0 0
+N22 ||Jz+1_JZ||§} (8) . 0 Iy — Iy -+ 0
=1 - . . .

This is the model of the spatio-temporal CDR method. 0 e 0 Isn _ Iy
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r-1r 0 -0 VI. SIMULATIONS
o 1 -1 -.- 0
D=1. ol A. The Simple Volume Conductor Model
o - 0 1 -1 For comparing the properties of the methods (6) and (9),
B can be chosen as a simple volume conductor model was chosen: we consider
a three-dimensional (3-D) problem with a two-dimensional
B = Iy ® W = blockdiag(W, ..., W) (2-D) influence space. This setup is nearer to reality than a 2-D

problem with a one-dimensional influence space and allows
an easier comparision of reconstruction results than a real 3-D
influence space.
The simple model set up is made up of an influence space
B = Iy @ (AW) = blockdiag(AW, ..., AW). consisting of a 10< 10 grid with a length of ten arbitrary units
per side centered 5.5, 5.5, 0.0). Nine sensors were placed in
Due toV||Az — b||3 = 2(AT Az — ATb), (9) leads to the a square planar array with center(ats, 5.5, 2) above the grid.
regularized normal equation See Fig. 1.
We use constant conductivityinside and outside the object.
(L;LT + BB+ ,ﬁKTK)j = Lim. (10) Thus, the leadfield matrix is obtained by

or

The matrix at the left hand side is positive definite, so an effi- [ 1 m1—pja
cient way to solve the problem is the cg-algorithm. In practical Y Ao | — py?
applications, the whole matrix on the left side of (10) is too big 1 rio—pj2
to fit into memory (a typical size foL is 64 x 10%), but the Lijin = dno |r; — p,|?®
cg-algorithm only needs the evaluation of the multiplication of 1 7,;3 _ 1;,, 5
the matrix above by an arbitrarily given vector. So one only has Lijyon = =i

. . . 4 — 3
to keep the matriced and K in memory. Due to the size of w0 |ri = pi]

L this solver is quite slow. A remarkable improvement can be
achieved in some special cases. We will discuss this in the Agere,r; € R® is the position of theth sensorp; € R? is the
pendix. position of thejth gridpoint.
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Fig. 6. Temporal reconstruction. Zeroth-order spatial smoothness without temporal codplirg).01. No noise added to the data.

B. Inverse Calculations

Two equally oriented dipoles with momeftt,0,1) " atx =
3,z = 8 and both afy = 5 were placed on the ten by ten grid.
These dipoles are drawn in Fig. 1. A gaussian dipole-strengtl
time series was assigned to each dipole by osf-

q(t) = qoexp {_%}

w

Y\ >
. e s (i | i o SBANAR
with peaks at timeslice 5 (dipole 1) and 9 (dipole 2) and a width \""\\"’l“
of w = 2.5. See Fig. 2. oL

The simulations were calculated for 16 timeslices. The syn-
thetic data are plotted in Fig. 3.

We used the timestep appendant to data with maximal ampli
tude for the determination of the regularization paramatey % 2 4 6 8 10 12 14 16
the L-curve criterion for fixed error level ([22], [23]) applied to
(6) withp = ¢ = 2. See Fig. 4.

For the solution of the normal (10), we used a cg-solver as
proposed above. One important point concerning the runtimetefporaly coupled solution seems to yield a little better spatial
such a solver is the choice of the initial valjie We used the accuracy.
solutions of the uncoupled (6). In a simulation run with a big in- In the further simulations, uniform noise with 30% of the
fluence space, we achieved a solution of (10) after 19 iteratiomsiximal signal amplitude was added to the data. See Fig. 7.
instead of 150 in the case §f = 0. In Figs. 8 and 9, we compare temporaly coupled and non-

Figs. 5, 6, and 8-12, 16 show the contour-plot§ f{fr,¢)||. coupled LORETA-solutions. The coupled solutions are signif-
The white squares in the contour-plots indicate the originadantly less affected by noise. In the time range from timeslice
source-positions. four to timeslice ten, the coupled solutions also reconstruct the

In Figs. 5 and 6, pure synthetic data were used to compam@rect number of sources, whereas the noncoupled solutions
temporaly coupled and temporaly uncoupled solutions. Theconstruct only one source.

Fig. 7. Synthetic data with 30% noise added.
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Fig. 8. Temporal reconstruction. Second-order spatial smoothness (LORETA) and temporal codpting.0,,.2 = 1.5. Thirty percent noise added to the data.
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Fig. 9. Temporal reconstruction. Second-order spatial smoothness (LORETA) without temporal coliptng:0. Thirty percent noise added to the data.
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Fig. 10. Temporal reconstruction. Zeroth-order spatial smoothness and temporal codphag.0,:? = 1.5. Thirty percent noise added to the data.
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Fig. 11. Temporal reconstruction. Zeroth-order spatial smoothness and temporal codphng.0, .2 = 15. This demonstrates the effect of a strong temporal
coupling. Thirty percent noise added to the data.
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Fig. 13. Activation curve of temporal reconstruction with temporal couplindzig. 14. Activation curve of temporal reconstruction without temporal
A2 = 2.0,u? = 1.5. Thirty percent noise added to the data. coupling.A\? = 2.0. Thirty percent noise added to the data.

the activity at the local maxima of the contour plots above. As

In Figs. 10-12, we see temporaly coupled and noncouplegcan see, the coupled solution gives a deeper insight into the
zeroth-order smoothness solutions. In Fig. 11, we ysed15 time dynamics of the sources.
in order to demonstrate the effects of a strong temporal cou-At last we used another method for temporal reconstructions:
pling. Again the temporaly coupled solution in Fig. 10 is lesswe smoothed the data with a Savitzky—Golay filter (also called
affected by noise than the uncoupled solution in Fig. 12. Ddkeast squares filter”) of order three and length five (see [24]
to the second-order smoothness, the results in Fig. 8 are adpitl [25]). In Fig. 15, we see the smoothed data. Then we used
smoother than the results in Fig. 10. these data to get a temporaly uncoupled solution. The results in

In Figs. 13 and 14, we draw the activation curves of tempé&ig.16 are better than in the unsmoothed case but not as good as
raly coupled and uncoupled solutions. For these plots, we ughd results obtained by temporal coupling.
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0.8

Here,B = I @W. If we change our variables by= Bj

05} we get

x = minarg{[| Ly B~ x — ml[3 + A?||x|3 + 2|l Kx]3} .
13)
Here, we introduced the depth-weighting of the temporal
term because of technical reasons: it makes the transfor-
mation above feasible. So we get a minimization problem
with the same model-terms as in the first problem (11)
above.

The question whether the solutions of these problems are
useful has to be decided by practical experiments. At least these
solutions should serve as good starting points for the cg-solu-
tion of problem (10).

03, ‘ : ' ‘ : ' : For further calculations, we give the following properties of
the kronecker product; see [26]

0.3

AN

Fig. 15. Noisy data smoothed with a Savitzky—Golay filter.
(A®@ B)(C® D) = (AC) ® (BD)
For a systematic comparison of coupled and noncoupled so- A®(B+C)=A®B+A®C.
lutions, we introduced two measures for the accuracy of the so-

lutions. For the sake of simplicity, we show how to solve the first
+ We compared the distance of the exact locations with tigoblem given above. In order to tackle the second problem,
local maxima of the reconstructions. The dependency @& will have to replacd. by Ly B! = I ® (LW~1)inthe
this measure on the noise level is depicted in Fig. 17.  following calculations. We set as the number of sensors.
» We calculated the correlation of the true activation curve Analogical to (10) the solution of (11) is given by
and the activation curves calculated from reconstructions.
In Fig. 18, we see the dependency on the noise level. (L}LT + N2 Lanr + MQKTK)j - Llm. (14)

VII. SUMMARY Due to the size ofl..Lr the solution of problem (14) is

guite expensive. We will see below that we can get a solution

It could be shown in simulations, that the introduction of tenBy solving a matrix equation invoIvin@TL; instead, which

poral constraints to existing CDRs leads to significant |mprov%—n| has sizevT” x nT and, thus, is much smaller.

ments in spatial and temporal accuracy. This general advantag emma 3: The solution of problem (11) can be achieved by

of spatio-temporal CDR was shown to be most prominent in the
: : . solving
case of noisy data, but also in the ability to seperate sources:

(LrLi + XLy +p*(D'D)@L)u=m  (15)
APPENDIX

In the following, we will consider two minimization problemsand setting
which allow a very fast and efficient solution. These problems
approximate problem (9).

*« We introduce the first problem by ommitting the Proof: First we see
weighting matrix}¥ in problem (9). This is warrantable

j=Lju

if we know a priori that the distance of the considered K'KLL =((D"D)® (Isn)) Iz @ LT)
influence space to the sensors varies only little. For _ (DTD) LT

example, if we search sources on a part of the cortex T -

which is nearly planar and parallel to the sensors. In this ={reL (D D)ol

case, the minimization problem is Lo ((D'D)®L,).

. . . . . We get

§ = minarg{| L5 — m|l3 + X513 + 2IKGB) . @y O

(LELy + N Lo +?KK) L

» The second problem introduces depth-weighting in the T - 5 P 1
temporal term =Ly (LyLy + X Isyr +p*(D'D) @ 1)

by multiplying both sides with the terms in brackets. If we now
j = minarg{||Lzj — m|[3 + A*||Bj||3 + 1’| KBj|l3} . (12) consider the normal-equation (14) the prove is completem
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Fig. 16. Temporal reconstruction: zeroth-order spatial smoothness without temporal coupling. Data smoothed with Savitzky—Galay=fil2i0. Thirty
percent noise added to the data.

average localization error goodness of temporal reconstruction

. 1 . . ; ;
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Fig. 18. Temporal accuracy of temporal coupled and noncoupled reconstruc-

Fig. 17. Spatial accuracy of temporal coupled and noncoupled reconstruclions.
tions.

Thus, (15) leads to

Further speedup can be achieved if we consider the Lemma
below. We introduce the following notion: lf is a vector of
sizemT we getX as a matrix of sizen x T by arranging
the elements columnwise. We will use this transformation for
1y, u, m below. with respect taJ.

Lemma 4: The solution of(A ® B)x = y is equivalent to  This equation of typelX + X B = C'is called“continous
solvingBXAT =Y. time” sylvester equationt can be solved very fast by methods

Proof: See [26]. m introduced in [27].

(LL" + X ILYU+UD'D=M (16)
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In some experiments with big influence spaces, the methof0o] M. Fuchs, M. Wagner, T. Kéhler, and H.-A. Wischmann, “Linear and
described above is faster than the direct solution of (14) by a

factor of 100.

The calculations above are not feasible if a mafixz I is
present in the spatial model term as in problem (9).

This approach has to be further studied.
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