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Abstract

Let θ(x) =
∑

p≤x
log p. We show that θ(x) < x for 2 < x < 1.39 · 1017. We also show that

there is an x < exp(727.951332668) for which θ(x) > x.

AMS Codes: 11M26, 11Y35

1 Introduction

Let π(x) denote the number of primes not exceeding x. The prime number theorem is the
statement that

π(x) ∼ li(x) =

∫ x

2

dt

log t
. (1)

One often deals not with π(x) but with the less obstinate Chebyshev functions θ(x) =
∑

p≤x log p and ψ(x) =
∑

pm≤x log p. The relation (1) is equivalent to

ψ(x) ∼ x, and θ(x) ∼ x.

Littlewood [10], showed that π(x)− li(x) and ψ(x)−x change sign infinitely often. Indeed,
(see, e.g., [7, Thms 34 & 35]) he showed more than this, namely that

π(x)− li(x) = Ω±

(

x
1

2

log x
log log log x

)

,

ψ(x)− x = Ω±(x
1

2 log log log x).

(2)

By [16, (3.36)] we have
ψ(x)− θ(x) ≤ 1.427

√
x (x > 1), (3)
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which, together with the second relation in (2), shows that θ(x) − x changes sign infinitely
often.

Littlewood’s proof that π(x)− li(x) changes sign infinitely often was ineffective: the proof
did not furnish a number x0 such that one could guarantee that π(x)− li(x) changes sign for
some x ≤ x0. Skewes [19] made Littlewood’s theorem effective; the best known result is that
there must be a sign change less that 1.3971 ·10316 [17]. On the other hand Kotnik [8] showed
that π(x) < li(x) for all 2 < x ≤ 1014.

We turn now to the question of sign changes in ψ(x) − x and θ(x)− x. There is nothing
of much interest to be said about the first sign changes of ψ(x): for x ∈ [0, 100] there are 24
sign changes. The problem of determining an interval in which ψ(x)−x changes sign is much
more interesting (as examined in [11]) but it is not something we consider here. As for sign
changes in θ(x): Schoenfeld, [18, p. 360] showed that θ(x) < x for all 0 < x ≤ 1011. This
range appears to have been improved by Dusart, [5, p. 4] to 0 < x ≤ 8 · 1011. We increase
this in

Theorem 1. For 0 < x ≤ 1.39 · 1017, θ(x) < x.

A result of Rosser [15, Lemma 4] is

Lemma 1 (Rosser). If θ(x) < x for e2.4 ≤ x ≤ K for some K, then π(x) < li(x) for

e2.4 ≤ x ≤ K.

This enables us to extend Kotnik’s result by proving

Corollary 1. π(x) < li(x) for all 2 < x ≤ 1.39 · 1017.

Rosser and Schoenfeld [16, (3.38)], proved

ψ(x) − θ(x)− θ(x
1

2 ) < 3x
1

3 , (x > 0). (4)

Table 3 in [6] gives us the bound |ψ(x)−x| ≤ 7.5 · 10−7x, which is valid for all x ≥ e35 > 1.5 ·
1015. This, together with (4) and Theorem 1, enables us to make the following improvement
to two results of Schoenfeld [18, (5.1*) and (5.3*)].

Corollary 2. For x > 0

θ(x) < (1 + 7.5 · 10−7)x, ψ(x)− θ(x) < (1 + 7.5 · 10−7)
√
x+ 3x

1

3 .

We now turn to the question of sign changes in θ(x)− x. In §3.1 we prove

Theorem 2. There is some x ∈ [exp(727.951332642), exp(727.951332668)] for which θ(x) >
x.

Throughout this article we make use of the following notation. For functions f(x) and
g(x) we say that f(x) = O∗(g(x)) if |f(x)| ≤ g(x) for the range of x under consideration.

2 Outline of argument

The explicit formula for ψ(x) is [7, p. 101]

ψ0(x) =
ψ(x+ 0) + ψ(x− 0)

2
= x−

∑

ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log

(

1− 1

x2

)

. (5)
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Since
ψ(x) = θ(x) + θ(x

1

2 ) + θ(x
1

3 ) + . . . ,

we can manufacture an explicit formula for θ(x). Using (4) and (5) we find that

θ(x)− x > −θ
(

x
1

2

)

−
∑

ρ

xρ

ρ
− ζ ′

ζ
(0)− 3x

1

3 . (6)

One can see why θ(x) < x ‘should’ happen often. On the Riemann hypothesis ρ = 1
2 + iγ;

since γ ≥ 14 one expects the dominant term on the right-side of (6) to be −θ
(

x
1

2

)

.

We proceed in a manner similar to that in Lehman [9]. Let α be a positive number.
We shall make frequent use of the Gaussian kernel K(y) =

√

α
2π exp(−1

2αy
2), which has the

property that
∫∞
−∞K(y) dy = 1.

Divide both sides of (6) by x
1

2 , make the substitution x 7→ eu and integrate against
K(u− ω). This gives

∫ ω+η

ω−η
K(u− ω)e

u
2 {θ(eu)− eu} du > −

∫ ω+η

ω−η
K(u− ω)θ

(

e
u
2

)

e−
u
2 du

−
∑

ρ

1

ρ

∫ ω+η

ω−η
K(u− ω)eu(ρ−

1

2
) du− ζ ′(0)

ζ(0)

∫ ω+η

ω−η
K(u− ω)e−

u
2 du

− 3

∫ ω+η

ω−η
K(u− ω)e−

u
6 du = −I1 − I2 − I3 − I4,

(7)

say. The interchange of summation and integration may be justified by noting that the
sum over the zeroes of ζ(s) in (6) converges boundedly in u ∈ [ω − η, ω + η]. Noting that
ζ ′(0)/ζ(0) = log 2π, we proceed to estimate I3 and I4 trivially to show that

0 < I3 < e−
ω−η

2 log 2π, 0 < I4 < 3e−
ω−η

6 .

It will be shown in §3 that the contributions of I3 and I4 to (7) are negligible — this justifies
our cavalier approach to their approximation.

We now turn to I2. Let A be the height to which the Riemann hypothesis has been
verified, and let T ≤ A be the height to which we can reasonably compute zeroes to a high
degree of accuracy — we make this notion precise in §3. Write I2 = S1 + S2, where

S1 =
∑

|γ|≤A

1

ρ

ω+η
∫

ω−η

K(u− ω)eiγu du, S2 =
∑

|γ|>A

1

ρ

ω+η
∫

ω−η

K(u− ω)e(ρ−
1

2
)u du.

Our S1 is the same as that used by Lehman in [9, pp. 402-403]. Using (4.8) and (4.9) of [9]
shows that

S1 =
∑

|γ|≤T

eiγω

ρ
e−γ2/2α + E1,

where

|E1| < 0.08
√
αe−αη2/2 + e−T 2/2α

{

α

πT 2
log

T

2π
+ 8

log T

T
+

4α

T 3

}

.
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Lehman considers
fρ(s) = ρse−ρsli(eρs)e−α(s−w)2/2,

whence we writes his analogous version of S2 as a function of fρ(s) and then estimates this
using integration by parts, Cauchy’s theorem, and the bound

|fρ(s)| ≤ 2 exp(−1
2α(s− w)2). (8)

We consider the simpler function fρ(s) = exp(−1
2α(s − w)2), which clearly satisfies (8). We

may proceed as in §5 of [9] to deduce that

|S2| ≤ A logAe−A2/(2a)+(w+η)/2
{

4α− 1

2 + 15η
}

,

provided that
4A/w ≤ α ≤ A2, 2A/α ≤ η < w/2.

All that remains is for us to estimate

I1 =

ω+η
∫

ω−η

θ
(

e
u
2

)

e−
u
2K(u− ω) du.

Table 3 in [6] and (3) give us

|θ(x)− x| ≤ 1.5423 · 10−9x, x ≥ e200, (9)

which gives
I1 < 1 + 1.5423 · 10−9, (ω − η) ≥ 400.

Thus, we have

Theorem 3. Let A be the height to which the Riemann hypothesis has been verified, and let

T satisfy 0 < T ≤ A. Let α, η and ω be positive numbers for which ω−η ≥ 400 and for which

4A/ω ≤ α ≤ A2, 2A/α ≤ η ≤ ω/2.

Define K(y) =
√

α/(2π) exp(−1
2αy

2) and

I(ω, η) =

∫ ω+η

ω−η
K(u− ω)e−u/2 {θ(eu)− eu} du. (10)

Then

I(ω, η) ≥ −1−
∑

|γ|≤T

eiγω

ρ
e−γ2/(2α) −R1 −R2 −R3 −R4, (11)

where

R1 = 1.5423 · 10−9

R2 = 0.08
√
αe−αη2/2 + e−T 2/2α

{

α

πT 2
log

T

2π
+ 8

log T

T
+

4α

T 3

}

R3 = e−(ω−η)/2 log 2π + 3e−(ω−η)/6

R4 = A(logA)e−A2/(2a)+(w+η)/2
{

4α− 1

2 + 15η
}

.
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We note that if one were to assume the Riemann Hypothesis for ζ, then the R4 term could
be reduced. This would give us greater freedom in our choice of α—see §3.1.3.

Approximations different from (9) are available. For example, one could use Lemma 1
in [20] to obtain |θ(x) − x| ≤ 0.0045x/(log x)2. One could also restrict the conditions in
Theorem 3 to ω − η ≥ 600 using the slightly improved results from [6] that are applicable
thereto. Neither of these improves significantly the bounds in Theorem 2.

We now need to search for values of ω, η, A, T and α for which the right-side of (11) is
positive.

3 Computations

3.1 Locating a crossover

Consider the sum Σ1 =
∑

|γ|≤T
eiγω

ρ . We wish to find values of T and ω for which this
sum is small, that is, close to −1; for such values the sum that appears in (11) should
also small. Bays and Hudson [2], when considering the problem of the first sign change of
π(x) − li(x), identified some values of ω for which Σ1 is small. We investigated their values:
ω = 405, 412, 437, 599, 686 and 728.

For ω in this range, we have R1 = 1.5423 · 10−9 so we endeavour to choose the parameters
A,T, α and η to make the other error terms comparable.

3.1.1 Choosing A

We chose to rely on the rigorous verification of RH for A = 3.0610046 ·1010 by the second au-
thor [13]. This computation also produced a database of the zeros below this height computed
to an absolute accuracy of ±2−102 [3].

3.1.2 Choosing T

As already observed, we have sufficient zeros to set T = A ≈ 3 · 1010 but, since summing
over the roughly 1011 zeros below this height is too computationally expensive, we settled
for T = 6, 970, 346, 000 (about 2 · 1010 zeros). Even then, computing the sum using multiple
precision interval arithmetic (see §3.1.4) takes about 40 hours on an 8 core platform.

3.1.3 Choosing the other parameters

To get the finest granularity on our search (i.e. to be able to detect narrow regions where
θ(x) > x) we aim at setting η as small as possible. This in turn means setting α (which
controls the width of the Gaussian) as large as possible. However, to ensure that R4 is
manageable, we need A2/(2α) > ω/2 or α < A2/ω. A little experimentation led us to

α = 1, 153, 308, 722, 614, 227, 968, η =
933831

244
,

both of which are exactly representable in IEEE double precision.
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3.1.4 Summing over the zeros

Since
exp(iγω)
1
2 + iγ

+
exp(−iγω)

1
2 − iγ

=
cos(γω) + 2γ sin(γω)

1
4 + γ2

,

the dominant term in Σ1 is roughly 2 sin(γω)/γ. Though one might expect a relative accuracy
of 2−53 when computing this in double precision, the effect of reducing γω mod 2π degrades
this to something like 2−17 when γ = 109 and ω = 400. We are therefore forced into using
multiple precision, even though that entails a performance penalty perhaps as high as a factor
of 100. To avoid the need to consider rounding and truncation errors at all, we use the MPFI
[14] multiple precision interval arithmetic package for all floating point computations. Making
the change from scalar to interval arithmetic probably costs us another factor of 4 in terms
of performance.

3.1.5 Results

We initially searched the regions around ω = 405, 412, 437, 599, 686 and 728 using only those
zeros 1

2 + iγ with 0 < γ < T = 5, 000. Although these results were not rigorous, it was hoped
that a sum approaching −1 would indicate a potential crossover worth investigating with full
rigour. As an example, Figure 1 shows the results for a region near ω = 437.7825. This is
some way from dipping below the −1 level and indeed a rigorous computation using the full
set of zeros and with ω = 437.78249 fails to get over the line. The same pattern repeats for
ω near 405, 412, 599 and 686.

In contrast, we expected the region near 728 to yield a point where θ(x) > x. The lowest
published interval containing an x such that π(x) > li(x) is

x ∈ [exp(727.951335231), exp(727.951335621)]

in [17]. Since the error terms for θ(x) − x are tighter than those for π(x) − li(x) this nec-
essarily means that the same x will satisfy θ(x) > x. In fact, we can do better. Using
ω = 727.951332655 we get

∑

|γ|≤T

exp(iγω)

ρ
exp

(

− γ2

2α

)

∈ [−1.0013360278,−1.0013360277].

We also have R1 +R2 +R3 +R4 < 1.7 · 10−9, so that

∫ ω+η

ω−η
K(u− ω)e−u/2 {θ(eu)− eu} du > 0.0013360261. (12)

3.1.6 Sharpening the Region

Using the same argument as [17, §9], we can analyse the tails of the integral (10) and sharpen
the region considerably. Consider, for η0 ∈ (0, η],

T1 =

ω+η
∫

ω+η0

K(u− ω)e−
u
2 {θ (eu)− eu} du,

6
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and

T2 =

ω−η0
∫

ω−η

K(u− ω)e−
u
2 {θ (eu)− eu} du.

Another appeal to Table 3 in [6], and (3), gives us

|θ(x)− x| ≤ 1.3082 · 10−9x, x ≥ e700.

Thus for ω − η > 700 we have

|T1|+ |T2| ≤ 1.3082 · 10−9(η − η0)K(η0)
[

e
ω+η

2 + e
ω−η0

2

]

. (13)

Applying (13) to (12), we find we can take η0 = η/4.2867 so that

∫ ω+η0

ω−η0

K(u− ω)e−u/2 {θ(eu)− eu} du > 2.75 · 10−6,

which proves Theorem 2. Therefore, there is at least one u ∈ (ω−η0, ω+η0) with θ(eu)−eu > 0.
Owing to the positivity of the kernel K(u − ω) we deduce that there is at least one such u
with

θ(eu)− eu > 2.75 · 10−6eu/2 > 10152.

Since θ(x) is non-decreasing this proves

Corollary 3. There are more than 10152 successive integers x satisfying

x ∈ [exp(727.951332642), exp(727.951332668)],

for which θ(x) > x.

3.2 A lower bound

Having established an upper bound for the first time that θ(x) exceeds x, we now turn to a
lower bound. A simple method would be to sieve all the primes p less than some boundB, sum
log p starting at p = 2, and compare the running total each time to p. We set B = 1.39 · 1017
since this was required by the second author for another result in [4]. By the prime number
theorem we would expect to find about 3.5·1015 primes below this bound. Since this is far too
many for a single thread computation we must look for some way of computing in parallel.

3.2.1 A parallel algorithm

We divide the range [0, B] into contiguous segments. For each segment Sj = [xj, yj ] we set
T = ∆ = ∆min = 0. We look at the each prime pi in this segment, compute li = log pi, and
add it to T . We set ∆ = ∆+ li − pi + pi−1 and ∆min = min(∆min,∆). Thus at any p, ∆min

is the maximum amount by which θ(p) has caught up with or gone further ahead of p within
this segment. After processing all the primes within a segment, we output T and ∆min.

Now, for each segment Sj = [x, y] the value of θ(x) is simply the sum of Tk with k < j
and θ(y) = θ(x) + Tj . Furthermore, if θ(x) < x and θ(x) + ∆min > 0 then θ(w) < w for all
w ∈ [x, y].
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3.2.2 Results

We implemented this algorithm in C++ using Kim Walisch’s “primesieve” [21] to enumerate
the primes efficiently, and the second author’s double precision interval arithmetic package to
manage rounding errors.

We split B into 10, 000 segments of width 1013 followed by 390 segments of width 1014.
This pattern was chosen so that we could use Oliviera e Silva’s tables of π(x) [12] as an
independent check of the sieving process.

We used the 16 core nodes of the University of Bristol Bluecrystal Phase III cluster [1]
and we were able to utilise each core fully. In total we used about 78, 000 node hours. This
established Theorem 1.

We plot (x − θ(x))/
√
x measured at the end of each segment in Figure 2. As one would

expect, this appears to be a random walk around the line 1.
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