
The Comandos Distributed Application Platform

Vinny Cahill, Roland Balter, David Harper, Neville Harris,

Xavier Rousset de Pina and Pedro Sousa

Vinny Cahill and Neville Harris

Department of Computer Science,

Trinity College Dublin,

Ireland

Phone: +353 1 7021795

Fax: +353 1 6772204

Email: Vinny.Cahill@dsg.cs.tcd.ie

David Harper

The Robert Gordon University,

St. Andrew Street, Aberdeen AB1 1HG

United Kingdom

Phone: +44 224 262701

Fax: +44 224 262727

Email: David.Harper@robert-gordon.ac.uk

Roland Balter and Xavier Rousset de Pina

Unite mixte BULL-IMAG,

Gieres,

France

Phone : +33 76 54 49 12

Fax : +33 76 54 76 15

Email: Roland.Balter@imag.fr

Pedro Sousa

INESC,

R. Alves Redol 9, 1000 Lisboa,

Portugal

Phone : +351 1 3100287

Fax : +351 1 525843

Email: pms@inesc.inesc.pt

Abstract

This paper presents an overview of the Comandos distributed application platform. It

begins by presenting the scope and objectives of the platform before introducing its main

concepts, design choices and overall architecture. An overview of the various prototype

implementations of the platform undertaken within the Comandos project is also pre-

sented. In addition, the paper provides an introduction to the other papers on Comandos

in this issue and sets the context for the research reported therein.

Published in The Computer Journal, vol 37, no 6, August 1994. Also technical report

TCD-CS-94-40, Dept. of Computer Science, Trinity College Dublin.



The development and integration of application soft-

ware is currently a labour and cost-intensive propo-

sition, particularly for cooperative applications in

which large volumes of distributed structured data

are shared by cooperative users. Methodologies and

tools are needed to master the complexity inherent

in the use of heterogeneous distributed environments

and in new application requirements.

The overall objective of the Comandos project1

[Cahill et al 1993] which ran from 1986 to 1993 was

to specify and construct an integrated platform

for programming and managing multi-vendor dis-

tributed systems. The platformwas to be targeted at

application programmers and system administrators

with the aim of reducing the overall cost of the de-

velopment, maintenance, and evolution of large dis-

tributed applications, as well as the reuse of old-style

(Unix2) applications. The platform was expected

to be a basis for integrated information systems in

application domains such as o�ce and business sys-

tems, computer aided design and software engineer-

ing.

Comandos was to support the development of inte-

grated (also described as tightly-coupled) distributed

applications within a cell which constitutes the basic

organisational and administrative component within

an enterprise computing system. A cell is typi-

cally composed of a set of cooperating workstations,

servers and processor pools connected through a

high-speed local area network. The goal of Coman-

dos was to present the distributed system to its users

as a coherent entity despite the variety of its compo-

nents.

This paper gives an overview of the main concepts,

design choices and overall architecture of the result-

ing distributed application platform as well as intro-

ducing its various prototype implementations. The

paper also serves as an introduction to the other pa-

pers on aspects of Comandos to be found in this is-

sue.

1This work was partially supported by the Commission

of the European Community under Esprit contracts 834 and

2071.
2
Unix is a trademark of Unix Systems Laboratories, Inc.

The paper is structured as follows. Section 1 in-

troduces the Comandos model which describes the

functionality provided to application developers and

system administrators. Section 2 describes the ar-

chitecture of the platform and introduces its various

implementations. Section 3 introduces the other pa-

pers in this issue, while section 4 contains a summary

and some conclusions.

1 The Comandos Model

The Comandos project adopted an innovative ap-

proach based on the integration of operating sys-

tem, programming language and database technolo-

gies. A uni�ed view of the platform is provided by

a model and system architecture based on object-

oriented technology coupled with distributed persis-

tent storage in which objects are the units of pro-

gramming and data modelling, as well as the units

of distribution and storage.

This conceptual model of a distributed environment,

encompassing both computation and data manage-

ment, presents the functionality of the Comandos

platform to application programmers and system ad-

ministrators. The model is abstract in the sense that

it does not require the use of any particular program-

ming language. Technically it consists of two major

components:

� A computational model which allows distributed

programs to be de�ned. This model provides the

application designer with a multi-node multi-

processor virtual machine, in which parallelism

is apparent and distribution is hidden.

� Common and extensible type and data mod-

els. The type model captures the type sys-

tems of various object-oriented programming

languages and provides a basis for supporting

cross-language invocation. The data model pro-

vides abstractions for modelling collections of

objects, relationships between such collections

and classi�cation structures.

1



1.1 Functionality of the Platform

The fundamental goal of Comandos was to make

available a platform providing the functionality nec-

essary for the construction and management of so-

phisticated distributed applications. Thus, the Co-

mandos platform includes infrastructure supporting:

� transparent access to distributed resources and

services;

� transparent access to persistent data;

� concurrent distributed computations;

� fault tolerance;

� controlled sharing of resources;

� data management;

� security and protection of data;

� on-line system management, monitoring and

control.

In the following sections, the approach taken to sup-

porting each of these features is presented.

1.1.1 Transparency

One of the main requirements on the Comandos plat-

form was transparency, i.e. the provision of a coher-

ent and uniform view of all the resources (including

data) and services provided by the distributed sys-

tem. In Comandos, all resources and services are

modelled as objects. Transparency implies that the

platform provided to the user hides the distribution

of objects and processing, as well as the possible het-

erogeneity of the underlying hardware. In addition,

the platform should provide user mobility, i.e. the

ability for a user to access objects independently of

being logged on to a speci�c workstation.

Transparency has many aspects: access trans-

parency, in which both local and remote objects are

accessed in the same way; location transparency, in

which the location of an object is not apparent from

its name; execution transparency, in which the exe-

cution site of a program may be easily changed, pos-

sibly in a dynamic way; environment transparency,

in which the same program has the same e�ect in-

dependently of the site on which it is executed; fail-

ure transparency, in which a partial failure may be

bypassed, so allowing programs to be fault-tolerant;

and �nally, performance transparency, in which the

costs of remote access are not generally degraded

over those of local access.

Comandos supports access, location, execution and

environment transparency. Although full failure

transparency was not supported, a transaction mech-

anism (see section 1.1.4) is provided which allows an

application to ensure that the data which it is ac-

cessing remains consistent even if the execution of

the application is interrupted by a failure. Coman-

dos also supports full user mobility.

In some cases, transparency is not desirable, and

some applications may elect to be aware of the dis-

tribution of the objects which they manipulate. For

such cases, the platform primitives which allow the

management of object location are made visible to

the application programmer.

The central execution mechanism of the Comandos

platform is object invocation, i.e. the execution of a

speci�ed method of an object by a process executing

at some node. If the object happens to be present

in virtual memory at the node, e.g. as a consequence

of a previous invocation, the invocation is performed

locally. If the object is not present in local virtual

memory, it may be present in virtual memoryat some

other node, again as a result of a previous invocation.

In this case a remote invocation would be carried

out. Finally, it may happen that no node currently

has an image of the object in virtual memory. In that

case, the object must be located in secondary storage

and would be mapped (loaded) into virtual memory

at some node where the invocation would then be

carried out. The choice of the node is determined by

the execution policy in force and could depend, for

example, on the load on the distributed system.

2



Note that each object resides entirely on a single

node (either mapped in virtual memory or stored

in secondary storage). Comandos does not support

fragmentation of individual objects. This design

choice resulted directly from the granularity of ob-

jects expected (usually small) and from the general

approach in which large compound structures can

be built out of object components. In Comandos,

a complex compound object and its various object

components may reside on di�erent nodes.

1.1.2 Persistence

In conventional programming languages, the life-

times of most entities are bounded by the duration

of a program run. External �les are usually the sole

exception, with the consequence that if a particular

entity is to survive a program run, it must be in-

serted into a �le (possibly requiring a change in its

representation) and explicitly retrieved (and possi-

bly rebuilt) at a later time. The disadvantages of

this approach are well known [Atkinson et al 1983].

In systems providing persistence, programmers can

manipulate persistent entities without explicit I/O.

In Comandos, persistence is de�ned via the reach-

ability property of objects { that is, every object

reachable by recursively enumerating the constituent

objects from some speci�ed set of root objects is

guaranteed by the platform to persist. Thus, there

can be no dangling references to objects.

When not in use, persistent objects are stored on sec-

ondary storage. When an attempt to access such an

object is made, the object is automatically fetched

from storage by the platform and made available in

virtual memory at an appropriate node. Hence it is

unnecessary for the programmer to write code either

to explicitly fetch the object from storage or to con-

vert between the possibly di�erent secondary stor-

age and virtual memory representations of the object

since this is handled automatically by the platform.

Likewise, when the object is no longer required by

any running application, the platform automatically

returns the object to secondary storage { there is

no need for the programmer to explicitly store the

object.

When an object is retrieved from storage other re-

lated objects may be retrieved at the same time and

in the same I/O operation so that they are avail-

able for use should they be required. Such a group

of related objects is known as a cluster. Such pre-

fetching of objects improves performance by reducing

the number of mapping and I/O operations required

when related objects are used together.

The paper by Sousa and others in this issue discusses

the approach to persistence in the IK implementation

of the Comandos platform (see section 2.1.1).

1.1.3 Concurrency

An important design decision was how to relate ob-

jects to processes. Two possible solutions were avail-

able:

1. Associate processes with objects, i.e. de�ne ac-

tive objects, in which every object contains a

�xed or variable number of processes. This

solution was used in previous systems such

as Argus [Liskov & Schei
er 1983] and Eden

[Almes et al 1985].

2. Separate objects from processes, i.e. de�ne pas-

sive objects which can be operated on by inde-

pendently de�ned processes. This is the solu-

tion adopted in Clouds [Dasgupta et al 1988],

Amoeba [Mullender 1985] and SOS

[Shapiro et al 1989].

The active object solution is conceptually simpler

since a single abstraction encompasses the concepts

of resource and process. On the other hand passive

objects contain less context information than active

objects. Therefore object creation, invocation and

migration can be implemented more e�ciently than

for active objects. Moreover, since the classes of ap-

plication that Comandos was intended to support

3



typically involve creating many (usually small) ob-

jects, and building large compound structures out of

object components, the passive object solution was

chosen as being the more appropriate.

In Comandos, a job represents the processing (possi-

bly in parallel) of objects and consists of one or more

sequential threads of control, called activities. A job

is created by an activity of another job to invoke a

speci�ed method on some object. A new job initially

consists of a single activity.

The execution of an activity consists of nested in-

vocations of methods on objects. Each invocation

may take place on any node in the system. At each

invocation the referenced object is located and, if

necessary, loaded into virtual memory at some node.

A remote invocation takes place if the node selected

for execution is di�erent from the node on which the

invocation was requested.

An activity may, at any time, create one or more

parallel activities within the same job. Therefore the

platform provides two levels of concurrency: between

activities belonging to the same job (i.e. related com-

putations within the same application); and between

activities running in di�erent jobs (i.e. independent

applications). Asynchronous invocation can be im-

plemented by creating a new activity (or job) to in-

voke a designated object.

1.1.4 Atomicity

Atomic transactions [Bernstein et al 1987] provide a

means of ensuring the consistency of data in the pres-

ence of concurrency and partial failure. In particu-

lar, transactions classically guarantee certain proper-

ties { atomicity, consistency, isolation and durability

{ for operations carried out within the transaction

[Gray & Reuter 92].

In fault tolerant distributed systems it is common

sense that the atomicity property of computations

should be provided. For some applications consis-

tency of data is also required. However, provid-

ing the atomicity property of computations and en-

suring the consistency of the a�ected data are, at

least in principle, orthogonal to each other. Conse-

quently, a general backward error recovery mecha-

nism which makes no assumptions about the syn-

chronisation mechanism used should be provided.

This enables the use of di�erent and even no syn-

chronisation mechanisms in the future without hav-

ing to change the underlying recovery mechanism.

As a �rst step in this direction Comandos provides

a generalised transaction mechanism. This mecha-

nism is based on a recovery layer which is able to

manage dependencies between transactions. Thus,

in contrast to traditional transactional systems, en-

suring consistency of transactions becomes possible

without having to enforce the usual restrictive failure

isolation property.

The Comandos transaction model is derived from

that provided in RelaX [Schumann et al 1989]. Re-

laX provides generalised distributed transactions, ex-

tending the classical transaction model by support-

ing optional use of uncommitted data, extended nest-

ing (allowing the di�erentiation between recovery

and synchronisation levels), and the separation of

transaction commitment from completion. A trans-

action consists of a set of operations on objects

which has the properties of atomicity, consistency

and durability.

Since transaction mechanisms involve a certain over-

head which should not be incurred by all objects,

these mechanisms apply only to a subset of objects

known as atomic objects. An object may be created

as an atomic object or a non-atomic object can be

promoted to be an atomic object (the reverse not

being permitted). Hence the transaction properties

are only guaranteed for operations on atomic objects

carried out within a transaction. A transaction is

contained entirely within a single job.

In addition to accessing atomic objects, trans-

actions may also access other (transactional) re-

source types such as external (to Comandos) �les

or database records. This is achieved by structur-

ing the implementation according to the X/Open

model [X/Open Company 91]: the Comandos plat-

form acts as a collection of X/Open Application Pro-

4



grams and Resource Managers that interact with the

RelaX Transaction Manager [Kr�oger, Mock et al 90]

which is responsible for distributed transaction man-

agement via an interface which extends the X/Open

XA-interface. Pure XA-compliant Resource Man-

agers can still be used.

The paper by Taylor and others in this issue dis-

cusses a number of issues related to the design of the

transaction support in the Amadeus/RelaX imple-

mentation of the platform in detail.

1.1.5 Sharing

There is no explicit communication through message

passing between activities. Instead communication

and synchronisation between activities (within the

same job, or belonging to di�erent jobs) is achieved

by invoking on shared objects.

Object sharing may be controlled in a number of

ways depending on the consistency requirements for

concurrent usage. Atomic objects are guaranteed to

remain consistent despite concurrent access and par-

tial failure of the underlying system.

Comandos makes no guarantees about the consis-

tency of objects which are not atomic. Other objects

(i.e. their class code) can maintain their own consis-

tency in the presence of concurrent accesses by mak-

ing use of primitive concurrency control mechanisms

{ such as semaphores { provided by the platform.

1.1.6 Data Management

Comandos provides services for the management of

large collections of objects (including associative ac-

cess to objects belonging to collections), based on a

data model which provides a set of constructs that

enables application programmers to model real world

entities and the relationships between them with

relative ease. The Comandos data model, the Bi-

nary Relational Object-Oriented Model (BROOM)

[Harper et al 1991], provides four kinds of collections

which might be considered to be special forms of sets,

sequences, bags and binary relations. These collec-

tions are provided through a number of generic bulk

type constructors.

The inclusion of binary relations as collections is

novel and therefore requires some comment. In re-

cent years, the various forms of entity-relationship

data models have been popular for data modelling.

The basis of this approach is to model the real world

in terms of entity sets and relationships between en-

tity sets. Support for the direct representation of re-

lationships is extremely bene�cial in data modelling.

A de�ciency of the object-oriented approach is its

inability to do just that. Therefore, the usual no-

tions of the object-oriented data model have been

extended to include direct representation of relation-

ships between entity sets: this is achieved by intro-

ducing the binary relation as a kind of collection in

the Comandos data model.

A further limitation of many existing object-oriented

data models is that they allow only one collection of

objects of a particular type. Thus, associated with a

type there may be a collection which comprises the

set of all current instances of that type. In BROOM,

the notions of typing and classi�cation have been

separated. This permits several collections of objects

to be associated with a given type. Collections are

related by means of a classi�cation structure. This

approach provides a much more 
exible modelling

capability.

The classi�cation structure is represented by means

of structural constraints among collections. For ex-

ample, an IS-A relationship between two set collec-

tions C and D says that every object that belongs to

collection C must also belong to D and this may be

represented by a subset constraint between C and D.

Other forms of structural constraints supported cor-

respond to partitions of collections, the intersection

of collections, and cardinality and dependence con-

straints on relations.

5



1.1.7 Security

The Comandos platform provides distributed ap-

plications with facilities to keep objects secure

[Medina & Moreno 1991]. The ultimate goal of se-

curity in an object-oriented environment is to en-

force the constraint that an object can only ever

be manipulated by authorised, authenticated and se-

cure invocations of type-speci�c operations on that

object3. The mechanisms provided towards achiev-

ing this goal in Comandos are:

� Secure transmission of the arguments and re-

sults of each (remote) object invocation, by the

use of encryption techniques to prevent play-

back, copying or modi�cation of messages.

� Authorisation checks on object invocations

which are achieved through the use of access

control lists associated with each protected ob-

ject. The access-rights can specify the set of

operations that a user (or a group of users) can

perform on the object.

� Isolation of objects at run time so as to protect

against damage to an object by code of another

object executing in the same address space.

In addition an audit service is provided which allows

the system administrator to detect intrusion into or

misuse of the system [Weiss & Baur 1990].

These facilities are implemented by low-level mech-

anisms integrated within the platform. High-level

management tools for the overall administration of

the security policies and procedures (e.g. user and

group management, etc.) are also provided.

Note that while no authentication service was pro-

vided, it was expected that an authentication ser-

vice such as Kerberos [Steiner et al 1988] could be

integrated with the platform.

3where direct access to the data of an object, if supported,

is considered as a special form of operation invocation.

1.1.8 Management View of the Platform

Most approaches to organisational [Grochla 1982]

and systems design [Lockemann & Mayr 1986] are

oriented towards a life-cycle model and a project or-

ganisation with phases for action. These approaches

put most emphasis on the early stages of the life-

cycle. However, they tend to neglect the use and

operation of an information system, or an organisa-

tion, after implementation. This is certainly not the

appropriate way of viewing an information system

when one is concerned with its continuing perfor-

mance over a long period of operation. Generally, a

system is built within several weeks or months and

used for many years.

The assumptions made about an information system

and its environment during its implementation can-

not be considered valid throughout its operation. For

instance, the throughput can vary with the season

or with market trends; new products may emerge,

and the size of the system may change. New tech-

nology is emerging at a rapid rate, causing changes

to the way systems are being built. Communication

and networking are becoming more important, caus-

ing systems to grow dynamically and to become far

more complex.

Hence, for the design and operation of a distributed

system a new management method should be fol-

lowed. This calls for design and management ap-

proaches that explicitly surrender the assumptions

underlying a phase-oriented approach [Floyd 1981].

Comandos thus adopts an evolutionary approach to

system management.
Figure 1

The adaptive framework for the management of

Comandos systems, described in �gure 1, can be

mapped onto three generic types of activities. Ob-

servation activities are concerned with collecting in-

formation while the system is running. Decision ac-

tivities support the actual design, con�guration and

security management decisions. They are carried out

by a human designer or manager using an interac-

tive administration or management tool speci�c to

6



the task. Control activities realise a design or con-

�guration decision, i.e. implement a change. These

activities are supported in Comandos by a set of co-

operating management tools (see section 2.2).

1.2 Programming with the Comandos

Model

To both facilitate the use of the Comandos model

and to encourage its adoption, the model is provided

to application developers through one or more pro-

gramming languages. The uniformity of the Coman-

dos model results in programming languages in which

a uniform treatment of both transient and persistent

data, and of both local and remote services are all

potentially available.

This strategy di�ers from more classical approaches

in which tight coupling of a programming language

with support for persistence and distribution is not

supported. Typically, in the classical approach, a

set of languages is used for building programs where

one language is used to describe the computation to

be carried out, a di�erent language is used to de-

�ne storage types, and a further language is used for

interface de�nition and communication.

While the Comandos model describes the support

provided by the platform in an abstract way, it is

important to realise that the interface to the plat-

form used by an application developer is typically

provided through one of a number of supported pro-

gramming languages. The Comandos platform was

designed to be independent of the use of any speci�c

programming language for the development of dis-

tributed applications and to allow a range of di�erent

languages to be supported simultaneously. Indeed, a

single application may be composed from parts writ-

ten in di�erent programming languages. Of course

the features of the model are particularly exploitable

by object-oriented languages. In any case, the model

seen by a programmer may di�er from the model

implemented by the platform. For example, a par-

ticular language may restrict the visibility of certain

features of the platformor, alternatively, enhance the

functionality of the basic platform by adding extra

support in its run-time system.

Two approaches to the provision of language support

were followed: supporting existing languages, and

providing a new language environment.

The two existing object-oriented languages

supported within the project were C++

[Ellis & Stroustrup 1990] and Ei�el [Meyer 1988].

The overall strategy was to enhance each host lan-

guage with features of the Comandos computational

model (mainly concurrency, persistence, distribu-

tion and atomicity). Language extensions are sup-

ported using appropriate pre-processing which gener-

ates necessary supplementary information. In some

cases, restrictions are imposed on the use of stan-

dard features of the languages due to the distributed

nature of the environment. However, in order to be

consistent with the de�nition of each language, as

well as to be able to support existing code, the num-

ber of such restrictions has been minimised. The

paper by Tangney and others in this issue reports

on experience with programming parallel distributed

applications in the version of C++ supported by the

Amadeus/RelaX implementation of the Comandos

platform (see section 2.1.1).

The experience drawn from the early phase of Co-

mandos made it clear that it was useful to provide

a new language in which all the concepts of the Co-

mandos model are directly re
ected. The Comandos

object-oriented programming language is known as

Guide and is described in the paper by Balter and

others in this issue. The viability and usefulness of

this new language have already been demonstrated

by programming basic system services and a number

of distributed applications.

2 Structure of the Comandos Plat-

form

The overall structure of the Comandos platform is

presented in �gure 2. Essentially, the platform con-

sists of two main components:

� The Comandos system, which is itself structured

in two layers: the virtual machine, which is in-

7



dependent of any supported programming lan-

guage, and a set of one or more language-speci�c

run-time systems.

� A set of application services and management

tools, which extend the functionality of the ba-

sic Comandos system but are built as normal

applications.

Figure 2

A language-speci�c run-time system implements a

speci�c extension of the basic Comandos virtual

machine for a particular programming language.

A given Comandos system provides at least one

language-speci�c run-time in order to support ob-

jects programmed in the corresponding language;

several language-speci�c run-times can coexist in the

same system, thus allowing several languages to be

used simultaneously.

2.1 The Comandos Virtual Machine

The Comandos virtual machine (see �gure 2) pro-

vides the basic mechanisms which are necessary

for an object-oriented distributed system support-

ing multiple language environments. This includes

transparent access to distributed and persistent ob-

jects; the control of distributed computations; trans-

action management; sharing; and low-level security

mechanisms.

The virtual machine provides a uni�ed framework for

the management of objects, which supports the view-

points of both databases and general purpose pro-

gramming languages. Programming languages fre-

quently deal with transient entities { objects whose

lifetime is limited to the execution of a program {

while database languages deal with persistent ones,

i.e. objects whose lifetime is independent from that of

the programs which use them. The virtual machine

supports both viewpoints in a uniform way.

At the upper level of the virtual machine is the

generic run-time (GRT) (see �gure 2) which pro-

vides a language independent layer implementingdis-

tributed object invocation. The GRT is itself pro-

vided above the kernel layer which includes those

components of the virtual machine which must be

implemented in a protected way, and which inter-

faces directly with the underlying host environment.

The virtual machine consists of a number of func-

tional components, which should be present in every

Comandos implementation. These components are

as follows.

� Virtual Object Memory. This is responsible for

implementing transparent access to distributed

persistent objects and for all aspects of object

management including object creation, low-level

object naming, object location, remote invoca-

tion and the mapping and unmapping of objects

to and from secondary storage.

� Execution Sub-system. This implements dis-

tributed concurrent processing and is responsi-

ble for job and activity creation and manage-

ment, load balancing and low-level synchronisa-

tion mechanisms.

� Storage Sub-system. This provides distributed

persistent storage.

� Transaction Sub-system. This implements the

mechanisms necessary to support atomic objects

and the transaction model.

� Protection Sub-system. This provides low-level

security services including authorisation, secure

transmission and generation of audit data.

� Communication Sub-system. This provides net-

work communication services.

The Comandos Virtual Machine Interface (VMI)

(i.e. the interface between the GRT and the various

language-speci�c run-times (see �gure 2)) is intended

to be used by compiler builders and basic service im-

plementors. It provides a set of primitives which al-

low the interaction between application objects and

the virtual machine.

The VMI is the uniform view presented by the Co-

mandos virtual machine to each of the various sup-

ported languages. As di�erent languages have di�er-

ent calling semantics, a language-speci�c run-time

8



must adapt the GRT primitives to the language-

speci�c format. Moreover, as most of these prim-

itives are based on manipulation of objects whose

format and model di�er in each of the di�erent lan-

guages, each language-speci�c run-time must also

hide these language dependencies from the GRT.

To provide this 
exibility and to make a minimum

number of impositions on any language, Comandos

adopted a general model in which the language may

make calls to the GRT which depend on language-

speci�c information. To handle such a call the GRT

makes heavy use of up-calls, where an up-call is a

call from a lower level to a higher one, to obtain

the necessary information from the language-speci�c

run-time.

This two-way interface between a language-speci�c

run-time and the GRT allows objects from hetero-

geneous languages to be handled uniformly by the

GRT.

2.1.1 Implementations of the Virtual Ma-

chine

The de�nition of the virtual machine is independent

of any underlying system, and can be mapped onto

various host environments. Two approaches have

been used to implement prototypes of the Coman-

dos virtual machine.

� The �rst approach consisted of implementing

the system as a guest layer on top of Unix. One

such implementation,Amadeus/RelaX, was des-

ignated as the reference platform for the project.

Therefore it was the basis for the integration

of the numerous system components, applica-

tion services and management tools developed

throughout the project. This implementation is

detailed in [Cahill et al 1993]. The other major

Unix-based implementation of the virtual ma-

chine, IK, is described in [Sousa et al 1993].

� The other approach followed was to imple-

ment the virtual machine directly on top of

a micro-kernel. The motivation for this ap-

proach stemmed from the belief that the micro-

kernel technology would be better able to sup-

port the Comandos abstractions, especially as

far as distributed shared objects and protec-

tion were concerned. Two prototypes have

been implemented using micro-kernel technol-

ogy: one, Chorus/COOL v2., is hosted on top of

the Chorus micro-kernel while another, Guide-

2, runs on top of OSF/1-MK. These implemen-

tations are described and the resulting conclu-

sions about the use of micro-kernel technology to

support the Comandos platform are reported in

[Lea et al 1993] and [Balter et al 1993] respec-

tively.

Each of these prototypes implements a di�erent (if

not distinct) subset of the VMI. The existence of sev-

eral prototype implementations results from a delib-

erate strategy of investigating di�erent approaches

and techniques in the implementation of the core

functionality of the virtual machine. In addition

each of the implementations focused on di�erent ar-

eas. For example, the focus of the Amadeus/RelaX

platform was on multiple language support; on sup-

port for atomic objects and transactions; and on low

level mechanisms to support associative access to ob-

jects. In contrast the focus of the IK implementa-

tion was on the support of orthogonal persistence in

a distributed Unix environment; on the exploration

of on-line replacement of classes as a mechanism to

support dynamic con�guration and debugging of ap-

plications; and on the combination of clustering and

naming mechanisms in order to achieve better organ-

isation and structuring of information in the persis-

tent store. It should also be noted that full inter-

working of the various prototypes was not possible

within the timescale and of the project.

2.2 Application Services and Manage-

ment Tools

The services and tools provided by the platform

fall broadly into two categories: application services

which are used in the development of distributed ap-

plications or which are required at run-time by a

9



range of distributed applications, and management

tools which are provided to assist in the manage-

ment and administration of the system. Application

services provided within the project include the fol-

lowing.

� Development tools to aid application designers

in the design, construction and debugging of

distributed applications. These development fa-

cilities include compilation tools, a distributed

debugger and tools for the development of user

interfaces.

� A Type Manager (TpM) which can be used by

the languages available on a Comandos platform

as a repository for type information. During the

process of application development or con�gura-

tion, types can be created and registered in the

TpM. Type informationmay be read for the pur-

pose of semantic checking either at build time or

at run time. The TpM's clients are thus compil-

ers, pre-processors, language run-time systems

and query processors.

� An Object Data Management Service (ODMS)

for the management of and associative access

to collections of objects [Glasgow 1992]. The

ODMS is the component of the platform that

performs database-like functions. The ODMS

basically implements the BROOM data model

facilities (see section 1.1.6). To achieve this goal

the ODMS provides various forms of represen-

tation of collections, built-in operations on the

pre-de�ned bulk data types of BROOM, and im-

plements mechanisms for the e�cient retrieval

of objects from collections (e.g. indexing, part-

of and inheritance hierarchy scanning, etc.) and

optimisation of queries on collections.

The management tools provided include:

� A Distributed Directory Service (DDS) for sym-

bolic object naming. The DDS is an implemen-

tation of the ISO/CCITT X.500-IS9594 stan-

dards integrated into the Comandos platform.

� A distributed System Observation Facility

(SOF) which supports the observation activities

of the adaptive framework for system manage-

ment described in section 1.1.8. Information col-

lected by the SOF is passed to high-level man-

agement tools for processing (see below).

� A distributed System Control Facility (SCF)

which supports the control activities of the

adaptive framework for system management.

Administration and recon�guration decisions

stemming from high-level management tools can

be implemented using the SCF.

� A system con�guration and administration tool

which is bound to the SOF and SCF. System ad-

ministrators are provided with graphical output

showing statistics concerning system behaviour

and can initiate con�guration changes.

� Security tools for risk management and analysis

of audit data generated by the virtual machine.

Risks with respect to the integrity, availability,

and con�dentiality of information can be esti-

mated on the basis of data provided by system

observation and auditing as well as by simula-

tion of system failures.

� A tool for the design of a distributed o�ce sys-

tem. Organisational designers are supported in

the logical design of business processes and of

the distributed information system used to exe-

cute these processes.

Several of these tools are discussed further in the

paper by Kerber and others in this issue.

In addition, existing tools can also be used, where

appropriate, in a given Comandos environment. If

the tool exists in a Unix environment, then recoding

of the tool is not required because of the coexistence

of the Comandos and Unix environments.

3 Introduction to the Papers

As will be appreciated, Comandos was a large and

ambitious project covering a number of di�erent re-

10



search topics in areas including (distributed) oper-

ating systems, programming language design, fault

tolerance and data management. The breadth of the

project is re
ected in the collection of papers ap-

pearing in this issue which cover a cross section of

the work carried out in the project.

The paper by Tangney and others takes an appli-

cation programmers view of one implementation of

the platform and reports on experience { both pos-

itive and negative { with programming parallel dis-

tributed applications in the version of C++ supported

by Amadeus/RelaX (see section 2.1.1). The paper

presents a list of requirements on a platform support-

ing such applications based on the experience gained

{ not all of which are supported by the existing im-

plementation.

The Guide object-oriented programming language is

described in the paper by Balter and others in which

the authors outline the main features of the language

including separation between types and classes, the

approach to sub-typing, the synchronisation mecha-

nism for shared objects and the exception handling

mechanism. In addition, the authors report on their

experiences in using the Guide language for the con-

struction of distributed applications.

The Comandos approach to distributed systems

management as well as some of the available tools

are discussed in the paper by Kerber and others. In

particular the authors discuss the adaptive manage-

ment approach and its integration into the Coman-

dos model. The system observation and control fa-

cilities integrated with the platform are described as

well as the tools for distributed information system

design, risk management, and user and host admin-

istration.

The paper by Sousa and others discusses the imple-

mentation of persistence in IK (see section 2.1.1) and

discusses the interaction between clustering, object

naming and persistence. In addition the authors re-

port on their experience with persistence in a number

of applications.

The paper by Taylor and others discusses the design

of the two major interfaces concerned with transac-

tion management in Amadeus/RelaX: the (subset of)

the VMI concerned with support for atomic objects

and transactions, and the Transaction Manager in-

terface. The authors discuss the separation between

generic and language-speci�c aspects of atomic ob-

ject management and describe a Transaction Man-

ager interface suitable for the requirements of object-

oriented systems. In addition, the authors show how

an existing XA-compliant resource manager { the

Informix relational database system - has been in-

tegrated with Amadeus/RelaX.

4 Summary and Conclusions

The Comandos project has integrated operating sys-

tem, programming language and database technolo-

gies in order to design an integrated platform for the

construction of object-oriented distributed applica-

tions. Along the way Comandos has contributed to

the state of the art in (distributed) operating sys-

tems, programming languages, data management,

and security and administration tools. This claim

is supported by the large number of theses and pub-

lished papers originating from the project.

More importantly, the project has provided proto-

type implementations of all of the components of the

platform { many of which are now available in the

public domain { providing the opportunity for real

experience to be gained with the technologies de-

veloped within the project. Moreover, by adopting

a strategy whereby di�erent approaches were taken

to the implementation of the key components, the

project has provided an opportunity for these dif-

ferent approaches to be compared and the trade-

o�s between them to be understood in practice.

The detailed results of this work are documented in

[Cahill et al 1993], in the other papers on Coman-

dos in this issue and in the many other publications

originating from the project. [Cahill et al 1993] con-

tains a full list of these publications and also of the

available software components (as of the time of its

publication).

11



To conclude, some of the speci�c achievements of the

project are noted:

� the de�nition of a conceptual model of, and an

architecture for, an integrated application sup-

port environment supporting the construction

of distributed, persistent object-oriented appli-

cations;

� a demonstration that the construction of such

an environment is feasible both onUnix systems

and using micro-kernel technology;

� the implementation of a generic run-time sys-

tem which facilitates the use of existing and new

object-oriented languages, for the development

of distributed and persistent applications, with-

out requiring each language to adopt a common

object model or invocation mechanism;

� the implementation of a new language speci�-

cally aimed at the construction of distributed

applications involving shared persistent data;

� the de�nition and implementation of a novel

object-oriented data model including binary re-

lations as collections;

� the de�nition of a canonical type model suitable

for capturing the type models of object-oriented

programming languages and the implementation

of a type manager to support cross-language in-

vocation.

� the implementation and integration of a collec-

tion of sophisticated tools for distributed appli-

cation development and system administration.

Currently no vendor independent infrastructure in-

corporating all of the features of the Comandos plat-

forms exists in the marketplace. The availability of

such an integrated platform, operating in an envi-

ronment of heterogeneous machines, would be a sig-

ni�cant advance over current practice and o�er sig-

ni�cant advantages to application programmers and

system administrators alike.

Acknowledgements

The authors gratefully acknowledge the e�orts of all

those who contributed to the Comandos project dur-

ing its seven years.

References

Almes, G., Black, A., Lazowska, E. and Noe, J.

(1985) The Eden system: A technical review. IEEE

Transactions on Software Engineering, SE-11(1), 43{

58.

Atkinson, M., Bailey, P., Chisholm, K., Cockshott,

W. and Morrison, R. (1983) An approach to persis-

tent programming. Computer Journal, 26(4), 360{

365.

Balter, R., Chevalier, P.Y., Freyssinet, A., Hagi-

mont, D., Lacourte, S. and Rousset de Pina, X.

(1993) Is the microkernel technology well suited for

the support of object-oriented operating systems:

the Guide experience. In Proceedings of the Sym-

posium on Microkernels and Other Kernel Architec-

tures, 1{11, USENIX Association.

Bernstein, P., Hadzilacos, V. and Goodman,

N. (1987) Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, MA.

Cahill, V., Balter, R., Harris, N. and Rousset de

Pina, X. (Eds.) (1993) The Comandos Distributed

Application Platform. Springer-Verlag, Berlin.

Dasgupta, P., LeBlanc, R. and Appelba, W. (1988)

The Clouds distributed operating system. In Pro-

ceedings of the 8th International Conference on Dis-

tributed Computing Systems, 2{9, San-Jose, CA.

Ellis, M.A. and Stroustrup, B. (1990) The Annotated

C++ Reference Manual. Addison-Wesley, Reading,

MA.

Floyd, C. (1981) A process-oriented approach to soft-

ware development. In Proceedings of the 6th ACM

European Regional Conference, London, UK., 285{

294, ACM, New York.

12



Glasgow Comandos ODMS Group. (1992) The Co-

mandos ODMS Portable Toolkit. Technical Report

DB-92-4, Department of Computing Science, Univer-

sity of Glasgow.

Gray, J. and Reuter, A. (1992) Transaction Pro-

cessing Systems: Concepts and Techniques. Morgan

Kaufman Publishers.

Grochla, E. (1982) Grundlagen der Organisatoris-

chen Gestaltung. C.E. Poeschel Verlag.

Harper, D.J., Norrie, M.C. and Walker, A.D.M.

(1991) Bulk Types for Data Modelling in Persistent

Object Systems. Journal of Control Systems and

Machines, 9.

Kr�oger, R., Mock, M., Schumann, R., and Lange, F.

(1990) RelaX - an extensible architecture supporting

reliable distributed applications. In 9th Symposium

on Reliable Distributed Systems, 156{164, Huntsville,

Alabama.

Lea, R., Jacquemot, C. and Pillevesse, E. (1983)

COOL: System support for distributed program-

ming. Communications of the ACM, 36(9), 37{46.

Liskov, B. and Schei
er, R. (1983) Guardians and

actions: Linguistic support for robust, distributed

programs. ACM Transactions on Programming Lan-

guages and Systems, 5(3), 381{404.

Lockemann, P. and Mayr, H. (1986) Information sys-

tem design: Techniques and software support. In

Kugler, H.-J. (Ed.): Proceedings of the IFIP 10th

World Computer Congress, Dublin, Ireland, 617{

634, Elsevier Science Publishers, Amsterdam.

Medina, M. and Moreno, A. (1991) Security Lev-

els Supported by the Comandos Security Architec-

ture. In Proceedings of the 1991 ESPRIT Confer-

ence, Brussels, Belgium, 421{426, Commission of the

European Communities, Luxembourg.

Meyer, B. (1988)Object Oriented Software Construc-

tion. Prentice Hall.

Mullender, S. (1985) Principles of Distributed Op-

erating System Design. PhD thesis, Mathematisch

Centrum, Vrije Univeriseit.

Popek, G. and Walker, B. (Eds.) (1985) The LO-

CUS Distributed System Architecture. MIT Press,

Cambridge, MA.

Schumann, R., Kroeger, R., Mock, M. and Nett,

E. (1989) Recovery management in the RelaX dis-

tributed transaction layer. In Proceedings of the 8th

Symposium on Reliable Distributed Systems, Seattle,

Washington, 21{28, IEEE, Los Alamitos.

Shapiro, M., Gourhant, Y., Habert, S., Mosseri, L.,

Ru�n, M. and Valot, C. (1989) SOS: An object-

oriented operating system { Assessment and perspec-

tives. Computing Systems, 2(4), 287{338.

Sousa, P., Sequeira, M., Z�uquete, A., Ferreira, P.,

Lopez, C., Pereira, J., Guedes, P. and Alves Mar-

ques, J. (1993) Distribution and persistence in the

IK platform: Overview and evaluation. Computing

Systems, 6(4), 391{424.

Steiner, J., Neumann, C., and Schiller, J. (1988) Ker-

beros, an authentication service for open network

systems. In Proceedings of the USENIX Winter Con-

ference, Dallas, TX, 191{202, USENIX, Berkeley.

Weiss, W. and Baur, A. (1990) Analysis of Audit

and Protocol Data using Methods from Arti�cal In-

telligence. In Proceedings of the 13th National Com-

puter Security Conference, Washington DC, 109{

114, National Institute of Standards and Technol-

ogy/National Computer Security Center.

X/Open CompanyLimited (1991)Distributed Trans-

action Processing Reference Model: The XA Speci�-

cation, Berkshire.

13



Identification Manipulation

Control of the System

Decision

Management

Interface

Object

Interface

Productive 

Tools Facility

System ControlSystem Observation Hierarchy of Management

Facility

System
Running Information

Generated
Results

Sensor Effector

Input
Submitted

Figure 1:

14



Virtual Machine Interface

Comandos Platform 

Mach 3.0

Application Services 
and

Security
Data Mngt.

Service Manager

Object

TypeDirectory

Object-Oriented 
Distributed Applications

Comandos
language

C++ Eiffel

Environment Interface

Application Interface

Management Tools 

CHORUS UNIX

generic run-time

kernel

Language-specific run-times 

Comandos System 

Host
Environments 

Administration

Figure 2:

15



List of Figures

Figure 1: Adaptive framework for system design and management

Figure 2: The structure of the Comandos platform


