
Genome analysis

Hi-Corrector: a fast, scalable and

memory-efficient package for normalizing

large-scale Hi-C data

Wenyuan Li, Ke Gong, Qingjiao Li, Frank Alber,* and

Xianghong Jasmine Zhou*

Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern

California, Los Angeles, CA 90089, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on September 2, 2014; revised on October 17, 2014; accepted on November 5, 2014

Abstract

Summary: Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently be-

come important tools to study spatial genome organization. Removing biases from chromatin con-

tact matrices generated by such techniques is a critical preprocessing step of subsequent analyses.

The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C

data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however,

pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an

urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed

Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm.

Its salient features are (i) scalability—the software is capable of normalizing Hi-C data of any size in

reasonable times; (ii) memory efficiency—the sequential version can run on any single computer

with very limited memory, no matter how little; (iii) fast speed—the parallel version can run very

fast on multiple computing nodes with limited local memory.

Availability and implementation: The sequential version is implemented in ANSI C and can be

easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library

(a standardized and portable parallel environment designed for solving large-scale scientific

problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/.

Contact: alber@usc.edu or xjzhou@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent development of genome-wide proximity ligation assays

such as Hi-C (Lieberman-Aiden et al., 2009) and its variant TCC

(Kalhor et al., 2012) has significantly facilitated the study of spatial

genome organization. The raw chromatin interaction data obtained

by Hi-C methods can have both technical and biological biases

(Imakaev et al., 2012). Therefore, correcting biases in the Hi-C data

is an important preprocessing step. Among several recently de-

veloped methods (Hu et al., 2012; Imakaev et al., 2012; Yaffe and

Tanay, 2011), the iterative correction (abbreviated as IC) algorithm

(Imakaev et al., 2012) has been used most widely by recent studies

(Ay et al., 2014; Le et al., 2013; Naumova et al., 2013; Varoquaux

et al., 2014) due to its conceptual simplicity, parameter-free algo-

rithm and ability to account for unknown biases, although its as-

sumption of the equal visibility across all loci may require further

exploration. Mathematically, the IC algorithm is a matrix scaling or

balancing method that transforms a symmetric matrix into one that

is doubly stochastic, meaning that the row and column sums of the

matrix are equal to 1. However, the Hi-C chromatin interaction ma-

trix is of the massive size O(N2), where N is the number of genomic

VC The Author 2014. Published by Oxford University Press. 960
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 31(6), 2015, 960–962

doi: 10.1093/bioinformatics/btu747

Advance Access Publication Date: 12 November 2014

Applications Note

http://zhoulab.usc.edu/Hi-Corrector/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu747/-/DC1
,
one
http://www.oxfordjournals.org/


regions. Thus, it requires expensive computing resources such as

large memory and long computation time. This is especially prob-

lematic for high-resolution data at the kilobase level or beyond (Jin

et al., 2013; Le et al., 2013). For example, at the resolution of 10K

base pairs per region, the human genome has 303 640 regions and

the matrix of the Hi-C data occupies about 343 GB of memory,

which cannot be loaded into any common desktop computer even in

the compressed format. Most scaling algorithms in the matrix com-

putation field (Knight, 2008; Knight and Ruiz, 2012) suffer from

this scalability issue, because their main focus is improving the con-

vergence rate and numerical stability. Therefore, there is high de-

mand for a fast and scalable IC algorithm that can work with

massive Hi-C data matrices on common computing resources.

Here we propose a set of scalable algorithms (adapted from the

original IC algorithm) to meet this need. Both sequential and paral-

lel versions were implemented in the standard and efficient C lan-

guage, which allows for precise memory control. The sequential

implementation is memory efficient and can run on any single com-

puter with limited memory, even for Hi-C datasets of large size. It is

designed to overcome the memory limit by loading a portion of data

into the memory at each time, so requires some extra time for file

reading. The parallel implementation is both memory efficient and

fast. It can run on one of the most popular parallel computing re-

sources: a computer cluster (i.e. a distributed-memory computing

environment). In this environment, a set of general-purpose proces-

sors or computers can be interconnected to share resources, and

each computer retains its local and limited memory. The parallel al-

gorithm is designed with very low communication overhead among

computing nodes, so that it runs faster on clusters with more com-

puters. Although the Hi-C analysis pipeline, ICE (Imakaev et al.,

2012), implements the IC algorithm, it works only on a single com-

puter and cannot utilize as many computing resources as possible to

speed up the computation.

Very few parallel matrix scaling or balancing algorithms have

been developed prior to this work (Amestoy et al., 2008; Zenios and

Iu, 1990). However, none of them are suitable for the bias correc-

tion task of Hi-C data. Zenios and Iu (1990) parallelized the matrix

balancing algorithm in 1990 for a shared-memory computer, which

cannot address the memory shortage problem. Amestoy et al. (2008)

designed a complicated data distribution strategy based on the parti-

tions of non-zero elements. Their method is not applicable to the

raw Hi-C contact map, which contains a high proportion of non-

zero elements. We performed experiments on high-performance

computing resources and clusters with different numbers of nodes

and memory capacities. The results showed that this package could

meet the strong demand for normalizing massive Hi-C data given

limited computing resources.

2 Algorithms and implementation

Given an observed chromosome contact frequency matrix O

¼ ðOijÞN�N over N genomic regions, the IC method eliminates

biases so that all genomic regions have equal visibility (Imakaev

et al., 2012). To make this algorithm memory-efficient, we designed

a strategy of breaking the matrix O into K equal partitions of com-

plete rows and loading only one partition into memory at any given

time. Therefore, the memory requirement can be very low when K is

large. This strategy adapts the IC algorithm by adding two steps: (i)

loading the kth matrix partition Ok into memory and (ii) updating

this partition with the last updated bias vector b. The new Memory

Efficient Sequential algorithm (called IC-MES) works even for the

extreme case of K¼N, where only one row is loaded each time. IC-

MES is memory efficient, but it is still a sequential algorithm that

runs on a single computing machine. Therefore, it may be too slow

when the machine has small memory. To normalize large Hi-C

matrices in a short time, we also designed a fast, scalable and

Memory-Efficient Parallel algorithm (called IC-MEP) that can max-

imally exploit the parallelism of the normalization problem and

make use of many commonly available computing resources. In es-

sence, the normalization problem is a data divisible task: a series of

operations that can independently work on separate partitions of

the data. This problem is perfectly suited to the data-parallel model

in a distributed-memory computing environment such as a computer

cluster, which consists of K independent processors (or nodes) that

are loosely or tightly connected in high-speed networks and have

limited local memory. We employed the manager–worker parallel

programming paradigm. The manager task partitions the data into

K blocks, then initiates K worker tasks in different nodes; each

worker task processes a single data block. The manager coordinates

all workers and synchronizes their calculations with updated bias

vectors. The IC-MEP algorithm has very little network messaging

overhead, because no communication exists between workers.

Therefore, it is computationally efficient. Furthermore, in order for

each worker to run its task on limited memory, we also used the

memory-saving strategy of the IC-MES algorithm. That is, each

worker further partitions its assigned data block into a set of sub-

blocks and loads only one sub-block into memory at any given time.

Theoretically, the IC-MEP algorithm can work on any number of

processors with any local memory capacity. Details of these three al-

gorithms and their flowchart figures are provided in the

Supplementary materials. We used ANSI C to implement the two se-

quential algorithms IC and IC-MES, because of its maximum con-

trol and memory efficiency. We implemented the parallel algorithm

IC-MEP using the popular message passing interface, which is a

highly standardized and portable environment designed for solving

large-scale scientific problems on distributed memory systems.

3 Results

We compared three algorithms (IC, IC-MES and IC-MEP) on the

TCC/Hi-C data of two human cell types: GM12878 and hESC

(Dixon et al., 2012; Kalhor et al., 2012). The whole genome is parti-

tioned into the equal-size regions (or bins); the bin size is the main

Table 1. Running time of three algorithms on 10K and 20K bp reso-

lution Hi-C data

Algorithm IC IC-MES IC-MEP

20K bp data (151 825 bins)

#Processor 1 1 16 48

Memory 86 GB 4 GB 1 GB 1 GB

Time (gm12878) 0:36:50 3:58:14 0:19:50 0:6:38

Time (hESC) 0:35:01 3:49:18 0:19:48 0:6:47

10K bp data (303 640 bins)

#Processor 1 1 16 48

Memory 343 GB 32 GB 2 GB 2 GB

Time (gm12878) NA 47:27:32 4:50:03 0:26:02

Time (hESC) NA 37:26:15 4:49:27 0:26:09

All algorithms were terminated after 10 iterations for the purpose of perform-

ance comparison, since each iteration has almost the same running time.

‘Memory’ includes only the memory allocated for computation in each pro-

cessor, not system overhead. The elapsed time format is ‘hours : minutes :

seconds’.

Fast, scalable and memory-efficient normalization for Hi-C data 961

gigabytes 
-
-
,
;
 Amestoy etal., 2008
-
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu747/-/DC1
M
P
I
 (MPI)
,
; Dixon etal., 2012


indicator of Hi-C data resolution. The results are listed in Table 1.

In the experiment with 20K bp resolution data, the basic IC algo-

rithm requires a minimum memory of 86 GB. The algorithm IC-

MES can run with just 4 GB memory (a common memory configur-

ation in office computers) and complete the same work in reason-

able time (within 4 h). IC-MEP can dramatically speed up the

computation using more processors (about 6 min with 48 proces-

sors), while using only 1 GB of memory in each processor. For the

10K bp data, none of HPC computer nodes (with 128 GB memory

limit) can load the full matrix (about 343 GB) for the basic IC algo-

rithm. But IC-MES and IC-MEP can use 2 GB memory to quickly

get the results (even in half hour using 48 processors). Details are

provided in the Supplemental materials.

4 Conclusion

With the rapidly increasing resolution of Hi-C datasets, the size of

the chromatin contact map will soon exceed the memory capacity of

general computers. We developed Hi-Corrector, a scalable and

memory-efficient package for bias removal in HiC data. Hi-

Corrector can run on any single computer or a computer cluster

with limited memory size to complete the task. We performed ex-

periments on high-resolution HiC data from two human cell types

to show that the package can process very large data sets in reason-

able time using the single processor, and in very short time with mul-

tiple processors. The experiments further demonstrate the scalability

of our package with the observation shown in Table 1 that the more

processors used, the faster it is. Therefore, Hi-Corrector is a timely

resource addressing the challenge of normalizing high-resolution

Hi-C data.

Funding

National Science Foundation Grant CAREER 1150287 and the Arnold and

Mabel Beckman foundation (BYI program) (to F.A.); and National Institutes

of Health Grant (NHLBI MAPGEN U01HL108634 to X.J.Z.); and F.A. is a

Pew Scholar in Biomedical Sciences, supported by the Pew Charitable Trusts.

Conflict of Interest: none declared.

References

Amestoy,R.P. et al. (2008) A parallel matrix scaling algorithm. In:

J.M.L.M.,Palma et al. (eds.) High Performance Computing for

Computational Science. Springer, Berlin, pp. 301–313.

Ay,F. et al. (2014) Three-dimensional modeling of the P. falciparum genome

during the erythrocytic cycle reveals a strong connection between genome

architecture and gene expression. Genome Res., 24, 974–988.

Dixon,J.R. et al. (2012) Topological domains in mammalian genomes identi-

fied by analysis of chromatin interactions. Nature, 485, 376–380.

Hu,M. et al. (2012) HiCNorm: removing biases in Hi-C data via Poisson re-

gression. Bioinformatics, 28, 3131–3133.

Imakaev,M. et al. (2012) Iterative correction of Hi-C data reveals hallmarks of

chromosome organization. Nat. Methods, 9, 999–1003.

Jin,F. et al. (2013) A high-resolution map of the three-dimensional chromatin

interactome in human cells. Nature, 503, 290–294.

Kalhor,R. et al. (2012) Genome architectures revealed by tethered chromo-

some conformation capture and population-based modeling. Nat.

Biotechnol., 30, 90–98.

Knight,P.A. (2008) The Sinkhorn–Knopp algorithm: convergence and applica-

tions. SIAM J. Matrix Anal. Appl., 30, 261–275.

Knight,P.A. and Ruiz,D. (2012) A fast algorithm for matrix balancing. IMA J.

Numer. Anal., 33, 1029–1047.

Le,T.B.K. et al. (2013) High-resolution mapping of the spatial organization of

a bacterial chromosome. Science, 342, 731–734.

Lieberman-Aiden,E. et al. (2009) Comprehensive mapping of long-range inter-

actions reveals folding principles of the human genome. Science, 326,

289–293.

Naumova,N. et al. (2013) Organization of the mitotic chromosome. Science,

342, 948–953.

Varoquaux,N. et al. (2014) A statistical approach for inferring the 3D struc-

ture of the genome. Bioinformatics, 30, i26–i33.

Yaffe,E. and Tanay,A. (2011) Probabilistic modeling of Hi-C contact maps

eliminates systematic biases to characterize global chromosomal architec-

ture. Nat. Genet., 43, 1059–1065.

Zenios,S.A. and Iu,S.-L. (1990) Vector and parallel computing for matrix bal-

ancing. Ann. Oper. Res., 22, 161–180.

962 W.Li et al.

ours
utes
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu747/-/DC1

	btu747-TF1

