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CHARACTERIZING INTERMEDIATE TENSE LOGICS IN

TERMS OF GALOIS CONNECTIONS

WOJCIECH DZIK, JOUNI JÄRVINEN, AND MICHIRO KONDO

Abstract. We propose a uniform way of defining for every logic L in-
termediate between intuitionistic and classical logics, the corresponding
intermediate tense logic LKt. This is done by building the fusion of two
copies of intermediate logic with a Galois connection LGC, and then in-
terlinking their operators by two Fischer Servi axioms. The resulting
system is called L2GC+FS. In the cases of intuitionistic logic Int and clas-
sical logic Cl, it is noted that Int2GC+FS is syntactically equivalent to
intuitionistic tense logic IKt by W. B. Ewald and Cl2GC+FS equals clas-
sical tense logic Kt. This justifies calling L2GC+FS the L-tense logic LKt

for any intermediate logic L. We define H2GC+FS-algebras as expan-
sions of HK1-algebras, introduced by E. Or lowska and I. Rewitzky. For
each intermediate logic L, we show algebraic completeness of L2GC+FS

and its conservativeness over L. We prove relational completeness of
Int2GC+FS with respect to the models defined on IK-frames introduced
by G. Fischer Servi. We also prove a representation theorem stating that
every H2GC+FS-algebra can be embedded into the complex algebra of
its canonical IK-frame.

1. Introduction

In this paper, we consider the following method of introducing unary
operators to intuitionistic propositional logic:

(A) Building the fusion IntGC⊗IntGC of two copies of intuitionistic logic
with a Galois connection IntGC, the first one with a Galois connection
(^,⊡) and the second one with (�,�), and adding Fischer Servi axioms
to connect (^,�) and (�,⊡).

Another method of introducing unary operators leading to intuitionistic
tense logic was investigated by J. M. Davoren [13]:

(B) Building the fusion IK⊗IK of two copies of intuitionistic modal logic IK,
the first one with modalities (^,�) and the second one with (�,⊡), and
adding Brouwerian axioms to connect (^,⊡) and (�,�).

These two methods are shown here to be equivalent and the result is called
Int2GC+FS, according to (A). This name should be understood as “intu-
itionistic logic with two Galois connections combined using Fischer Servi
axioms”.

Note that for combinations of modal logics, we follow the notation of [13].
If L1 and L2 are axiomatically presented modal logics in languages Λ1 and
Λ2, respectively, then the fusion L1⊗L2 is the smallest multi-modal logic in
the language Λ1⊗Λ2 containing L1 and L2, and closed under all the inference
rules of L1 and L2, where Λ1⊗Λ2 denotes the smallest common extension of
the languages Λ1 and Λ2. If L is a logic in language Λ, and Γ is a finite set of
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schemes in Λ, then the extension L⊕ Γ is the smallest logic in Λ extending
L, containing the schemes in Γ as additional axioms, and closed under the
rules of L.

If ^, � and �, ⊡ are identified with tense operators F , G (future) and
P , H (past), respectively, the system Int2GC+FS is equivalent to the known
system IKt, called intuitionistic tense logic, introduced by W. B. Ewald
[20].1 The logic IKt is generally taken as the intuitionistic counterpart of the
classical tense logic Kt (see [13,41], for instance) and we will neither discuss
this fact here nor consider the philosophical issues raised by IKt (for instance,
its constructivity). We would also like to emphasize that this is not a matter
of providing another list of axioms for IKt that is much shorter than the
Ewald’s list of axioms. Note that the logic Kt is often in the literature called
the minimal tense logic. Since we consider only the minimal tense (classical,
intuitionistic, intermediate) logics, we will omit the word “minimal” in the
rest of the paper. Methods (A) and (B) are visualized in Figure 1.

Figure 1. Two methods of building IKt. Here FS stands for the
Fischer Servi axioms, GC for Galois connections, and BR for the
Browerian axioms.

The above equivalences also hold if one changes the basic logic from intu-
itionistic to classical, in which case one gets classical tense logic Kt. Adopt-
ing approach (A) from intuitionistic and classical logics to any intermediate
logic L, we present a method to obtain the corresponding logic L2GC+FS.
This is done simply by adding to L two Galois connections (by means of
the appropriate rules), or by building the fusion LGC⊗LGC of two copies of
intermediate logic with a Galois connection LGC, and then interlinking their
operators by two Fischer Servi axioms. We prove algebraic completeness
for L2GC+FS and show that it is conservative over L. We also give facts
justifying why L2GC+FS can be considered as an intermediate L-tense logic

LKt.
There are several advantages of approach (A) over (B). The L-tense logic

LKt (or equivalently L2GC+FS) can be uniformly built for every intermediate
logic L, without entering the problem of what is the modal version LK of L,
since the “modal part” is provided solely by the Galois connections, and the
Fischer Servi axioms make a duality-like connection between the operators.
For a given intermediate logic L, it is often not clear what is its modal
analogue LK (between IK and K). For instance, it took several years to find
out, what is Gödel modal logic. In [8], strong completeness of the �-version

1This equivalence was proved already in [17].
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and the ^-version of Gödel modal logic were proved. Recent studies [9, 10]
show that there are several Gödel modal logics of two modalities which are
defined by a Kripke frame semantics. In particular, Gödel modal logics are
different for “crisp” frames and for “fuzzy” frames. Moreover, approach (A)
allows a uniform treatment of algebraic semantics.

Galois connections play a central role both in (A) and (B) – and in the
whole paper, hence we recall some well-known properties of order-preserving
Galois connections used here. They can be found in [19], for instance. Let
ϕ : P → Q and ψ : Q→ P be maps between ordered sets P and Q. The pair
(ϕ,ψ) is a Galois connection between P and Q, if for all p ∈ P and q ∈ Q,

ϕ(p) ≤ q ⇐⇒ p ≤ ψ(q).

An equivalent characterisation states that a pair (ϕ,ψ) forms a Galois con-
nection between P and Q if and only if

p ≤ ψ(ϕ(p)) for all p ∈ P and ϕ(ψ(q)) ≤ q for all q ∈ Q;(1.1)

the maps ϕ and ψ are order-preserving.(1.2)

It is well known that Galois connections can be created by any relational
frame (U,R) by reversing the relation R. The operators ^ and � defined for
all X ⊆ U by ^X = {x ∈ U | (∃y ∈ U)xR y & y ∈ X} and �X = {x ∈ U |
(∀y ∈ U)xR y ⇒ y ∈ X} are both part of a Galois connection. The Galois
connections in question on the powerset lattice ℘(U) are then (^,⊡) and
(�,�), where the operators X 7→ �X andX 7→ ⊡X are defined by inverting
the relation R. However, the idea of extending propositional calculus with
a Galois connection as modalities appears to be rather new, and mainly
motivated by applications in computer science. There is a growing interest
in the study of Galois connections as modalities, as can be seen in the
recent surveys by M. Menni and C. Smith [33] and Garćıa-Pardo et al. [24].
The study of Galois connections can be traced back to the initial works
of O. Ore [34] and B. Jónsson and A. Tarski [30]. More recent studies of
Galois connections as modal operators in complete lattices can be found,
for instance, in [31], where B. von Karger developed several temporal logics
from the theory of complete lattices, Galois connections, and fixed points,
and in [28], where Galois connections, conjugate functions, and their fixed
points are considered in complete Boolean lattices.

In “syntactical side”, Galois connections can be subsumed into a logic only
either by including Galois connection rules (see page 7) or by introducing
Browerian axioms (see page 9). However, in “semantical side”, the situation
is different in the sense that, for instance, for a complete lattice (L,≤), a
mapping f : L → L is known to be a part of a Galois connection if and
only if f is a complete join-morphism, that is, f(

∨

S) =
∨

f(S) for all
S ⊆ L. In such a case, the “other part” g is defined by g(a) := max{a ∈ L |
f(a) ≤ b}. This means, for example, that in a finite lattice (L,∨,∧), every
additive and normal map L→ L induces a Galois connection. In relational
settings, Galois connections are essentially related to inverting a relation; if
a possibility-like operator is defined in terms of a relation (or a composition
of relations) by an “exists”-condition, then its adjoint operator is defined
simply by a “for all”-condition and the inverse the original relation (or the
inverse of the composition of relations). Similar kind of situation can be
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observed for “categorical functors”, and a functor is known to have a left
adjoint if and only if it is continuous and a certain “smallness condition” is
satisfied. Note that every partially ordered set can be viewed as a category
in a natural way: there is a unique morphism from x to y if and only if
x ≤ y. Thus, an order-preserving Galois connection is a pair of adjoint
functors between two categories that arise from partially ordered sets.

In the literature can be found several papers that consider modalities
as adjoint pairs. Topos-theoretic approaches to modality are presented by
G. E. Reyes and H. Zolfaghari in [39], with adjoint pair (^,�), and S4-like
axioms satisfied by � and ^ separately. In [38], G. E. Reyes and M. W. Za-
wadowski developed this theory further in the context of locales, giving
axiomatisation, completeness and decidability of modal logics arising in this
context. More recently, M. Sadrzadeh and R. Dyckhoff studied in [40] posi-
tive logic whose nonmodal part has conjunction and disjunction as connec-
tives, and whose modalities come in adjoint pairs.

In categorical models, propositions are interpreted as the objects of a
category and proofs as morphisms. For instance, P. N. Benton considers
in [3] so-called LNL-models, which are categorical models for intuitionistic
linear logic as defined by Girard. Benton studies also rules for LNL which are
similar to our Galois connection rules. In [4], G.M. Bierman and V. de Paiva
consider an intuitionistic variant IS4 of the modal logic S4 and its models in
the framework of category theory. Alechina et al. study in [1] two systems of
constructive modal logic which are computationally motivated. These logics
are “Constructive S4” and “Propositional Lax Logic”. They prove duality
results which show how to relate Kripke models to algebraic models, and
these in turn to the appropriate categorical models. Our work is based on
algebraic and Kripke semantics, and since we consider minimal intermediate
tense logics, we do not assume additional modal axioms. Hence, we do
not follow the categorical proposal of modelling constructive S4-modalities
that uses the additional axioms T and 4. The difference between systems
applying constructive S4-modalities and ours is similar to the difference
between classical tense logic and classical S4.

This paper continues our study of Galois connections in intuitionistic
logic. In [15], we introduced intuitionistic propositional logic with a Galois
connection (^,⊡), called IntGC. We showed that ^ and ⊡ are modal opera-

tors in the sense that ^ distributes over ∨ (that is, is additive) and preserves
⊥ (that is, is normal) and ⊡ distributes over ∧ (i.e., is multiplicative) and
preserves ⊤ (i.e., is co-normal). We gave both algebraic and relational se-
mantics, and showed that IntGC is complete with respect to both of these
semantics. We noted that IntGC is conservative over intuitionistic logic and
that Glivenko’s Theorem does not hold between propositional logic with a
Galois connection [29] and IntGC. In addition, in [16] we proved that IntGC

has the finite model property, which enabled us to state that a formula of
IntGC is provable if and only if it is valid in any finite distributive lattice
with an additive and normal operator, or equivalently, the formula is valid in
any finite distributive lattice with a multiplicative and co-normal operator.
With respect to relational semantics, this is equivalent to the validity in any
finite relational models for IntGC. We also presented how IntGC is motivated
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by generalised fuzzy sets. In [18], we gave representations of expansions of
bounded distributive lattices equipped with a Galois connection. We studied
in [17] two Galois connections in intuitionistic logic and then with Fischer
Servi axioms added, their algebraic and relational semantics. We announced
there some results that are presented here. In a similar way, in this work we
extend IntGC with a Galois connection (^,⊡) by adding another Galois con-
nection pair (�,�). Just adding another Galois connection does not change
much, we have IntGC “doubled”, called here Int2GC. Note that Int2GC is
the same as the fusion IntGC⊗IntGC. One of the motivating questions of
this paper is: What axioms connecting two independent Galois connections
(^,⊡) and (�,�) should be added to obtain intuitionistic (or intermediate)
tense logic?

In classical logic, the operators ^ and � may be defined as a shorthand
of each other by using the following De Morgan definitions:

(1.3) �A := ¬^¬A and ^A := ¬�¬A.

Classical tense logic Kt can be obtained by adding to classical logic two
Galois connections (^,⊡) and (�,�), and then connecting them by the
following De Morgan axioms:

(1.4) �A↔ ¬^¬A and ⊡A↔ ¬�¬A,

or

(1.5) ^A↔ ¬�¬A and �A↔ ¬⊡¬A

Note that in the case of classical logic, the formulas in (1.4) are equivalent
to the ones in (1.5). In a more concise way, Kt may be determined by
adding to classical logic one Galois connection (^,⊡), and then defining the
second one (�,�) in terms of (1.3), that is, by setting �A := ¬⊡¬A and

�A := ¬^¬A. This approach is present in [42, Proposition 8.5(iii)] and
also, in another, independent way, in [29].

However, if one changes the base logic from classical to intuitionistic, or
algebraically from Boolean to Heyting algebras, these kinds of ways cannot
be used, because they lead to serious faults and fallacies. In particular, hav-
ing a Galois connection (^,⊡), if one defines the operators � and � by using
(1.3) with intuitionistic negation, the resulting pair (�,�) does not form a
Galois connection; see [15]. In another similar approach [12] (without using
the term Galois connection, but providing the equivalent axiomatisation),
the assertions (1.3) are used to define “possibility-like” tense operators F ,
P , over intuitionistic logic, from “necessity-like” tense operators G, H. It is
claimed in [12] that the resulting logic is intuitionistic tense logic and that
the “possibility-like” tense operators F , P are “existential quantifiers” (see
[12, Remark 8]) meaning, in particular, that F , P preserve disjunctions (that
is, lattice-joins). Showing that this is not true is the topic of [21]. Note also
that in Example 3.6(c) we show that in Int2GC+FS = IKt, formulas (1.4)
and (1.5) are not provable.

By the above, it is clear that De Morgan axioms (1.4) and (1.5) are not
appropriate for connecting modalities over intuitionistic logic due to the
properties of intuitionistic negation. Our answer to the above question on
intuitionistic logic level is to link the operators ^, � and �, ⊡, respectively,
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by using the “connecting axioms”

^(A→ B) → (�A→ ^B) and (^A→ �B) → �(A→ B)

introduced by G. Fischer Servi in [23]. Note that in these axioms, negation
is not involved. To define Int2GC+FS, the two Galois connections (^,⊡)
and (�,�) of Int2GC are interlinked with the axioms:

(FS1) ^(A→ B) → (�A→ ^B) (FS2) �(A→ B) → (⊡A→ �B)
(FS3) (^A→ �B) → �(A→ B) (FS4) (�A→ ⊡B) → ⊡(A→ B)

We will show that in Int2GC, axioms (FS1) and (FS4) are equivalent, and
the same holds for (FS2) and (FS3), meaning that we have some equivalent
combinations of axioms to define Int2GC+FS, and thus also IKt.

Another way of connecting two independent Galois connections, if one
moves from Boolean to distributive lattices, is based on J. M. Dunn’s ax-
ioms. These axioms connect modalities in positive modal logic. In [14],
Dunn studied distributive lattices with two modal operators � and ^ and
introduced conditions

(1.6) ^x ∧� y ≤ ^(x ∧ y) and �(x ∨ y) ≤ �x ∨^ y

for the interactions between � and ^. We use only the first of them, the
second is false in IKt. In fact, in Heyting algebras with two Galois connec-
tions, the conditions of (1.6) are independent of each other. One obtains
a logic equivalent to IKt by adding to Int2GC axioms corresponding to the
first condition of (1.6) applied to the pairs (�,^) and (⊡,�).2 The axioms
are “positive” – negation is not present in distributive lattices. One may say
that the role of linking two Galois connections played by De Morgan axioms
in classical logic is taken by Fischer Servi axioms or by (positive) Dunn’s
axioms, in intuitionistic logic and, more general, in intermediate logics.

The next motivation of the paper is to show completeness of the
logic for both algebraic and relational semantics, and to find a repre-
sentation theorem for Heyting algebras with Galois connections via rela-
tional intuitionistic-modal frames. We consider H2GC+FS-algebras, which
are algebras (H,∨,∧,→, 0, 1,^,�,�,⊡) such that (H,∨,∧,→, 0, 1,^,⊡)
and (H,∨,∧,→, 0, 1,�,�) are HGC-algebras modelling IntGC [15], and
(H,∨,∧,→, 0, 1,^,�) and (H,∨,∧,→, 0, 1,�,⊡) are so-called HK1-algebras
introduced by E. Or lowska and I. Rewitzky in [36]. We note that Int2GC+FS

is complete with respect to H2GC+FS-algebras, and we generalise this re-
sult to completeness of the logic L2GC+FS for any intermediate logic L, with
respect to L-Heyting algebras extended with two Galois connection pairs in-
terlinked with Fischer Servi axioms. We also note that calculating using
Heyting algebras with operators is much easier than calculating with cate-
gories, and calculating with algebras can be easily used in showing some of
the non-theorems, for instance, that all Dunn’s axioms (1.6) are not true in
IKt.

2Added in proof: after sending the first version of this paper to the editors in 2012
we learned that a similar result applying Dunn’s axiom was presented in [33], appearing
while our paper was in reviewing process, see also [17].
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We recall IK-frames from [23] and show that Int2GC+FS is complete with
respect to the models defined on IK-frames. In addition, we prove a rep-
resentation theorem for H2GC+FS-algebras: every H2GC+FS-algebra can
be embedded into the complex algebra of its canonical IK-frame. This is
a non-classical generalisation of B. Jónsson and A. Tarski [30] representa-
tion of Boolean algebras with operators. Note that “complex algebra” is
a commonly used name for the standard construction of an algebra of a
certain type from a given frame, developed in [30]. Contrary to the case
of algebraic semantics, relational semantics adequate for L2GC+FS does
not necessarily exist for every intermediate logic L, because L may itself
be Kripke-incomplete. Hence, relational completeness and the representa-
tion theorem for HL2GC+FS-algebras for other intermediate logics L are left
for a separate study.

This paper is structured as follows. In Section 2, we recall the logic
IntGC introduced by the authors in [15]. We show that in the fusion of
two IntGC logics with two independent Galois connection pairs (^,⊡) and
(�,�), axioms (FS1) and (FS4) are equivalent, and so are (FS2) and (FS3).
Logic Int2GC+FS is then defined as a fusion of two IntGCs plus two axioms
(FS1) and (FS2) added. We note that Int2GC+FS can be regarded as an
intuitionistic bi-modal logic, and the pairs ^, � and �, ⊡ are intuition-
istic modal connectives in the sense of Fischer Servi. In fact, Int2GC+FS

extends the fusion IK⊗IK by the Browerian axioms, and this gives us the
procedure (B). We also prove that Int2GC+FS is syntactically equivalent to
intuitionistic tense logic IKt. Section 3 is devoted to H2GC+FS-algebras.
In this section, also fuzzy modal operators on complete Heyting algebras
are considered as another motivation. Section 4 contains a relational com-
pleteness results showing that Int2GC+FS is complete with respect to the
models defined on IK-frames. We also give a representation theorem stating
that any H2GC+FS-algebra can be embedded into the complex algebra of
its canonical IK-frame. The paper ends with some concluding remarks.

2. Intuitionistic logic with two Galois connections and

Fischer Servi axioms

We begin recalling the intuitionistic propositional logic with a Galois con-
nection (IntGC) defined by the authors in [15]. The language of IntGC is
constructed from an enumerable infinite set of propositional variables Var ,
the connectives ¬, ∨, ∧, →, and the unary operators ^ and ⊡. The con-
stant true is defined by setting ⊤ := p → p for some fixed propositional
variable p ∈ Var , and the constant false is defined by ⊥ := ¬⊤. We also
set A ↔ B := (A → B) ∧ (B → A). The logic IntGC is the smallest logic
that contains intuitionistic propositional logic Int and is closed under modus
ponens (MP), and rules (GC⊡^) and (GC^⊡):

(GC⊡^)
A→ ⊡B

^A→ B
(GC^⊡)

^A→ B

A→ ⊡B

It is known that the following rules are admissible in IntGC:

(RN⊡)
A

⊡A
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(RM⊡)
A→ B

⊡A→ ⊡B
(RM^)

A→ B

^A→ ^B

In addition, the following formulas are provable:

(i) A→ ⊡^A and ^⊡A→ A;
(ii) ^A↔ ^⊡^A and ⊡A↔ ⊡^⊡A;
(iii) ⊡⊤ and ¬^⊥;
(iv) ⊡(A ∧B) ↔ ⊡A ∧⊡B and ^(A ∨B) ↔ ^A ∨ ^B;
(v) ⊡(A→ B) → (⊡A→ ⊡B).

Next we define Int2GC by adding another independent Galois connection
pair to IntGC. The language of the logic Int2GC is thus the one of IntGC

extended by two unary connectives � and �, and the logic Int2GC is the
smallest logic extending IntGC by rules (GC��) and (GC��):

(GC��)
A→ �B

�A→ B
(GC��)

�A→ B

A→ �B

Obviously, in Int2GC also the rules:

(RN�)
A

�A

(RM�)
A→ B

�A→ �B
(RM�)

A→ B

�A→ �B

are admissible, and the following formulas are provable:

(i) A→ ��A and ��A→ A;
(ii) �A↔ ���A and �A↔ ���A;
(iii) �⊤ and ¬�⊥;
(iv) �(A ∧B) ↔ �A ∧�B and �(A ∨B) ↔ �A ∨ �B;
(v) �(A→ B) → (�A→ �B).

In fact, Int2GC is just the fusion IntGC⊗IntGC of two separate IntGCs having
the Galois connections (^,⊡) and (�,�), respectively.

Intuitionistic modal logic IK was introduced by G. Fischer Servi in [23].
The logic IK is obtained by adding two modal connectives ^ and � to intu-
itionistic logic satisfying the following axioms:

(IK1) ^(A ∨B) → ^A ∨ ^B
(IK2) �A ∧�B → �(A ∧B)
(IK3) ¬^⊥
(IK4) ^(A→ B) → (�A→ ^B)
(IK5) (^A→ �B) → �(A→ B)

In addition, the monotonicity rules for both ^ and � are admissible:

(RM^)
A→ B

^A→ ^B
(RM�)

A→ B

�A→ �B
Note that axiom (IK4) is the same as (FS1) and (IK5) equals (FS3), and
(FS2) and (FS4) are analogous axioms for � and ⊡. Note also that in [41]
it is argued that IK is the true intuitionistic analogue of “classical” K.

Proposition 2.1. The following assertions hold in Int2GC.

(a) Axioms (FS1) and (FS4) are equivalent.
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(b) Axioms (FS2) and (FS3) are equivalent.

Proof. We prove only assertion (a), because (b) can be proved analogously.
Here ⊢ A denotes that A is provable in Int2GC.

(FS1)⇒(FS4): Let us set X := A, Y := ��A and Z := ^⊡B in the
provable formula (X → Y ) → ((Y → Z) → (X → Z)). We get ⊢ (��A→
^⊡B) → (A → ^⊡B) by using also ⊢ A → ��A. This is equivalent
to ⊢ A ∧ (��A → ^⊡B) → ^⊡B. Because ⊢ ^⊡B → B, this means
⊢ A ∧ (��A → ^⊡B) → B and ⊢ (��A → ^⊡B) → (A → B). If
we set A := �A and B := ⊡B in (FS1), we obtain ⊢ ^(�A → ⊡B) →
(��A → ^⊡B), and so ⊢ ^(�A → ⊡B) → (A → B). This implies
⊢ (�A→ ⊡B) → ⊡(A→ B) by (GC^⊡).

(FS4)⇒(FS1): We set X := ��A, Y := A and Z := B in (X → Y ) →
((Y → Z) → (X → Z)). This gives ⊢ (��A → A) → ((A → B) →
(��A → B)), and ⊢ (A → B) → (��A → ⊡^B), since ⊢ ��A → A
and ⊢ B → ⊡^B. By monotonicity, ⊢ ^(A → B) → ^(��A → ⊡^B).
By setting A := �A and B := ^B in (FS4), we have ⊢ (��A→ ⊡^B) →
⊡(�A → ^B) and ⊢ ^(��A → ⊡^B) → (�A → ^B) by (GC⊡^).
Therefore, we obtain ⊢ ^(A→ B) → (�A→ ^B). �

Logic Int2GC+FS is defined as the extension of Int2GC that satisfies (FS1)
and (FS2). By Proposition 2.1, it is clear that we have several equivalent
axiomatisations of Int2GC+FS given in the next corollary.

Corollary 2.2.

Int2GC+FS = Int2GC⊕ {(FS1) or (FS4)} ⊕ {(FS2) or (FS3)}.

Logic Int2GC+FS satisfies the counterparts of axioms (IK1)–(IK5) of IK,
so Int2GC+FS can be regarded as a intuitionistic bi-modal logic, and the
pairs of operators (^, �) and (�, ⊡) can be regarded as intuitionistic modal
connectives in the sense of Fischer Servi. Hence, Int2GC+FS can be seen as
an extension of the fusion IK⊗IK of two copies of intuitionistic modal logic
IK, the first one with the modalities (^,�) and the second one with (�,⊡).

In ordered sets, there is another way of defining Galois connections pre-
sented in conditions (1.1) and (1.2). This gives us method (B) mentioned in
Introduction. Let us considerer the fusion IK⊗IK of two copies of intuition-
istic modal logic IK, the first one with the operators (^,�) and the second
one with (�,⊡). We extend IK⊗IK by the so-called Brouwerian axioms:

(BR1) A→ ⊡^A (BR2) ^⊡A→ A
(BR3) A→ ��A (BR4) ��A→ A

These axioms are also referred to as the converse axioms, since these axioms
are needed to ensure that the accessibility relations for the operators F,G
and P,H are each others converse in tense logics. We denote this logic by
IK⊗IK+BR.

Proposition 2.3. Int2GC+FS = IK⊗IK+BR.

Proof. We have already noted that in Int2GC+FS axioms (IK1)–(IK5) are
provable for the operator pairs �, ^ and ⊡, �, and the operators �, ^, ⊡, �
satisfy the monotonicity rule. Additionally, Brouwerian axioms are provable
in Int2GC+FS.
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On the other hand, ⊢ A→ ⊡B implies ⊢ ^A→ ^⊡B, which by (BR2)
gives ⊢ ^A → B. Similarly, ⊢ ^A → B implies ⊢ ⊡^A → ⊡B, and by
(BR1) we get ⊢ A→ ⊡B. Thus, (^,⊡) is a Galois connection, and similarly
we can show the same for the pair (�,�). Fischer Servi axioms (FS1)–(FS4)
hold trivially in IK⊗IK. �

Proposition 2.3 means that there exist two ways to extend intuitionistic
logic with two Galois connections such that these pairs are interlinked with
Fischer Servi axioms.

Remark 2.4. The proof of Proposition 2.3 reveals also that it is possible to
endow a Galois connection in two ways to any logic L having modus ponens
and satisfying the so-called law of syllogism (A → B) → ((B → C) →
(A → C)). The first way is to add operators ^ and ⊡ to L and add rules
(GC⊡^) and (GC^⊡). Or equivalently, we may add Brouwerian axioms
(BR1), (BR2) and rules of monotonicity (RM�) and (RM⊡) for ^ and ⊡.
Hence, the following are equivalent:

(i) L ⊕ {(GC⊡^), (GC^⊡)}
(ii) L ⊕ {(BR1), (BR2), (RM^), (RM⊡)}

Our next aim is to show that Int2GC+FS is equivalent to IKt. We need
the following lemma.

Lemma 2.5. The following formulas are Int2GC+FS-provable:

(a) �A ∧ ^B → ^(A ∧B) and ⊡A ∧ �B → �(A ∧B);
(b) �(A→ B) → (^A→ ^B) and ⊡(A→ B) → (�A→ �B);
(c) �¬A→ ¬^A and ⊡¬A→ ¬�A.

Proof. We only prove the first formula of each statement.
(a) Axiom (FS1) is equivalent to ^(A → B) ∧ �A → ^B. If we set

B := A∧B in this formula, we have that ⊢ (^(A→ A∧B)∧�A) → ^(A∧B).
Because A → A ∧ B is equivalent to A → B, and ⊢ B → (A → B) and
monotonicity of ^ imply ⊢ ^B → ^(A → B), we obtain ⊢ ^B ∧ �A →
^(A ∧B).

(b) Because ⊢ ��(A→ B) → (A→ B), we have ⊢ ��(A→ B)∧A→ B
and ⊢ ^(��(A→ B)∧A) → ^B. Let us set A := ��(A→ B) and B := A
in (a). We obtain ⊢ ���(A → B) ∧ ^A → ^(��(A → B) ∧ A). Thus,
⊢ ���(A → B) ∧ ^A → ^B. Because ⊢ �(A → B) → ���(A → B),
we have ⊢ �(A → B) ∧ ^A → ^B. This is equivalent to ⊢ �(A → B) →
(^A→ ^B).

(c) If we set B := ⊥ in (b), we get ⊢ �(A→ ⊥) → (^A→ ^⊥). Because
^⊥ is equivalent to ⊥, we obtain ⊢ �¬A→ ¬^A. �

Next, we show that IKt and Int2GC+FS are syntactically equivalent. Logic
IKt is obtained by extending the language of intuitionistic propositional logic
with the usual temporal expressions FA (A is true at some future time), PA
(A was true at some past time), GA (A will be true at all future times),
and HA (A has always been true in the past). The following Hilbert-style
axiomatisation of IKt is given by Ewald in [20, p. 171]:

(1) All axioms of intuitionistic logic
(2) G(A→ B) → (GA→ GB) (2′) H(A→ B) → (HA→ HB)
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(3) G(A ∧B) ↔ GA ∧GB (3′) H(A ∧B) ↔ HA ∧HB
(4) F (A ∨B) ↔ FA ∨ FB (4′) P (A ∨B) ↔ PA ∨ PB
(5) G(A→ B) → (FA→ FB) (5′) H(A→ B) → (PA→ PB)
(6) GA ∧ FB → F (A ∧B) (6′) HA ∧ PB → P (A ∧B)
(7) G¬A→ ¬FA (7′) H¬A→ ¬PA
(8) FHA→ A (8′) PGA→ A
(9) A→ HFA (9′) A→ GPA

(10) (FA→ GB) → G(A→ B) (10′) (PA→ HB) → H(A→ B)
(11) F (A→ B) → (GA → FB) (11′) P (A→ B) → (HA→ PB)

The rules of inference are modus ponens (MP), and

(RH)
A

HA
(RG)

A

GA

Our next theorem shows that if we identify ^, �, �, ⊡ with F , G, P , H,
respectively, then Int2GC+FS and IKt are syntactically equivalent.

Theorem 2.6. IKt = Int2GC+FS.

Proof. First we will show that the IKt-axioms are provable in Int2GC+FS,
and all rules of IKt are admissible in Int2GC+FS. As mentioned in Section 2,
axioms (2), (2′), (3), (3′) (4), (4′), (8), (8′), (9), (9′) are provable even in
Int2GC. Additionally, rules (MP), (RH), and (RG) are admissible in Int2GC.
Axioms (10), (10′), (11), (11′) are Fischer Servi axioms (FS3), (FS4), (FS1),
(FS2), so they are provable in Int2GC+FS. The provability of (5), (5′), (6),
(6′), (7), and (7′) is shown in Lemma 2.5.

Because axioms (10), (10′), (11), (11′) are the Fischer Servi axioms, for
the other direction it is enough to show the admissibility of rules (GC⊡^),
(GC^⊡), (GC��), (GC��) in IKt. First, we show the admissibility of
the rules of monotonicity, that is, if A → B is provable, then HA → HB,
PA→ PB, GA→ GB, and FA→ FB are provable.

Here ⊢ A denotes that the formula A is provable in IKt. Assume ⊢ A→ B.
By (RG), ⊢ G(A → B). Now ⊢ GA → GB follows by (2), and from
⊢ G(A → B), we obtain also ⊢ FA → FB by (5). Similarly, ⊢ A → B
implies ⊢ HA→ HB and ⊢ PA→ PB by applying (RH), (2′), and (5′).

Next we prove the admissibility of (GC⊡^). Assume that ⊢ A → HB.
Then, FA → FHB by the monotonicity of F . Because ⊢ FHB → B by
(8), we obtain ⊢ FA → B. Similarly, by (8′) and the monotonicity of P ,
A → GB implies PA → B, that is, (GC��) is admissible in IKt. The
monotonicity of H and axiom (9) yield that FA → B implies A → HB,
and monotonicity of G and (9′) give that PA→ B implies A→ BG. Thus,
rules (GC^⊡) and (GC��) are admissible. �

By combining Proposition 2.3 and Theorem 2.6, we get the following
corollary. Note that IKt = IK⊗IK+BR is proved already by Davoren [13].

Corollary 2.7. IKt = Int2GC+FS = IK⊗IK+BR.

In [29], the logic extending classical logic Cl with a Galois connection
(^,⊡) was introduced and it is proved that if we add another two operators �
and � that are connected to the Galois connection (^,⊡) by the De Morgan
axioms:
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(DM1) �A↔ ¬^¬A (DM2) �A↔ ¬⊡¬A,

then also the pair (�,�) is a Galois connection, that is, rules (GC��) and
(GC��) are admissible. Hence, in classical case, one Galois connection is
defined by the other (obtained “for free”), which is not the case in intu-
itionistic logic; see [15]. It is proved in [29] that this logic is syntactically
equivalent to classical tense logic Kt, when ^, �, �, ⊡ are identified with the
tense operators F , G, P , H, respectively. Note that algebras corresponding
to Kt are considered in [31, 42], for example, and these are generally called
tense algebras.

As stated in [41, p. 54], it is routine to derive ^A ↔ ¬�¬A in IK,
together with the Law of the Excluded Middle. Since Int2GC+FS is an
extension of the fusion IK⊗IK of two copies of intuitionistic modal logic
IK, then it is clear that classical logic with two Galois connection pairs
(^,⊡) and (�,�), which are interlinked with (FS1) and (FS2), denoted
here Cl2GC+FS, satisfies (DM1) and (DM2). On the other hand, in Kt,
the pairs (F,H) and (P,G) form Galois connections, and axioms (FS1) and
(FS2) are provable. Therefore, we can write:

Kt = Cl2GC+FS

Observe that Kt can be defined as the fusion K⊗K extended with Brouwerian
axioms (BR1)–(BR4), denoted by K⊗K+BR. In summary, we have:

Corollary 2.8. Kt = Cl2GC+FS = K⊗K+BR.

In conclusion, if we add to intuitionistic logic Int two Galois connections
(^,⊡) and (�,�) that are connected using Fischer Servi axioms (FS1) and
(FS2), then we get the intuitionistic tense logic IKt. Analogously, if two
Galois connections combined with axioms (FS1) and (FS2) are added to
classical logic, we obtain the classical tense logic Kt. Here we discuss how
for each intermediate logic L, we can define the corresponding L-tense logic

LKt.
An intermediate logic is a propositional logic extending intuitionistic logic.

Classical logic Cl is the strongest intermediate logic and it is obtained from
Int by extending the axioms of Int by the “Law of the excluded middle”
A ∨ ¬A, or equivalently, by the “Double negation elimination” ¬¬A → A
or by “Peirce’s law” ((A → B) → A) → A. There exists a continuum of
different intermediate logics. For example, the Gödel–Dummett logic G is
obtained from Int by adding the axiom (A → B) ∨ (B → A). For more
examples of intermediate logics and their semantics; see [11,26].

We denote by L any intermediate logic, that is, Int ⊆ L ⊆ Cl. We can
write that for any intermediate logic L,

IKt ⊆ L2GC+FS ⊆ Kt.

Because Ewald’s IKt is commonly accepted as the intuitionistic analogue
of the classical tense logic Kt, taking into account the equivalences IKt =
Int2GC+FS and Kt = Cl2GC+FS, the logic L2GC+FS can be regarded as the
L-tense logic LKt for any intermediate logic L. Then, as one of the main re-
sults of this work, we have a general uniform method (A) of building L-tense
logic for any intermediate logic L by setting LKt = L2GC+FS, that is, L added
with two Galois connection pairs combined using Fischer Servi axioms.
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Moreover, since the equivalences Kt = Cl2GC+FS and IKt = Int2GC+FS

were shown syntactically, L-tense logics exist independent of whether they
are Kripke complete or canonical, or not. This can be presented as the
following theorem.

Theorem 2.9. For any intermediate logic L, there is an L-tense logic LKt,

which is L endowed with two independent Galois connections connected by

Fischer Servi axioms (FS1) and (FS2).

3. Heyting algebras with Galois connections

E. Or lowska and I. Rewitzky [36] defined a Heyting algebra with modal

operators as a Heyting algebra (H,∨,∧,→, 0, 1) equipped with unary oper-
ators ^ and � satisfying for all x, y ∈ H:

(3.1) ^x ∨ ^ y = ^(x ∨ y) and �x ∧� y = �(x ∧ y).

These algebras are called HM-algebras, for short. In addition, they defined
HK-algebras as HM-algebras satisfying

(3.2) ^ 0 = 0 and � 1 = 1.

We introduced in [15] HGC-algebras as Heyting algebras provided with
an order-preserving Galois connection (^,⊡). Equationally HGC-algebras
can be defined as algebras (H,∨,∧,→, 0, 1,^,⊡) such that (H,∨,∧,→, 0, 1)
satisfies the identities for Heyting algebras (which can be found in e.g. [2,7]),
the operators ^ and ⊡ satisfy (3.1), and for all x ∈ H,

(3.3) x ≤ ⊡^x and ^⊡x ≤ x.

By definition, HGC-algebras are HM-algebras, but HGC-algebras are also
HK-algebras, because 0 ≤ ⊡ 0 implies ^ 0 ≤ 0 and ^ 1 ≤ 1 gives 1 ≤ ⊡ 1.
Thus, ^ and ⊡ satisfy (3.2).

In [15], we proved that IntGC is algebraizable in terms of HGC-algebras.
More precisely, any valuation v assigning to propositional variables elements
of an HGC-algebra can be extended to all formulas inductively by the fol-
lowing way:

v(A ∧B) = v(A) ∧ v(B) v(A ∨B) = v(A) ∨ v(B)

v(A→ B) = v(A) → v(B) v(¬A) = ¬v(A)

v(^A) = ^ v(A) v(⊡A) = ⊡ v(A).

Then, a formula A is provable in IntGC if and only if v(A) = 1 for all
valuations v on any HGC-algebra.

We define H2GC-algebras as structures (H,∨,∧,→, 0, 1,^,�,�,⊡) such
that (H,∨,∧,→, 0, 1,^,⊡) and (H,∨,∧,→, 0, 1,�,�) are HGC-algebras.
Similarly as in case of IntGC, we can show, by applying Lindenbaum–Tarski
algebras, that Int2GC is complete with respect to H2GC-algebras, that is, a
formula A ∈ Φ is provable in Int2GC if and only if v(A) = 1 for all valuations
v on any H2GC-algebra.

Or lowska and Rewitzky [36] studied also an extension of HK-algebras,
called HK1-algebras, that are algebraic counterparts of the logic IK. They
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extended HK-algebras by the following two conditions that correspond to
Fischer Servi axioms (FS1) and (FS2):

(3.4) ^(x→ y) ≤ �x→ ^ y and ^x→ � y ≤ �(x→ y)

Let us denote for any H2GC-algebra (H,∨,∧,→, 0, 1,^,�,�,⊡) the corre-
sponding conditions by (FS1)–(FS4), that is,

(FS1) ^(x→ y) ≤ �x→ ^ y (FS2) ^x→ � y ≤ �(x→ y)
(FS3) �(x→ y) ≤ ⊡x→ � y (FS4) �x→ ⊡ y ≤ ⊡(x→ y)

Note that we used (FS1)–(FS4) to denote also the corresponding Fischer
Servi axioms in logic. This should not cause any confusion, because the con-
text shows whether we are dealing with logic axioms or lattice-theoretical
conditions. In addition, we denote by (D1) and (D2) the conditions corre-
sponding the first condition of (1.6), that is,

(D1) ^x ∧� y ≤ ^(x ∧ y) (D2) �x ∧⊡ y ≤ �(x ∧ y)

Proposition 3.1. Let (H,∨,∧,→, 0, 1,^,�,�,⊡) be an H2GC-algebra.

(a) Conditions (FS1), (D1), and (FS4) are equivalent.

(b) Conditions (FS2), (D2), and (FS3) are equivalent.

Proof. We prove only assertion (a), because (b) can be proved in a similar
way. Assume that (D1) holds, and set x := a → b and y := a in it. We
obtain ^(a → b) ∧ � a ≤ ^(a ∧ (a → b)) ≤ ^ b, because a ∧ (a → b) ≤ b.
This gives directly ^(a → b) ≤ �a → ^ b, and thus (D1) implies (FS1).
Conversely, if we set x := b and y := a ∧ b in (FS1), we have ^a ≤ ^(b →
a) = ^(b → a ∧ b) ≤ � b → ^(a ∧ b), because b → a ∧ b = b → a and
a ≤ b → a. This is equivalent to ^ a ∧ � b ≤ ^(a ∧ b). Hence, also (FS1)
implies (D1). That (FS1) and (FS4) are equivalent can be shown as in
Proposition 2.1. �

Proposition 3.1 together with the completeness of Int2GC with respect to
H2GC-algebras implies that

IKt = Int2GC+FS = Int2GC⊕ {(D1), (D2)},

where (D1) and (D2) denote the axioms:

(D1) ^A ∧�B → ^(A ∧B) (D2) �A ∧⊡B → �(A ∧B).

Let us define H2GC+FS-algebras as H2GC-algebras satisfying (FS1) and
(FS2). Proposition 3.1 has the following corollary.

Corollary 3.2. Let H = (H,∨,∧,→, 0, 1,^,�,�,⊡) be an H2GC-algebra.

(a) H is an H2GC+FS-algebra if and only if (H,∨,∧,→, 0, 1,^,�) and

(H,∨,∧,→, 0, 1,�,⊡) are HK1-algebras.

(b) H is an H2GC+FS-algebra if and only if it satisfies (D1) and (D2).

For any H2GC+FS-algebra (H,∨,∧,→, 0, 1,^,�,�,⊡), a valuation v is a
function v : Var → H, which is inductively extended to all formulas in Φ as
is done above in the case of HGC-algebras. A formula A ∈ Φ is H2GC+FS-

valid if v(A) = 1 for every valuation v on any H2GC+FS-algebra.
We have shown in [15] that rules (GC⊡^) and (GC^⊡) preserve valid-

ity, and obviously the same holds for (GC��) and (GC��). In addition,
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axioms (FS1) and (FS2) are also valid, because H2GC+FS-algebras are de-
fined by using analogous conditions. Thus, Int2GC+FS-provable formulas
are H2GC+FS-valid.

To obtain algebraic completeness, we apply Lindenbaum–Tarski algebras.
We denote by F(Φ) the algebra of Φ-formulas, that is, the abstract algebra

F(Φ) = (Φ,∨,∧,→,⊥,^,�,�,⊡).

We define an equivalence ≡ on Φ by

A ≡ B ⇐⇒ A↔ B is Int2GC+FS-provable.

It is easy to observe that ≡ is a congruences on F(Φ). Let [A] denote the
≡-class of A. We define the quotient algebra F(Φ)/≡ by introducing the
operations:

[A] ∨ [B] = [A ∨B], [A] ∧ [B] = [A ∧B], [A] → [B] = [A→ B],

^[A] = [^A], � [A] = [�A], �[A] = [�A], ⊡[A] = [⊡A]

Because H2GC+FS-algebras form an equational class, F(Φ)/≡ forms an
H2GC+FS-algebra. Note that [⊥] and [⊤] are the zero and the unit in
this algebra. We define a valuation v : Var → Φ/≡ by v(p) = [p]. By
straightforward formula induction, we see that v(A) = [A] for all formulas
A ∈ Φ. If now A ∈ Φ is H2GC+FS-valid, then v(A) = [⊤] in F(Φ)/≡. This
means A ↔ ⊤ and thus A is Int2GC+FS-provable. Therefore, we can write
the following completeness theorem.

Theorem 3.3. A formula A ∈ Φ is Int2GC-provable if and only if A is

H2GC+FS-valid.

If we change the underlying logic from intuitionistic to classical, we have
that Cl2GC+FS is complete with respect to tense algebras – this is due to the
standard algebraic completeness theorem of temporal logic Kt with respect
to tense algebras.

Results of this section can be equally applied to intermediate logics.
It is well known that intuitionistic logic and all intermediate logics are
algebraizable; see, for example, [6]. For instance, the specific axiom
(A → B) ∨ (B → A) of Gödel–Dummett logic G translates into in the
identity (x → y) ∨ (y → x) = 1 extending Heyting algebras. For ev-
ery intermediate logic L, there exists a corresponding equational class of
L-algebras. For each L-algebra (HL,∨,∧,→, 0, 1), we define the correspond-
ing HL2GC+FS-algebra as an algebra (HL,∨,∧,→, 0, 1,^,�,�,⊡) by using
the same identities as in the case of defining H2GC+FS-algebras from Heyt-
ing ones. Clearly, the class of HL2GC-algebras is equational. Since the
method of Lindenbaum–Tarski algebras is applicable to any L2GC+FS-logic
in a straightforward way, we get the algebraic completeness.

Corollary 3.4. For every intermediate logic L, a formula A ∈ Φ is

L2GC+FS-provable if and only if A is valid in every HL2GC–algebra.

Very often completeness for an intermediate logic L is stated for a narrower
class than the class of all L-algebras. For instance, Gödel–Dummett logic G is
complete with respect to the class of finite chains, and in [16], we showed the
finite model property of IntGC. However, here we will not consider algebraic
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completeness of L2GC+FS-logics with respect to these kinds of narrower
classes.

Let Φ0 denote the set of propositional formulas of intuitionistic logic only
(thus not containing ^,�,�,⊡). In [15, Prop. 4.6], we proved that IntGC is
conservative over Int, and analogously we can prove the following theorem.

Theorem 3.5. For every intermediate logic L, a formula A ∈ Φ0 is

L2GC+FS-provable if and only if A is provable in intermediate propositional

logic L.

Example 3.6. (a) As a motivating example for H2GC+FS-algebras, we
consider fuzzy modal operators on complete Heyting algebras. These are
also closely connected to fuzzy Galois connections (see e.g. [5, 25]).

A complete Heyting algebra is a Heyting algebra (H,∨,∧,→, 0, 1) such
that its underlying lattice (H,≤) is complete. It is well known [27,37] that
a complete Heyting algebra H satisfies the join-infinite distributive law : for
any S ⊆ H and x ∈ H, x ∧ (

∨

S) =
∨

{x ∧ y | y ∈ S}.
Fuzzy sets on complete Heyting algebras generalise fuzzy sets on the unit

interval [0, 1]. Let U be some universe of discourse. Each map ϕ : U → H is
called a fuzzy set on U . For any object x, ϕ(x) is the grade of membership.
We denote by HU the set of all fuzzy sets on U . Also HU forms a complete
Heyting algebra in which the operations are defined pointwise.

Let R be a fuzzy relation on U , that is, R is a mapping from U ×U to H.
For a fuzzy set ϕ ∈ HU , we may define the fuzzy sets ^ϕ, �ϕ, �ϕ, ⊡ϕ by
setting for all x ∈ U :

^ϕ(x) =
∨

y∈U

{R(x, y) ∧ ϕ(y)} �ϕ(x) =
∧

y∈U

{R(x, y) → ϕ(y)}

�ϕ(x) =
∨

y∈U

{R(y, x) ∧ ϕ(y)} ⊡ϕ(x) =
∧

y∈U

{R(y, x) → ϕ(y)}

We show first that (^,⊡) and (�,�) are Galois connections on HU . In-
deed, suppose ϕ and ψ are fuzzy sets such that ϕ ≤ ψ. Then, for all y ∈ U ,
R(x, y) ∧ ϕ(y) ≤ R(x, y) ∧ ψ(y) and this implies

^ϕ(x) =
∨

y∈U

{R(x, y) ∧ ϕ(y)} ≤
∨

y∈U

{R(x, y) ∧ ψ(y)} = ^ψ(x).

Similarly, R(y, x) → ϕ(y) ≤ R(y, x) → ψ(y) for all y ∈ U . Thus,

⊡ϕ(x) =
∧

y∈U

{R(y, x) → ϕ(y)} ≤
∧

y∈U

{R(y, x) → ψ(y)} = ⊡ψ(x).

So, ^ and ⊡ are order-preserving. By definition, for all x ∈ U ,

^⊡ϕ(x) =
∨

y∈U

{R(x, y) ∧⊡ϕ(y)} =
∨

y∈U

{

R(x, y) ∧
∧

z∈U

{R(z, y) → ϕ(z)}
}

≤
∨

y∈U

{R(x, y) ∧ (R(x, y) → ϕ(x) ) } ≤
∨

y∈U

{ϕ(x)} = ϕ(x).
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This means that ^⊡ϕ ≤ ϕ. Analogously, for any x ∈ U ,

⊡�ϕ(x) =
∧

y∈U

{R(y, x) → ^ϕ(y)} =
∧

y∈U

{

R(y, x) →
∨

z∈U

{R(y, z) ∧ ϕ(z)}
}

≥
∧

y∈U

{R(y, x) → (R(y, x) ∧ ϕ(x) )} ≥
∧

y∈U

{ϕ(x)} = ϕ(x).

Thus, also ϕ ≤ ⊡^ϕ. We have that (^,⊡) is a Galois connection. Similarly,
we can show that (�,�) is a Galois connection.

Next we show that (D1) holds. For all x, y ∈ U , we have

R(x, y) ∧ ϕ(y) ∧�ψ(x) = R(x, y) ∧ ϕ(y) ∧
∧

z∈U

{R(x, z) → ψ(z)}

≤ R(x, y) ∧ ϕ(y) ∧ (R(x, y) → ψ(y))

= (R(x, y) ∧ (R(x, y) → ψ(y))) ∧ ϕ(y)

= R(x, y) ∧ ψ(y) ∧ ϕ(y)

= R(x, y) ∧ (ϕ ∧ ψ)(y)

≤
∨

z∈U

{R(x, z) ∧ (ϕ ∧ ψ)(z)}

= ^(ϕ ∧ ψ)(x).

Hence, for all x, y ∈ U , R(x, y) ∧ ϕ(y) ∧ �ψ(x) ≤ ^(ϕ ∧ ψ)(x). Because
complete Heyting algebras satisfy the join-infinite distributive law, we have

(^ϕ ∧�ψ)(x) = ^ϕ(x) ∧�ψ(x) =
∨

y∈U

{R(x, y) ∧ ϕ(y)} ∧�ψ(x)

=
∨

y∈U

{R(x, y) ∧ ϕ(y) ∧�ψ(x)} ≤ ^(ϕ ∧ ψ)(x).

Thus, ^ϕ ∧�ψ ≤ ^(ϕ ∧ ψ). Assertion (D2) can be proved similarly.

(b) The instances

(3.5) �(a ∨ b) ≤ � a ∨ ^ b and ⊡(a ∨ b) ≤ ⊡a ∨ � b

of Dunn’s second axiom of (1.6) are false in some H2GC+FS-algebras of
fuzzy modalities.

Namely, let U = {x, y} and consider the finite (and hence complete)
Heyting algebra 22 ⊕ 1, that is, H = {0, a, b, c, 1} is the Heyting algebra
with the order 0 < a, b < c < 1, where a and b are incomparable. Note that
¬a = b and ¬b = a.

We define two fuzzy sets ϕ,ψ on U by setting ϕ(u) = 0 and ψ(u) = 1 for all
u ∈ U . A fuzzy relation R : U × U → H is defined by R(x, x) = R(y, y) = a
and R(x, y) = R(y, x) = b. Then,

�(ϕ ∨ ψ)(x) =
∧

u∈U

(R(x, u) → (ϕ ∨ ψ)(u)) = 1,

but

�ϕ(x) ∨^ψ(x) =
∧

u∈U

(R(x, u) → ϕ(u)) ∨
∨

u∈U

(R(x, u) ∧ ψ(u))

= (¬a ∧ ¬b) ∨ (a ∨ b) = c.
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Hence, �(ϕ ∨ ψ) ≤ �ϕ ∨ ^ψ is not satisfied. Similarly, ⊡(ϕ ∨ ψ)(y) = 1
and ⊡ϕ(y) ∨ �ψ(y) = c, that is, ⊡(ϕ ∨ ψ) ≤ ⊡ϕ ∨ �ψ is not satisfied.

(c) In Lemma 2.5(c), we showed the provability of �¬A → ¬^A and

⊡¬A → ¬�A. This implies that also ^A → ¬�¬A and �A → ¬⊡¬A
are provable. Here we show that De Morgan axioms ^A ↔ ¬�¬A and

�A↔ ¬^¬A discussed in Introduction are not provable in Int2GC+FS.
Let us consider a linear Heyting algebra (that is, a Gödel algebra)

H =

{

1

n+ 1

∣

∣

∣

∣

n ∈ N

}

∪ {0, 1},

where N = {1, 2, 3, . . .}. Let us set U = N and define a fuzzy set ϕ : U → H
by setting ϕ(n) = 1

n+1
for all n ∈ N. We also define a fuzzy relation R on

U simply by setting R(m,n) = 1 for all m,n ∈ N.
For all n ∈ N,

^ϕ(n) =
∨

m∈N

{R(n,m) ∧ ϕ(m)} =
∨

m∈N

{ 1

m+ 1

}

=
1

2
,

but

�¬ϕ(n) =
∧

m∈N

{R(n,m) → ¬ϕ(m)} =
∧

m∈N

{1 → 0} = 0,

which means ¬�¬ϕ(n) = 1 for all n ∈ N. Thus, ^ϕ(n) 6= ¬�¬ϕ(n) for
all n ∈ N. Similarly, we can show �ϕ 6= ¬^¬ϕ. Indeed, for n ∈ N,

�ϕ(n) =
∧

m∈N

{

R(n,m) →
1

m+ 1

}

=
∧

m∈N

{ 1

m+ 1

}

= 0.

On the other hand,

^¬ϕ(n) =
∨

m∈N

{R(n,m) ∧ ¬ϕ(m)} =
∨

m∈N

{1 ∧ 0} = 0.

So, ¬^¬ϕ(n) = 1 for all n ∈ N.
Note that by the way the relation R is defined, these examples show that

�A ↔ ¬⊡¬A and ⊡A ↔ ¬�¬A cannot be proved in Int2GC+FS. This
example also shows that De Morgan axioms (1.4) and (1.5) cannot be proved
in G2GC+FS neihter, where G stands for Gödel–Dummett logic.

Example 3.7. As we saw in Example 3.6(b), the first condition of (1.6)
does not imply the second one. Here we show that the converse implication
is not true neither. Thus, in Heyting algebras with two Galois connections,
the conditions of (1.6) are independent.

Let H = {0, a, b, c, 1} with 0 < c < a, b < 1, but a and b are not compa-
rable. We define ^,� : H → H by

^ 0 = ^ b = ^ c = 0 and ^ a = ^ 1 = a;

� 0 = � b = � c = b and � a = � 1 = 1.

Then, we set � = ^ and ⊡ = �. It is easy to verify that the pairs (^,⊡)
and (�,�) are Galois connections.

In addition, the second condition of (1.6) holds for both (^,�) and (�,⊡),
that is,

�(x ∨ y) ≤ �x ∨^ y and ⊡(x ∨ y) ≤ ⊡x ∨� y.
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But now the first conditions of (1.6) does not hold, because, for instance,
^ a ∧� b = a ∧ b = c, but ^(a ∧ b) = ^ c = 0.

We end this section by noting that the above examples show that calcu-
lating using Heyting algebras with operators is much easier than calculating
with categories, and calculating with algebras can be easily used in showing
some of the non-theorems, for instance.

4. Representation theorem of H2GC+FS-algebras and

relational completeness

We introduced in [15] relational frames and models for IntGC. An IntGC-
frame (X,≤, R) is a relational structure such that (X,≤) is a quasiordered
set and R is a relation on X such that

(4.1) (≥ ◦R ◦ ≥) ⊆ R.

An IntGC-model (X,≤, R, |=) is such that (X,≤, R) is an IntGC-frame and
the satisfiability relation |= is a binary relation from X to the set of proposi-
tional variables Var such that x |= p and x ≤ y imply y |= p, For any x ∈ X
and A ∈ Φ, we define the satisfiability relation inductively by the following
way:

x |= A ∧B ⇐⇒ x |= A and x |= B

x |= A ∨B ⇐⇒ x |= A or x |= B

x |= A→ B ⇐⇒ for all y ≥ x, y |= A implies y |= B

x |= ¬A ⇐⇒ for no y ≥ x does y |= A

x |= ^A ⇐⇒ exists y such that xR y and y |= A

x |= ⊡A ⇐⇒ for all y, y R x implies y |= A

We proved in [15] that IntGC is relationally complete, meaning that an IntGC-
formula A is provable if and only if A is valid in all IntGC-models, that is,
for any IntGC-model (X,≤, R, |=) and for all x ∈ X, we have x |= A.

It is clear that since Int2GC is a fusion of two independent IntGCs, rela-
tional frames for Int2GC are of the form (X,≤, R1, R2) such that (X,≤, R1)
and (X,≤, R2) are IntGC-frames. Relational completeness can then be
proved by defining complex frames for Int2GC and by applying the results
of complex frames of IntGC (cf. [32]).

Fischer Servi described relational frames and models for IK in [23]. We
will apply the same frames for Int2GC+FS. An IK-frame is a triple (X,≤, R),
where (X,≤) is a quasiordered set and R is a relation on X such that

(4.2) (R ◦ ≤) ⊆ (≤ ◦R) and (≥ ◦R) ⊆ (R ◦ ≥).

Note that in [35,36] these frames are called HK1-frames. Because the second
condition of (4.2) is equivalent to (R−1 ◦ ≤) ⊆ (≤ ◦ R−1), we have that
(X,≤, R) is an IK-frame if and only if (X,≤, R−1) is an IK-frame. The
following relationship holds between IntGC-frames and IK-frames.

Lemma 4.1. A frame (X,≤, R) is an IK-frame if and only if (X,≤, R ◦ ≥)
and (X,≤, R−1 ◦ ≥) are IntGC-frames.
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Proof. Let (X,≤, R) be an IK-frame. Then,

(≥ ◦ (R ◦ ≥) ◦ ≥) ⊆ (≥ ◦R ◦ ≥) ⊆ (R ◦ ≥ ◦ ≥) ⊆ (R ◦ ≥),

Thus, (4.1) holds for (R ◦ ≥). Similarly, since (X,≤, R−1) is an IK-frame,

(≥ ◦ (R−1 ◦ ≥) ◦ ≥) ⊆ (≥ ◦ (R−1 ◦ ≥)) = ((≥ ◦R−1) ◦ ≥)

⊆ ((R−1 ◦ ≥) ◦ ≥) ⊆ (R−1 ◦ ≥).

Hence, (4.1) holds for (R−1 ◦ ≥) also.
Conversely, suppose (X,≤, R◦≥) and (X,≤, (R−1 ◦≥)) are IntGC-frames.

Then,

(R ◦ ≤) = (≥ ◦R−1)−1 ⊆ (≥ ◦ (R−1 ◦ ≥) ◦ ≥)−1 ⊆ (R−1 ◦ ≥)−1 = (≤ ◦R).

In addition,

(≥ ◦R) ⊆ ((≥ ◦R) ◦ ≥ ◦ ≥) = (≥ ◦ (R ◦ ≥) ◦ ≥) ⊆ (R ◦ ≥).

Therefore, R satisfies (4.2). �

In IK-models (X,≤, R, |=), the satisfiability relation |= for ∨, ∧, →, and
¬ are defined as earlier, and satisfiability for ^A, and �A are defined by:

x |= ^A ⇐⇒ exists y such that x (R ◦ ≥) y and y |= A

x |= �A ⇐⇒ for all y, x (≤ ◦R) y implies y |= A

For the remaining �A and ⊡A, we define the satisfiability relation by:

x |= �A ⇐⇒ exists y such that y (≤ ◦R)x and y |= A

x |= ⊡A ⇐⇒ for all y, y (R ◦ ≥)x implies y |= A

In the sequel, we call these models IK2-models. The idea is that the models
are based on IK-frames, but satisfiability is defined twice: both for the pairs
(^,�) and (�,⊡). A formula A is relationally valid if it is valid in every
IK2-model, that is, x |= A holds for all elements x in the model. Note that:

x |= ^A ⇐⇒ exists y such that xR y and y |= A

x |= �A ⇐⇒ exists y such that y Rx and y |= A

We may now give the following soundness result.

Proposition 4.2. Every Int2GC+FS-provable formula is relationally valid.

Proof. We need to show that the axioms of Int2GC+FS are valid in all IK2-
models, and that the Galois connection rules preserve validity.

In [23], it is proved that axioms (FS1) are (FS3) are valid in all IK-frames.
As an example, we consider (FS2). Validity of (FS4) can be proved in a
similar way. If (FS2) is not valid, then there exists x ∈ X such that (i)
x |= �(A → B), but (ii) x 6|= ⊡A → �B. By (i), there is y Rx such that
(iii) y |= A→ B, and (ii) means that there is z ≥ x such that (iv) z |= ⊡A,
but (v) z 6|= �B. We have y (R◦≤) z, which implies by (4.2) that y (≤◦R) z,
meaning that there is v ≥ y such that v R z. By (v), we get v 6|= B and (iii)
gives v 6|= A. Now v (R ◦ ≥) z implies z 6|= ⊡A, a contradiction to (iv).

Because the validity of ^ and ⊡ are defined in terms of R ◦ ≥ and its
inverse, it is clear that the pair (^,⊡) is a Galois connection on Φ, that is,
the rules (GC^⊡) and (GC⊡^) preserve validity, and the same holds for
the pair (�, �). �
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Lemma 4.3. For all IK2-models (X,≤, R, |=) and formulas A ∈ Φ:

x |= A and x ≤ y imply y |= A.

Proof. We need to show the persistency of � and ⊡, because other connec-
tives are considered in [23]. Suppose x |= �A and x ≤ y. Then, there is
z Rx such that z |= A. Now z (R ◦ ≤) y imply z (≤ ◦R) y. Thus, y |= �A.

Assume that x |= ⊡A and x ≤ y. If z (R ◦≥) y, then also z (R ◦≥)x and
z |= A. So, y |= ⊡A. �

Or lowska and Rewitzky studied canonical frames of HK1-algebras in [36].
For a HK1-algebra (H,∨,∧,→, 0, 1,^,�), let us denote for any A ⊆ H,

�
−1A = {x ∈ H | �x ∈ A} and ^

−1A = {x ∈ H | ^x ∈ A}.

Let X(H) be the set of all prime lattice filters of H. A relation Rc is defined
on X(H) by

(4.3) F RcG ⇐⇒ �
−1F ⊆ G ⊆ ^−1F.

Or lowska and Rewitzky showed that this frame is an IK-frame. For
an H2GC+FS-algebra (H,∨,∧,→, 0, 1,^,�,�,⊡), its canonical frame is
(X(H),⊆, Rc). So, we are using the same canonical frames as for HK1-
algebras. Let us denote:

⊡
−1A = {x ∈ H | ⊡x ∈ A} and �

−1A = {x ∈ H | �x ∈ A}.

Lemma 4.4. Let (H,∨,∧,→, 0, 1,^,�,�,⊡) be an H2GC+FS-algebra.

Then, for all F,G ∈ X(H),

(4.4) F RcG ⇐⇒ ⊡
−1G ⊆ F ⊆ �−1G.

Proof. Suppose F RcG. If x ∈ ⊡
−1G, then ⊡x ∈ G. Now ^⊡x ≤ x.

Assume x /∈ F . Then ^⊡x /∈ F , which by the definition of Rc gives ⊡x /∈ G,
a contradiction. Similarly, if x ∈ F , then ��x ≥ x and ��x ∈ F . This
implies �x ∈ G by the definition of Rc. Conversely, if ⊡−1G ⊆ F ⊆ �−1G,
then F RcG can be proved in an analogous manner. �

Lemma 4.4 means that we have two ways to define the relation Rc, either
by using ^ and �, or by using � and ⊡. Let (X(H),⊆, Rc) be the canonical
frame of some H2GC+FS-algebra on H. To obtain the canonical model, we
define the relation |=c from X(H) to Var by F |=c p if and only if v(p) ∈ F .

In the book [35], it is shown that in the canonical frame (X(H),⊆, Rc) of
an HK1-algebra (H,∨,∧,→, 0, 1,^,�), for all F,G ∈ X(H),

(i) F (⊆ ◦Rc)G ⇐⇒ ^
−1 F ⊆ G;

(ii) F (Rc ◦ ⊇)G ⇐⇒ G ⊆ �
−1 F .

We extend this result to H2GC+FS-algebras.

Lemma 4.5. Let (H,∨,∧,→, 0, 1,^,�,�,⊡) be an H2GC+FS-algebra.

Then in the canonical frame (X(H),⊆, Rc), for all F,G ∈ X(H),

(a) F (⊆ ◦Rc)G ⇐⇒ F ⊆ �−1G;
(b) F (Rc ◦ ⊇)G ⇐⇒ ⊡

−1G ⊆ F .
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Proof. (a) Suppose that F (⊆ ◦ Rc)G. Then, there is J ∈ X(H) such that
F ⊆ J and J RcG, that is, ⊡−1G ⊆ J ⊆ �−1G. Then, F ⊆ �−1G. For the
other direction, assume that F ⊆ �−1G. Consider the filter K generated
by F ∪ ⊡

−1G. Suppose K ∩ −�−1G 6= ∅. Then, there are a ∈ −�−1G,
b ∈ F and c ∈ ⊡

−1G such that b ∧ c ≤ a. Note that ⊡
−1G is a filter, so

it is closed under finite meets. Hence, b ≤ c → a, and � b ≤ �(c → a) ≤
(⊡ c → � a) by (FS3). Because b ∈ F and F ⊆ �−1G, we have � b ∈ G
and so ⊡ c → � a ∈ G. Now ⊡ c ∈ G implies � a ∈ G, a contradiction.
Thus, K ∩ −�−1G = ∅. It is easy to see that −�−1G is an ideal. By the
Prime Filter Theorem of distributive lattices, there is J ∈ X(H) such that
K ⊆ J and J ∩ −�−1G = ∅, that is, J ⊆ �−1G. Now F ⊆ K ⊆ J . Also

⊡
−1G ⊆ K by the definition of K. So, ⊡−1G ⊆ J ⊆ �−1G, that is, J RcG

by Lemma 4.4. Thus, F (⊆ ◦Rc)G.
(b) Assume that F (Rc ◦ ⊇)G. Then, there exists J ∈ X(H) such that

F Rc J and G ⊆ J . Hence, ⊡−1 J ⊆ F and ⊡
−1G ⊆ ⊡

−1 J imply ⊡
−1G ⊆

F . On the other hand, assume ⊡
−1G ⊆ F . Let K be the filter generated

by G ∪ �F , where �F = {� x | x ∈ F}. Since F is a prime filter, its
complement −F is a prime ideal. So, −F 6= ∅ and ⊡(−F ) = {⊡ x | x /∈
F} 6= ∅. Let I be an ideal generated by ⊡(−F ). Assume for contradiction
that K ∩ I 6= ∅. Then, there exist a ∈ G, b1, · · · , bm ∈ F , and d ∈ I such
that a ∧ � b1 ∧ · · · ∧ � bm ≤ d. Take b = b1 ∧ · · · ∧ bm ∈ F . We note
that � b = �(b1 ∧ · · · ∧ bm) ≤ � b1 ∧ · · · ∧ � bm. Since d ∈ I, there are
c1, c2, . . . , cn /∈ F such that d ≤ ⊡ c1∨⊡ c2∨· · ·∨⊡ cn ≤ ⊡(c1∨c2∨· · ·∨cn).
Because F is a prime filter, c = c1 ∨ c2 ∨ · · · ∨ cn /∈ F . Since a ∧ � b ≤ d ≤
⊡ c, we have a ≤ � b → ⊡ c ≤ ⊡(b → c) by (FS4). Now a ∈ G implies

⊡(b → c) ∈ G. Because ⊡
−1G ⊆ F , we have b → c ∈ F . But now b ∈ F

implies c ∈ F , a contradiction. Hence, K ∩ I = ∅. By the Prime Filter
Theorem of distributive lattices, there is J ∈ X(H) such that K ⊆ J and
J ∩ I = ∅. By the definition of K, we have G,�F ⊆ K ⊆ J . In addition,
J ⊆ −⊡(−F ). Therefore, ⊡−1 J ⊆ ⊡

−1(−⊡(−F )) = −⊡
−1(⊡(−F )) ⊆ F .

Because �F ⊆ J , we obtain F ⊆ �−1 J . Thus, ⊡−1 J ⊆ F ⊆ �−1 J and
F Rc J . Since G ⊆ J , we have F (Rc ◦ ⊇)G. �

For an IK-frame (X,≤, R), let T≤ be the set of ≤-closed subsets of X,
that is,

(4.5) T≤ = {A ⊆ X | (∀x, y ∈ X)x ∈ A & x ≤ y ⇒ y ∈ A}.

Then, T≤ is an Alexandrov topology, that is, it is a topology closed also un-
der arbitrary intersections. Another common name used for an Alexandrov
topology is a complete ring of sets. Let us denote by I≤ : ℘(X) → ℘(X) the
interior operator of the topology T≤, that is, for all A ⊆ X,

I≤(A) =
⋃

{B ∈ T≤ | B ⊆ A}.

This means that T≤ = {I≤(A) | A ⊆ X}. The lattice (T≤,⊆) forms a
Heyting algebra such that for all A,B ∈ T≤,

A→c B = I≤(−A ∪B).
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Let us define for a relational frame (X,≤, R) the following four operators
℘(X) → ℘(X):

�
cA = {x ∈ X | x (≤ ◦R) y ⇒ y ∈ A}

^
cA = {x ∈ X | (∃y)xR y & y ∈ A}

⊡
cA = {x ∈ X | y (R ◦ ≥)x⇒ y ∈ A}

�
cA = {x ∈ X | (∃y) y Rx & y ∈ A}.

Or lowska and Rewitzky [36] proved that

(T≤,∪,∩,→
c, ∅,X,^c,�c)

is an HK1-algebra. It is clear that since also (X,≤, R−1) is an IK-frame, and
� is defined in terms of the inverse R−1 of R and ⊡ is defined in terms of
the inverse of (R ◦ ≥) and (R ◦ ≥)−1 = (≤ ◦R−1), the algebra

(T≤,∪,∩,→
c, ∅,X,�c,⊡

c)

is an HK1-algebra. Obviously, the pairs (^,⊡) and (�,�) are Galois con-
nections on (T≤,⊆). Note that:

^
cA = {x ∈ X | (∃y)x (R ◦ ≥) y & y ∈ A}

�
cA = {x ∈ X | (∃y) y (≤ ◦R)x & y ∈ A}.

This then implies that

C(X) = (T≤,∪,∩,→
c, ∅,X,^c,�

c,�c,⊡
c)

is an H2GC+FS-algebra, called the complex H2GC+FS-algebra of the IK-
frame (X,≤, R).

Let (H,∨,∧,→, 0, 1,^,�,�,⊡) be an H2GC+FS-algebra. We define a
mapping h : H → C(X(H)) from H to the complex algebra of its canonical
frame by

h(x) = {F ∈ X(H) | x ∈ F}.

It is proved in [35] that

h(x ∨ y) = h(x) ∪ h(y) h(x ∧ y) = h(x) ∩ h(y)

h(x→ y) = h(x) →c h(y)

h(0) = ∅ h(1) = X(H)

h(^ x) = ^ch(x) h(�x) = �
ch(x)

Note that the proof of Lemma 4.4 in [36] contains some mistakes, but the
proof is corrected in [35]. We can extend this result to H2GC+FS-algebras.

Lemma 4.6. Let (H,∨,∧,→, 0, 1,^,�,�,⊡) be an H2GC+FS-algebra.

(a) h(�x) = �ch(x);
(b) h(⊡x) = ⊡

ch(x).

Proof. (a) Suppose that F ∈ �ch(x). This means that there is G ∈ X(H)
such that GRc F and G ∈ h(x). Now, x ∈ G ⊆ �−1 F and �x ∈ F , that
is, F ∈ h(� x). On the other hand, assume F ∈ h(� x), that is, �x ∈ F .
Suppose ↑x ∩ −�−1 F 6= ∅. Then, there exists y ∈ H such that x ≤ y
and y /∈ �−1 F . We have � y /∈ F and �x ≤ � y, which give �x /∈ F , a
contradiction. Therefore, ↑x ∩ −�−1 F = ∅ and ↑x ⊆ �−1 F . Now ↑x is
a filter and −�−1 F is an ideal, as we already noted. Then, by the Prime
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Filter Theorem of distributive lattices, there is a prime filter K ∈ X(H)
such that ↑x ⊆ K and K ∩−�−1 F = ∅, that is, K ⊆ �−1 F . Lemma 4.5(a)
implies K (⊆ ◦Rc)F . Since x ∈ K, we have K ∈ h(x) and so F ∈ �ch(x).

(b) Suppose F ∈ h(⊡ x), that is, ⊡x ∈ F . If G (Rc ◦ ⊇)F , then there
is K ⊇ F such that ⊡

−1K ⊆ G ⊆ �−1K. Then, ⊡x ∈ F ⊆ K and
x ∈ ⊡

−1K ⊆ G. We get G ∈ h(x) and F ∈ ⊡
ch(x), as required. Conversely,

assume that F /∈ h(⊡ x). Then, x /∈ ⊡
−1 F and ↓x ∩ ⊡

−1 F = ∅. Note that

⊡
−1 F is a filter and ↓x is an ideal. This means that by the Prime Filter

Theorem of distributive lattices, there is a prime filter G ∈ X(H) such that

⊡
−1 F ⊆ G and ↓x∩G = ∅. Then, x /∈ G, G /∈ h(x), and by Lemma 4.5(b),

G (Rc ◦ ⊇)F . Thus, F /∈ ⊡
ch(x). �

As a corollary, we write the following representation theorem for
H2GC+FS-algebras.

Theorem 4.7. Every H2GC+FS-algebra can be embedded into the complex

algebra of its canonical IK-frame.

Remark 4.8. In general, the embedding h is not an isomorphism, but in
some cases it can be also surjective. For instance, in [15, Theorem 7.2], we
showed that every finite HGC-algebra is isomorphic to the complex algebra
of its canonical frame, and a similar proof could be presented here. More
generally, in [18, Theorem 18], we showed that for every spatial HGC-algebra
H, there exists an IntGC-frame F such that H is isomorphic to the complex
algebra of F . The same idea could be applied for H2GC+FS-algebras, be-
cause it is known that spatial (and thus complete) Heyting algebras are
order-isomorphic to some Alexandrov topologies.

Note also that a representation theorem for tense symmetric Heyting al-
gebras is given in [22], but their algebras differ essentially from ours.

In terms of Theorem 4.7, we can prove the Key Lemma.

Lemma 4.9. Let (H,∨,∧,→, 0, 1,^,�,�,⊡) be an H2GC+FS-algebra.

Then, for all A ∈ Φ and F ∈ X(H),

(4.6) F |=c A ⇐⇒ v(A) ∈ F.

Proof. We consider the operators ^ and ⊡ only, because for connectives ∨,
∧, → the claim is well known, and for � and � the proof is analogous.

(^) Suppose A = ^B for some B ∈ Φ and B satisfies (4.6). If F |=c ^B,
then there is a prime filter G such that F RcG and G |=c B, that is, v(B) ∈
G. Now, G ⊆ ^−1 F implies v(B) ∈ ^−1 F and v(A) = v(^B) = ^ v(B) ∈
F . Conversely, suppose v(A) ∈ F , that is, F ∈ h(v(A)) = h(^ v(B)) =
^
ch(v(B)). Then, there exists G ∈ X(H) such that G ∈ h(v(B)) and

F RcG, that is, v(B) ∈ G, or equivalently G |=c B. Hence, F |=c ^B.
(⊡) Suppose that A = ⊡B and B satisfies (4.6). Assume that v(⊡B) =

⊡ v(B) ∈ F . If G (Rc ◦ ⊇)F , then by Lemma 4.5(b), ⊡−1 F ⊆ G. Then,

⊡ v(B) ∈ F gives v(B) ∈ G, G |=c B, and F |=c ⊡B. On the other
hand, if F |=c ⊡B, then G (Rc ◦ ⊇)F implies G |=c B, that is, v(B) ∈ G
and G ∈ h(v(B)). Hence, F ∈ ⊡

ch(v(B)) = h(⊡ v(B)) = h(v(⊡B)) and
v(⊡B) ∈ F . �

We are now able to prove relational completeness.
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Theorem 4.10. Every formula A ∈ Φ is Int2GC+FS-provable if and only

if A is relationally valid.

Proof. We have already noted that every Int2GC+FS-provable formula is
relationally valid. On the other hand, if A is not Int2GC+FS-provable, there
exists an H2GC+FS-algebra on some set H and a valuation v such that
v(A) 6= 1. Let (X(H),⊆, R, |=c) be the corresponding canonical frame.
Now, h(v(A)) 6= X(H), which implies that there is a prime filter F such
that v(A) /∈ F . Using the Key Lemma, this implies F 6|=c A, and thus A is
not relationally valid. �

Kripke completeness of Kt is provided by Kripke frames (X,R), where
R is an arbitrary binary relation on X. Thus, relational completeness for
Cl2GC+FS is standard. Note also that the frames (X,R) can be considered
as relational IK-frames (X,R,=) and then the satisfiability relation is the
same in both settings. The result analogous to Theorem 4.7 but for classi-
cal logic follows from the fundamental representation theorem for Boolean
algebras with operators by Jónsson and Tarski [30], which says that every
Boolean algebra with additive and normal operators can be embedded into
the complex of its canonical frame. Therefore, if we have a Boolean algebra
with two Galois connections (^,⊡) and (�,�), then the operators ^ and
� are additive and normal. Since � and ⊡ are connected to ^ and � by
Fischer Servi axioms, this means that they are completely determined by
De Morgan dualities.

As far as relational semantics is concerned, moving from intuitionistic
logic (and classical logic) to intermediate logics, as a “base logic”, is no
longer as straightforward as in the case of algebraic semantics. Some inter-
mediate logics are Kripke-incomplete, that is, they do not have adequate
relational semantics. Since canonicity proofs for intermediate logics have
different patterns (there are various kinds of canonicity like hypercanon-
icity, ω-canonicity, extensive canonicity; see [26], for instance), a uniform
approach to completeness for intermediate logics seems unlikely. Therefore,
the relational completeness and the representation theorems in case of par-
ticular intermediate logic are left for separate studies.

5. Some concluding remarks

We have introduced method (A), which for each intermediate logic L

uniformly defines the corresponding tense logic LKt. Method (B) introduced
by Davoren [13] cannot be applied to every intermediate logic L, because this
method first builds the fusion LK⊗LK of two copies of intuitionistic modal
logic LK and then adds Brouwerian axioms interlinking the modalities – but
in many cases, it is unclear, what the modal logic LK actually is.

Approach (A) allows a uniform treatment of algebraic semantics and we
have shown algebraic completeness of L2GC+FS for any intermediate logic L.
It is well known that there are many intermediate logics that are proved to
be Kripke-incomplete and also there are several intermediate logics for which
even their frames are not known. Here, we have presented a completeness
theorem for Int2GC+FS = IKt in a way that uses IK-frames introduced by
Fischer Servi [23]. This hints that in an analogous way, Kripke completeness
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of L2GC+FS = LKt can be proved for several intermediate modal logics L that
are known to be at least Kripke-complete. For instance, Gödel–Dummett
logic is characterized by the frames (X,≤) such that (x ≤ y and x ≤ z) ⇒
(y ≤ z or z ≤ y). For other examples, see [11]. Notice also that different
intermediate logics may need different tools to carry out a completeness
proof, and these “apparatuses” are considered in [26].

We have also presented a representation theorem stating that every
H2GC+FS-algebra can be embedded into the complex algebra of its canon-
ical IK-frame. A similar proof for some intermediate logic algebras probably
can be obtained, but this requires careful study of complex algebras and
canonical frames. These will be studied in the future.
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