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Abstract

The problem of describing the group of units U(ZG) of the integral group ring ZG of a
finite group G has attracted a lot of attention and providing presentations for such groups
is a fundamental problem. Within the context of orders, a central problem is to describe a
presentation of the unit group of an order O in the simple epimorphic images A of the rational
group algebra QG. Making use of the presentation part of Poincaré’s Polyhedron Theorem,
Pita, del Río and Ruiz proposed such a method for a large family of finite groups G and
consequently Jespers, Pita, del Río, Ruiz and Zalesskii described the structure of U(ZG) for a
large family of finite groups G. In order to handle many more groups, one would like to extend
Poincaré’s Method to discontinuous subgroups of the group of isometries of a direct product of
hyperbolic spaces. If the algebra A has degree 2 then via the Galois embeddings of the centre
of the algebra A one considers the group of reduced norm one elements of the order O as such
a group and thus one would obtain a solution to the mentioned problem. This would provide
presentations of the unit group of orders in the simple components of degree 2 of QG and in
particular describe the unit group of ZG for every group G with irreducible character degrees
less than or equal to 2. The aim of this paper is to initiate this approach by executing this
method on the Hilbert modular group, i.e. the projective linear group of degree two over the
ring of integers in a real quadratic extension of the rationals. This group acts discontinuously
on a direct product of two hyperbolic spaces of dimension two. The fundamental domain
constructed is an analogue of the Ford domain of a Fuchsian or a Kleinian group.

1 Introduction

The aim of this work is to generalize the presentation part of Poincaré’s Polyhedron Theorem
to a discontinuous group acting on a direct product of two copies of hyperbolic 2-space. Our
motivation comes from the investigations on the unit group U(ZG) of the integral group ring ZG.
One of the important problems is to determine a presentation of this group (see [Seh93]). In order to
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make further progress, there is a need for finding new methods to determine generators and next to
deduce a presentation. In [PdRR05], Pita, del Río and Ruiz initiated in these investigations the use
of actions on hyperbolic spaces. This allowed them to obtain presentations for subgroups of finite
index in U(ZG) for some new class of finite groups G, called groups of Kleinian type. The basic
idea can be explained as follows. If G is a finite group then ZG is an order in the rational group
algebra QG and it is well known that QG =

∏n
i=1 Mni

(Di), where each Di is a division algebra.
If Oi is an order in Di, for each i, then O =

∏n
i=1 Mni

(Oi) is an order in QG and the group of
units U(O) of O is commensurable with U(ZG). Recall that two subgroups of a given group are
said to be commensurable if they have a common subgroup that is of finite index in both. The
group U(O) is simply Πn

i=1GLni
(Oi), the direct product of the groups U(Mni

(Oi)) = GLni
(Oi).

Moreover U(Z(Oi))×SLni
(Oi), the direct product of the central units in Oi and the group consisting

of the reduced norm one elements in Mni
(Oi), contains a subgroup of finite index isomorphic

to a subgroup of finite index of GLni
(Oi). The group

∏n
i=1 U(Z(Oi)) may be determined from

Dirichlet’s Unit Theorem and it is commensurable with Z(U(ZG)), the group of central units of
ZG. For a large class of finite groups G one can describe generators of a subgroup of finite index
in Z(U(ZG)) [JOdRVG13] (see also [JdRVG14]). Hence, up to commensurability, the problem of
finding generators and relations for U(ZG) reduces to finding a presentation of SLni

(Oi) for every
1 ≤ i ≤ n. The congruence theorems allow to compute generators up to finite index for SLni

(Oi)
when ni ≥ 3 (without any further restrictions) and also for ni = 2 but then provided Di is neither
a totally definite rational quaternion algebra, nor a quadratic imaginary extension of Q and also
not Q. The case ni = 1 can also be dealt with in case Di is commutative or when it is a a totally
definite quaternion algebra. In case each Mni

(Di) is of one of these types and if, moreover, G does
not have non-commutative fixed point free epimorphic images, then concrete generators, the so
called Bass units and bicyclic units, for a subgroup of finite index in U(ZG) have been determined
[Seh93, RS91a, RS91b, RS89, JL93]. A finite group G is said to be of Kleinian type if each non-
commutative simple factor Mni

(Di) of QG is a quaternion algebra over its centre, i.e. ni ≤ 2 and
the natural image of SLni

(Oi) in PSL2(C) (obtained by extending some embedding of the centre
of Di in C) is a Kleinian group. A Kleinian group is a subgroup of PSL2(C) which is discrete
for the natural topology, or equivalently, its action on the 3-dimensional hyperbolic space via the
Poincaré extension of the action by Möbius transformations is discontinuous [Bea95, Theorem 5.3.2].
Poincaré introduced a technique to determine presentations for Kleinian groups via fundamental
polyhedra (see e.g. [Bea95, EGM98, Mas88]). An alternative method, due to Swan [Swa71], gives a
presentation from a connected open subset containing a fundamental domain. Thus, if G is a finite
group of Kleinian type then, in theory, one can obtain a presentation of a group commensurable
with U(ZG). In practice, it is difficult to execute this procedure because it is usually hard to
compute a fundamental Poincaré polyhedron of a Kleinian group. Groups of Kleinian type have
been classified in [JPdR+07] and examples of how to find presentations of U(ZG) for some groups
of Kleinian type of small order are given in [PdRR05] and [PdR06]. A generalization to group
rings over commutative orders is given in [OdR07]. Recently, in [JJK+15], an algorithm is given to
compute a fundamental domain, and hence generators, for subgroups of finite index in groups that
are contained in the unit group of orders in quaternion algebras over quadratic imaginary extensions
of Q, in particular for Bianchi groups. This work was in fact a generalization of [CJLdR04].

In the investigations on determining presentations for U(ZG) it is now natural to deal with
finite groups G that are such that QG has simple components of which the unit group of some
order does not necessarily act discontinuously on one hyperbolic space, but does so on a direct
product of hyperbolic 2 or 3-spaces. More precisely, one admits simple components A of QG that
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are quaternion algebras over a number field, say F . Every field homomorphism σ : F → C naturally
extends to an isomorphism C ⊗σ(F ) A ∼= M2(C) and thus to a homomorphism σ : A → M2(C),
via a 7→ 1 ⊗ a. This homomorphism maps SL1(A), the group consisting of reduced norm one
elements, into SL2(C). Composing this with the action of SL2(C) on H3, by the Poincaré extension
of Möbius transformations, yields an action of SL1(A) on H3. Note that if σ(F ) ⊆ R and A is
unramified in σ (i.e. R ⊗σ(F ) A ∼= M2(R)), then σ restricts to an action on H2. Let σ1, . . . , σt

be representatives (modulo complex conjugation) of the homomorphisms from F to C. If r is the
number of real embeddings of F on which A is unramified and s = t − r, then the action of σi on
the i-th component gives an action of SL1(A) on

Hr,s = H2× (r). . . ×H2 × H3× (s). . . ×H3.

More precisely the action is given by

a · (x1, . . . , xt) = (σ1(a) · x1, . . . , σt(a) · xt),

where a ∈ SL1(A) and x1, . . . , xr ∈ H2, xr+1, . . . , xr+s ∈ H3. If O is an order in A then the
image of O in M2(R)r × M2(C)(t−r) is discrete. This implies that the action of SL1(O) on Hr,s is
discontinuous (see Proposition 2.1).

This suggests the following program to obtain a presentation of U(ZG) (more precisely of a
group commensurable with U(ZG)) for the finite groups G such that QG is a direct product of
fields and quaternion algebras. (Equivalently, the degrees of the irreducible characters of G are all
either 1 or 2, or equivalently, by a result of Amitsur in [Ami61], G is either abelian, or has an abelian
subgroup of index 2 or G/Z(G) is elementary abelian of order 8.) First determine the Wedderburn
decomposition QG ∼=

∏k
i=1 Ai. For each i = 1, . . . , k, let Oi be an order in Ai and calculate

U(Z(Oi)), using for example the Dirichlet Unit Theorem. Next, if Ai is non-commutative and
O = Oi (in fact it is enough to consider the components which are not totally definite quaternion
algebras) then calculate a fundamental domain for the action of SL1(O) on Hr,s and determine
from this a presentation of SL1(O).

For this program to be successful one needs to solve at least the following problem.

(1) Does Poincaré’s Method remain valid for discontinuous actions on Hr,s?

The following problem is one of the first issues to deal with in order to answer the question.

(2) Determine methods to calculate fundamental domains effectively.

Once this is done, the following problem arises.

(3) The sides of the well-known fundamental polyhedra in H2 and H3 are geodesic hyperplanes
i.e. lines and circles (respectively, planes and spheres) orthogonal to the border. How should
one define the “sides” of some potential fundamental domain in Hr,s?

In this paper we show that the three problems can be controlled in case the considered group
acts on a direct product of two copies of H2. More precisely, we complete the outlined program for
the Hilbert modular group PSL2(R), where R is the ring of integers in Q(

√
d), with d > 0, and R is

a principal ideal domain. The group PSL2(R) acts discontinuously on H2 × H2, the direct product
of 2 copies of hyperbolic 2-space. Hence, this group constitutes the “easiest” case of the outlined
program and as such can be considered a relevant test case. For the construction of a fundamental
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domain we will make use of some ideas in [Coh65a] and [Coh65b]. The construction is based on the
classical construction of a Ford fundamental domain. For more details we refer the reader to [Voi09]
or to [Bea95, Section 9.5], where the author calls such domains Generalized Dirichlet domains. The
largest part of the paper is devoted to set up the machinery needed to prove an extension of the
presentation part of Poincaré’s Polyhedron theorem so that we can extract a presentation from this
domain. The assumption that R is a principal ideal domain allows us to get a description of the
fundamental domain F in terms of finitely many varieties. Note that this restriction is essentially
only used in Lemma 3.7, Theorem 3.8, Lemma 4.12 and Corollary 5.8.

The method outlined allows computing a description of the unit group U(ZG) for several classes
of finite groups G. As a matter of example, we mention that this now easily can be done for the
dihedral groups D10 and D16 of order 10 and 16 respectively, and the quaternion group Q32 of order
32. The group U(ZD10) is commensurable with SL2

(
Z[ 1+

√
5

2 ]
)

, the group U(ZD16) is commen-

surable with a direct product of a non-abelian free group and the group SL2(Z[
√

2]). The group
U(ZQ32) is commensurable with a direct product of U(ZD16) and an abelian group. Corollary 5.8
gives generators of the groups SL2(Z[ 1+

√
5

2 ]) and SL2(Z[
√

2]) and the algorithm described in Theo-
rem 6.24 yields a presentation of these groups. If one does not want to work up to commensurability
then the Reidemeister-Schreier method allows to go down to the exact subgroup of the previous
groups needed for the computation of the corresponding unit groups. In the case of U(ZD16) this
exact subgroup is described in [JP93].

An alternative method for computing a presentation for the group of units of an order in a
semi-simple algebra over Q was recently given by Coulangeon, Nebe, Braun and Schönnenbeck in
[CNBS]. The authors present a powerful algorithm that is based on a generalisation of Voronoï’s
algorithm for computing perfect forms and is combined with Bass-Serre theory. The method differs
essentially from the one presented here, as the authors use an action on a Euclidean space. To
illustrate their algorithm, several computations are carried out completely in [CNBS]; including
orders in division algebras of degree 3.

As mentioned above, in this paper we focus on groups that act discontinuously on direct products
of two hyperbolic spaces and we extend the presentation part of Poincaré’s Polyhedron Theorem
into this context. Developing such new methods are relevant in the bigger scheme of discovering
new generic constructions of units that generate large subgroups in the unit group of an order of
a rational division algebra and hence solving completely the problem of describing finitely many
generic generators for a subgroup of finite index in U(ZG) for any finite group (hence without any
restriction on the rational group algebra QG).

The paper is organized as follows. In Section 2, we give some background on discontinuous
group actions on direct products of copies of H2 and H3 and introduce some notation on the group
of our interest, namely PSL2(R) with R the ring of integers of a real quadratic field, and its action
on H2 × H2. In Section 3, we give a description of a fundamental domain F for this action, see
Theorem 3.8. In Section 4, we prove some topological lemmas about the fundamental domain
and they will be used in the two following sections. Finally, in Section 5, we describe the sides
of the fundamental domain F . In Theorem 5.3, we generalize the generating part of Poincaré’s
Polyhedron Theorem to the case of PSL2(R) acting on H2 × H2 and in Corollary 5.8, we give an
effective description of the generators of PSL2(R). In Section 6, we describe the edges of F and in
Theorem 6.24, we generalize the presentation part of Poincaré’s Polyhedron Theorem. Note that
Theorem 5.3 and Theorem 6.24 could potentially have been deduced from [Mac64a, Corollary of
Theorem 2]. However, in order to get an effective set of generators and relations as an application
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of this theorem one needs all the lemmas in Section 5 and 6 anyway. Moreover, we think that
the proofs of Theorem 5.3 and Theorem 6.24, presented in this paper, are more intuitive from a
geometric point of view. Furthermore they are algorithmic in nature. For the convenience of the
reader we include an appendix on some needed algebraic topological results.

2 Background

The following definitions are mostly taken from [Bea95, Rat94]. Let Ĉ = C ∪ {∞} and let Hn

denote the upper half Poincaré model of the hyperbolic space of dimension n. We consider the group
SL2(C) acting on Ĉ by Möbius transformations. We also let SL2(C) act by orientation-preserving
isometries on H3, by the Poincaré extension of Möbius transformations. The hyperbolic plane H2 is
invariant under the action of SL2(R). This defines an isomorphism between PSL2(C) (respectively
PSL2(R)) and the group of orientation-preserving isometries of H3 (respectively H2).

Consider for non negative integers r and s the metric space Hr,s = H2× (r). . . ×H2 × H3× (s). . .

×H3 and the group Gr,s = SL2(R)× (r). . . ×SL2(R) × SL2(C)× (s). . . ×SL2(C), a direct product of r
copies of SL2(R) and s copies of SL2(C). An element g ∈ Gr,s will be written as an (r + s)-tuple
(g(1), . . . , g(r+s)) and elements of Hr,s will be written as (r+s)-tuples, say Z = (Z1, . . . , Zr+s). The
metric ρ on this space is given by

ρ(X, Y )2 =
n∑

i=1

ρ(i)(Xi, Yi)2,

where ρi is the hyperbolic metric on the hyperbolic 2 or 3-space (see [Maa40, Paragraph 2]). The
action of SL2(R) and SL2(C) on H2 and H3 induces componentwise an action of Gr,s by isometries
on Hr,s:

g · Z = (g(1) · Z1, . . . , g(r+s) · Zr+s).

We consider Mn(C) as an Euclidean 2n2-dimensional real space. This induces a structure of
topological group on Gr,s. Let G be a subgroup of Gr,s. One says that G is discrete if it is discrete
with respect to the induced topology. One says that G acts discontinuously on Hr,s if and only if,
for every compact subset K of Hr,s, the set {g ∈ G : g(K) ∩ K 6= ∅} is finite.

The following proposition is well known and extends the fact that a subgroup of SL2(C) is
discrete if and only if its action on H3 is discontinuous.

Proposition 2.1 [Rat94, Theorem 5.3.5.] A subgroup of Gr,s is discrete if and only if it acts
discontinuously on Hr,s.

Let G be a group of isometries of Hr,s. A fundamental domain of G is a subset F of Hr,s whose
boundary has Lebesgue measure 0, such that Hr,s =

⋃
g∈G g(F) and if 1 6= g ∈ G and Z ∈ Hr,s

then {Z, g(Z)} is not contained in the interior of F . The different sets g(F), for g ∈ G, are called
tiles given by G and F and the set of tiles T = {g(F) : g ∈ G} is called the tessellation given by
G and F .

In this paper we study a presentation for the special linear group of degree 2 of the ring of
integers of real quadratic extensions. So throughout k is a square-free positive integer greater than
1 and

ω =
1 +

√
k

k0
, with k0 =

{
1, if k 6≡ 1 mod 4;
2, if k ≡ 1 mod 4.

(1)
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Moreover, K = Q

(√
k
)

and R = Z[ω], the ring of integers of K. For α ∈ K, let α′ denote the

algebraic conjugate of α. Then ω′ = 1−
√

k
k0

and if α = α0+α1ω with α0, α1 ∈ Q, then α′ = α0+α1ω′.
Let N denote the norm map of K over Q and ǫ0 denote the fundamental unit of K, i.e. ǫ0 is the
smallest unit ǫ0 of R greater than 1. Then U(R) = {α ∈ R : N(α) = ±1} = ±〈ǫ0〉, by Dirichlet’s
Unit Theorem.

We consider SL2(R) as a discrete subgroup of SL2(R) × SL2(R) by identifying a matrix A ∈
SL2(R) with the pair (A, A′), where A′ is the result of applying the algebraic conjugate ′ in each

entry of A. Thus we consider SL2(R) acting on H2×H2. More precisely, if γ =
(

a b
c d

)
∈ SL2(K),

Z = (x1 + y1i, x2 + y2i) and γ(Z) = (x̂1 + ŷ1i, x̂2 + ŷ2i) then a straightforward calculation yields

x̂1 =
(ax1 + b)(cx1 + d) + acy2

1

(cx1 + d)2 + c2y2
1

, ŷ1 =
y1

(cx1 + d)2 + c2y2
1

(2)

and

x̂2 =
(a′x2 + b′)(c′x2 + d′) + a′c′y2

2

(c′x2 + d′)2 + c′2y2
2

, ŷ2 =
y2

(c′x2 + d′)2 + c′2y2
2

. (3)

If Z = (Z1, Z2) ∈ H2 × H2 then we write

Zj = xj + yji, where xj , yj ∈ R and yj > 0 (j = 1, 2). (4)

Then the four tuples (x1, x2, y1, y2) ∈ R2 × (R+)2 form a system of coordinates of elements of
H2 × H2.

If Z = (x1 + y1i, x2 + y2i) then we use the following notation

‖cZ + d‖ = ((cx1 + d)2 + c2y2
1)((c′x2 + d′)2 + c′2y2

2).

We introduce another system of coordinates (s1, s2, r, h) ∈ R2 × (R+)2 by setting

x1 = s1 + s2ω, x2 = s1 + s2ω′, y2
1 =

h

r
, y2

2 = rh (5)

or equivalently

s1 =
ω′x1 − ωx2

ω′ − ω
, s2 =

x1 − x2

ω − ω′ , r =
y1

y2
, h = y1y2. (6)

So, each element Z of H2 ×H2 is represented by either (x1, x2, y1, y2) ∈ R2 ×(R+)2, or (s1, s2, r, h) ∈
R2 × (R+)2, or (x1, x2, r, h) ∈ R2 × (R+)2. Then the norm, ratio and height of Z are defined
respectively by

‖Z‖ = (x2
1 + y2

1)(x2
2 + y2

2), r(Z) = r =
y1

y2
, h(Z) = h = y1y2.

Using (2) and (3), we get

h(γ(Z)) =
h(Z)

‖cZ + d‖ . (7)

Let
Γ = PSL2(R), (8)
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the Hilbert modular group, and we consider it as a discontinuous group of isometries of H2 × H2.
Let Γ∞ denote the stabilizer of ∞ by the action of Γ (on Ĉ). The elements of Γ∞ are represented

by the matrices
(

ǫm
0 b
0 ǫ−m

0

)
with m ∈ Z and b ∈ R. Abusing notation, if γ ∈ Γ is represented

by
(

a b
c d

)
then we simply write γ =

(
a b
c d

)
. Hence, (2), (3) and (7) imply

if γ =
(

ǫm
0 b
0 ǫ−m

0

)
∈ Γ∞ then h(γ(Z)) = h(Z) and r(γ(Z)) = ǫ4m

0 r(Z). (9)

The second rows of the elements of Γ form the following set

S = {(c, d) ∈ R2 : cR + dR = R}.

3 Fundamental Domain

In this section we compute a fundamental domain for the group Γ = PSL2(R) (8) via methods
analogue to those used for computing a Ford fundamental domain of a discrete group acting on the
hyperbolic 2-space. This part of our work is based on the ideas of H. Cohn in [Coh65b, Coh65a].

We start introducing the following subsets of H2 ×H2, expressed in the (s1, s2, r, h) coordinates:

V +,≥
i =

{
(s1, s2, r, h) ∈ H2 × H2 : si ≥ 1

2

}
,

V −,≥
i =

{
(s1, s2, r, h) ∈ H2 × H2 : si ≥ −1

2

}
,

for i = 1, 2 and

V +,≥
3 =

{
(s1, s2, r, h) ∈ H2 × H2; : r ≥ ǫ2

0

}
,

V −,≥
3 =

{
(s1, s2, r, h) ∈ H2 × H2 : r ≥ ǫ−2

0

}
.

Moreover, for every c, d ∈ S with c 6= 0, let

V ≥
c,d = {Z ∈ H2 × H2 : ‖cZ + d‖ ≥ 1}.

We also define the sets V ±,≤
i and V ≤

c,d (respectively, V ±
i and Vc,d) by replacing ≥ by ≤ (respectively,

=) in the previous definitions.

For every (c, d) ∈ S with c 6= 0 and γ =
(

a b
c d

)
∈ Γ we have

‖ − cγ(Z) + a‖ =
1

‖cZ + d‖ (10)

and therefore
γ
(

V ≥
c,d

)
= V ≤

−c,a.

7



We define

F∞ = V +,≤
1 ∩ V −,≥

1 ∩ V +,≤
2 ∩ V −,≥

2 ∩ V +,≤
3 ∩ V −,≥

3

= {(s1, s2, r, h) ∈ R2 × (R+)2 : |s1|, |s2| ≤ 1
2

, ǫ−2
0 ≤ r ≤ ǫ2

0};

F0 =
⋂

(c,d)∈S
V ≥

c,d = {Z ∈ H2 × H2 : ‖cZ + d‖ ≥ 1 for all (c, d) ∈ S};

F = F∞ ∩ F0.

Lemma 3.1 F∞ is a fundamental domain of Γ∞.

Proof. We first prove that if 1 6= γ ∈ Γ∞ and Z = (Z1, Z2) = (x1 + y1i, x2 + y2i) = (s1, s2, r, h)
then {Z, γ(Z)} cannot be contained in the interior of F∞. Let

γ =
(

ǫm
0 b
0 ǫ−m

0

)
.

By (9), r(γ(Z)) = ǫ4m
0 r. If Z and γ(Z) belong to the interior of Γ∞ then ǫ−2

0 < r, ǫ4m
0 r < ǫ2

0 and
therefore m = 0. Therefore the transformation γ is simply a translation by the parameter (b, b′)
with b ∈ R. Now b = b1 + b2ω, with b1, b2 ∈ Z. As Z and γ(Z) belong to the interior of F∞, then
|s1|, |s2|, |s1 + b1|, |s2 + b2| < 1

2 . Thus b = 0 and hence γ = 1, as desired.
Let Z = (x1 + y1ω, x2 + y2ω′) be an arbitrary point in H2 × H2, with xi, yi ∈ R. We will show

that there exists γ ∈ Γ∞ such that γ(Z) ∈ F∞. As ǫ0 > 1, lim
n→+∞

ǫn
0 = ∞ and lim

n→−∞
ǫn

0 = 0 and

hence there exists n ∈ Z such that
ǫ4n−2

0 ≤ r ≤ ǫ4n+2
0 .

Let γ =
(

ǫ−n
0 0
0 ǫn

0

)
. By (9), ǫ−2

0 ≤ r(γ(Z)) = ǫ−4n
0 r ≤ ǫ2

0. So we may assume that ǫ−2
0 ≤ r ≤ ǫ2

0.

Now consider γ =
(

1 b
0 1

)
, with b = b1 + b2ω, b1, b2 ∈ Z and |xi + bi| ≤ 1

2 . Again by (9), the

(s1, s2, r, h) coordinates of γ(Z) are (s1 + b1, s2 + b2, r, h) and hence γ(Z) ∈ F∞, as desired.
Moreover the boundary of F∞ is included in

⋃3
i=1 V +

i ∪ ⋃3
i=1 V −

i . This clearly has Lebesgue
measure 0.

For a subset C of H2 × H2 and µ > 0 let

VC,µ = {(c, d) ∈ R × R : ‖cZ + d‖ ≤ µ for some Z ∈ C}. (11)

We say that a subset C of H2 × H2 is hyperbolically bounded if it is bounded in the metric of
H2 × H2 or equivalently if it is bounded in the Euclidean metric and there is a positive number ǫ
such that y1, y2 > ǫ for every (x1 + y1i, x2 + y2i) ∈ C.

Lemma 3.2 Let C be a hyperbolically bounded subset of H2 × H2 and let µ > 0. Then there are
finitely many elements (c1, d1), . . . , (ck, dk) of R × R such that VC,µ = {(uci, udi) : i = 1, . . . , k, u ∈
U(R)}.
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Proof. As {d ∈ R : N(d) ≤ µ} is finite up to units, it is clear that VC,µ has finitely many
elements of the form (0, d) with d ∈ R. As C is hyperbolically bounded there is s > 0 such
that h(Z) ≥ s for every Z ∈ C. As the number of elements of R of a given norm is finite
modulo units, there are c1, . . . , ck ∈ R \ {0} such that if c ∈ R \ {0} with N(c)2 ≤ µ

s2 then
c = uci for some i = 1, . . . , k and some u ∈ U(R). Moreover, for every i = 1, . . . , k, the set
Ci = {(x, y) ∈ R2 : (cix1 + x)2c′2

i y2
2 + (c′

ix2 + y)2c2
i y2

1 ≤ r for some Z = (x1 + y1i, x2 + y2i) ∈ C}
is a bounded subset of R2. As {(d, d′) : d ∈ R} is a discrete subset of R2, there are ei1, . . . , eiji

∈ R
such that if d ∈ R and (d, d′) ∈ Ci then d = eili

for some 1 ≤ li ≤ ji. Assume that ‖cZ + d‖ ≤ µ

for some Z = (x1 + y1i, x2 + y2i) ∈ C. Then N(c)2s2 ≤ N(c)2h(Z)2 = c2c′2y2
1y2

2 ≤ ((cx1 + d)2 +
c2y2

1)((c′x2 + d′)2 + c′2y2
2) = ‖cZ + d‖ ≤ µ. Hence c = uci for some i = 1, . . . , k and u ∈ U(R).

Moreover, as N(u) = uu′ = ±1, we have

(cix1 + u−1d)2c′2
i y2

2 + (c′
ix2 + (u−1d)′)2c2

i y2
1 = (cx1 + d)2c′2y2

2 + (c′x2 + d′)2c2y2
1 ≤ ‖cZ + d‖ ≤ µ.

Therefore (u−1d, (u−1d)′) ∈ Ci. Thus u−1d = eili
for some 1 ≤ li ≤ ji. This proves that there

are finitely many elements (c1, d1), . . . , (ck, dk) ∈ (R \ {0}) × R such that VC,µ is contained in
{u(ci, di) : i = 1, . . . , k, u ∈ U(R)}. Note that if u ∈ U(R) then ‖uciZ + udi‖ = ‖ciZ + di‖. Hence,
the result follows.

Lemma 3.3 F0 = {Z ∈ H2 × H2 : Z has maximal height in its Γ-orbit}.

Proof. We first claim that for a fixed Z ∈ H2 × H2, the set {‖cZ + d‖ : (c, d) ∈ S} has a
minimum. Indeed, let π = ‖Z‖. Clearly V{Z},π ∩ S 6= ∅ as it contains (1, 0). By Lemma 3.2,
V{Z},π ∩ S = {u(ci, di) : i = 1, . . . , k, u ∈ U(R)} for some (c1, d1), . . . , (ck, dk) ∈ S. Let 0 6= m =
min{‖ciZ + di‖ : i = 1, . . . , k}. If ‖cZ + d‖ < m ≤ π, with (c, d) ∈ S then (c, d) = u(ci, di) for some
i and some u ∈ U(R). Then m > ‖cZ + d‖ = N(u)2‖ciZ + di‖ ≥ m, a contradiction. Hence the
claim follows. Consequently, by (7), the Γ-orbit of Z has an element of maximum height.

Consider a Γ-orbit and let Z be an element in this orbit with maximal height. Hence for every
g ∈ Γ, h(g(Z)) ≤ h(Z) and hence by (7), ‖cZ + d‖ ≥ 1, for every (c, d) ∈ S. Thus Z ∈ F0.

To prove the other inclusion, let Z ∈ F0. Then ‖cZ + d‖ ≥ 1, for every (c, d) ∈ S and hence for
every g ∈ Γ, h(g(Z)) ≤ h(Z). Thus every element of F0 reaches the maximum height in its orbit.

Lemma 3.4 [Coh65b, Coh65a] F is fundamental domain for Γ.

Proof. We first show that F contains a point of every Γ-orbit. To prove this, consider an orbit
and let Z be an element in this orbit with maximal height. By Lemma 3.1, there is W ∈ F∞ and
g ∈ Γ∞ such that W = g(Z). By (9), h(Z) = h(W ) and hence we may assume that Z ∈ F∞. Thus,
by Lemma 3.3, Z ∈ F0 and so Z ∈ F .

Now we will show that if two points of the same orbit are in F then they necessarily are on the
border of F . Suppose that Z, γ(Z) ∈ F , for some 1 6= γ ∈ Γ. If γ ∈ Γ∞ then, by Lemma 3.1, Z

belongs to the border of F∞ and hence it belongs to the border of F . Otherwise γ =
(

a b
c d

)

with c 6= 0 and, by (7) we have

h(Z) = h(γ(Z)) =
h(Z)

‖cZ + d‖ .

9



Therefore ‖cZ + d‖ = 1 and thus Z lies on the border of F0 and thus on the border of F .
Finally the boundary of F is contained in

⋃3
i=1 V +

i ∪⋃3
i=1 V −

i ∪⋃(c,d)∈S Vc,d with c 6= 0. As S
is countable, the boundary of F has measure 0.

Let

B =
{

(s1, s2, r) : |s1|, |s2| ≤ 1
2

, ǫ−2
0 ≤ r ≤ ǫ2

0

}

Observe that
F∞ = B × R+.

We can think of F as the region above a “floor”, which is given by the sets Vc,d for (c, d) ∈ S and
limited by “six walls”, which are given by the sets V ±

i for i = 1, 2, 3.
We now give an alternative description of F on which the “floor” is given by the graph of a

function h0 defined on B.
For each c, d ∈ R we define the function fc,d : R4 → R by

fc,d(x1, x2, y1, y2) =
[
(cx1 + d)2 + c2y2

1

] [
(c′x2 + d′)2 + c′2y2

2

]
.

Observe that if Z ∈ H2 × H2 then fc,d(Z) = ‖cZ + d‖ and if d ∈ U(R) then f0,d(Z) = 1. Thus

F0 = {Z ∈ H2 × H2 : fc,d(Z) ≥ 1, for all (c, d) ∈ S}. (12)

We use the mixed coordinate system described in Section 2 and write

fc,d(x1, x2, r, h) = [(cx1 + d)(c′x2 + d′)]2 +
[
(cx1 + d)2c′2r + (c′x2 + d′)2 c2

r

]
v + N(c)2v2.

If c, d ∈ R, (x1, x2, r) ∈ R2 × R+ and v ∈ R, then we define

fc,d,x1,x2,r(v) = [(cx1 + d)(c′x2 + d′)]2 +
[
(cx1 + d)2c′2r + (c′x2 + d′)2 c2

r

]
v + N(c)2v2. (13)

and if c 6= 0 then we set

h1(c, d, x1, x2, r) =√√√√ 1
N(c)2

+
1
4

[(
x1 +

d

c

)2

r −
(

x2 +
d′

c′

)2 1
r

]2

− 1
2

[(
x1 +

d

c

)2

r +
(

x2 +
d′

c′

)2 1
r

]
,

If u ∈ U(R) then the following statements hold (throughout the paper we will use these without
explicit reference):

fuc,ud = fc,d, (14)

h1(uc, ud, x1, x2, r) = h1(c, d, x1, x2, r), (15)

(c, d) ∈ S ⇔ (uc, ud) ∈ S (16)

V ≥
uc,ud = V ≥

c,d, (17)

Vuc,ud = Vc,d. (18)

10



Set C = {(x1, x2) ∈ R2 : −1 < (cx1 + d)(c′x2 + d′) < 1}. An easy calculation shows that if
c 6= 0 then

Vc,d = {(x1, x2, r, h1(c, d, x1, x2, r)) : (x1, x2, r) ∈ C × R+}.

As C is path-connected, Vc,d is path-connected. Moreover, if f = fc,d,x1,x2,r then

f ′(h) =
[
(cx1 + d)2c′2r + (c′x2 + d′)2 c2

r

]
+ 2N(c)2h.

and hence f is strictly increasing on [min(0, h1), ∞).
For (s1, s2, r) ∈ B let

h0(s1, s2, r) = sup{h1 > 0 : fc,d,x1,x2,r(h1) = 1, for some (c, d) ∈ S, with c 6= 0},

where we understand that the supremum of the empty set is 0. If (c, d) ∈ S, c 6= 0, h1 > 0 and
fc,d,x1,x2,r(h1) = 1 then h2

1 ≤ 1
N(c)2 ≤ 1. Hence the supremum defining h0(s1, s2, r) exists and

h0(s1, s2, r) ≤ 1. (19)

By (12) and the monotonicity fc,d,x1,x2,r we have

F0 = {(s1, s2, r, h) ∈ R2 × (R+)2 : h ≥ h0(s1, s2, r)} and (20)

F = {(s1, s2, r, h) ∈ R2 × (R+)2 : (s1, s2, r) ∈ B and h ≥ h0(s1, s2, r)}. (21)

From (19) and (21) the following lemmas easily follow.

Lemma 3.5 If Z = (s1, s2, r, h) ∈ H2 × H2 with |s1| ≤ 1
2 , |s2| ≤ 1

2 , ǫ−2
0 ≤ r ≤ ǫ2

0 and h ≥ 1, then
Z ∈ F . Moreover, if the inequalities are strict then Z ∈ F◦.

Lemma 3.6 F is path-connected.

In order to have a finite procedure to calculate the fundamental domain F of Lemma 3.4 we
need to replace S in the definition of F by a suitable finite set. In our next result we obtain this
for R a principal ideal domain (PID, for short). For that we need the following lemma, which is
proved in [Coh65b, Paragraph 5].

Lemma 3.7 If R is a PID and (s1, s2, r, h) ∈ F0 then h >
k2

0

2k
.

Theorem 3.8 Let k be a square-free integer greater than 1. Let k0 and ω be as in (1), R =
Z[ω], Γ = PSL2(R) and F the fundamental domain of Γ given in Lemma 3.4. Let S1 be a set of
representatives, up to multiplication by units in R, of the couples (c, d) ∈ R2 satisfying the following
conditions:

c 6= 0, cR + dR = R, |N(c)| ≤ 2k

k2
0

,

|d
c

| < ǫ0

√
2k

N(c)2k2
0

− k2
0

2k
+

1 + ω

2
and |d

′

c′ | < ǫ0

√
2k

N(c)2k2
0

− k2
0

2k
+

1 − ω′

2
.

(22)

Then S1 is finite and if R is a principal ideal domain then F = F∞ ∩⋂(c,d)∈S1
V ≥

c,d. In particular,
Vc,d ∩ F 6= ∅ if and only if (c, d) ∈ S1.
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Proof. That S1 is finite is a consequence of the well known fact that the set of elements of R with a
given norm is finite modulo multiplication by units and that the image of R by the map x 7→ (x, x′)
is a discrete additive subgroup of R2, so that it intersects every compact subset in finitely many
elements.

Assume now that R is a PID. Then, by Lemma 3.7, h0(s1, s2, r) ≥ k2
0

2k
> 0. Therefore the set

Ss1,s2,r =
{

(c, d) ∈ S : c 6= 0 and h1(c, d, s1, s2, r) ≥ k2
0

2k

}

is not empty and
h0(s1, s2, r) = sup{h1(c, d, s1, s2, r) : (c, d) ∈ Ss1,s2,r}. (23)

We claim that if (s1, s2, r) ∈ B and (c, d) ∈ Ss1,s2,r then (c, d) satisfies the conditions of (22).
Indeed, clearly (c, d) satisfies the first two conditions. It satisfies the third condition since

N(c)2

(
k2

0

2k

)2

≤ N(c)2h2
1 ≤ fc,d,x1,x2,r(h1) = 1.

To prove that it satisfies the last two conditions of (22) let x1 = s1 + s2ω, x2 = s1 + s2ω′ and
h1 = h1(c, d, s1, s2, r) Recall that |s1|, |s2| ≤ 1

2 and hence

−1 − ω

2
≤ x1 ≤ 1 + ω

2
and

−1 + ω′

2
≤ x2 ≤ 1 − ω′

2
. (24)

Furthermore

N(c)2 k2
0

2k

(
k2

0

2k
+
(

x1 +
d

c

)2

r +
(

x2 +
d′

c′

)2 1
r

)
=

N(c)2

(
k2

0

2k

)2

+
(

(cx1 + d)2c′2r + (c′x2 + d′)2c2 1
r

)
k2

0

2k
≤

N(c)2h2
1 +

(
(cx1 + d)2c′2r + (c′x2 + d′)2c2 1

r

)
h1 + (cx1 + d)2(c′x2 + d′)2 = fc,d,x1,x2,r(h1) = 1,

This, together with ǫ−2
0 ≤ r ≤ ǫ2

0 implies




|x1 + d
c
| < 1√

r

√
2k

N(c)2k2
0

− k2
0

2k
≤ ǫ0

√
1

N(c)2k1
− k1,

|x2 + d′

c′ | <
√

r
√

2k
N(c)2k2

0

− k2
0

2k
≤ ǫ0

√
1

N(c)2k1
− k1.

Combining this with (24) we also have




| d
c
| < ǫ0

√
2k

N(c)2k2
0

− k2
0

2k
+ 1+ω

2 ,

| d′

c′ | < ǫ0

√
2k

N(c)2k2
0

− k2
0

2k
+ 1−ω′

2 .

This proves the claim.
Combining the claim with (15) and (23) we deduce that if (s1, s2, r) ∈ B then h0(s1, s2, r) =

sup{h1(c, d, s1, s2, r) : (c, d) ∈ S1 ∩ Ss1,s2,r}. As S1 is finite, this implies that h0(s1, s2, r) =
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h1(c, d, s1, s2, r) for some (c0, d0) ∈ S1. Then (s1, s2, r, h) ∈ F if and only if (s1, s2, r, h) ∈ V ≥
c0,d0

if

and only if (s1, s2, r, h) ∈ V ≥
c,d for every (c, d) ∈ S. Therefore F = F∞ ∩⋂(c,d)∈S1

V ≥
c,d as desired.

To get the second part of the theorem, notice that F ∩Vc,d ⊆ ∂F0 for (c, d) ∈ S, c 6= 0. Moreover,
similarly as in (20),

∂F0 = {(s1, s2, r, h) ∈ R2 × (R+)2 : h = h0(s1, s2, r)}.

Thus by the same reasoning as above, F0 ∩ Vc,d 6= ∅ if and only if (c, d) ∈ S1 and hence the result
follows.

Recall that a collection of subsets of a topological space X is said to be locally finite if every
point of X has a neighbourhood intersecting only finitely many elements of the collection. As Hr,s

is locally compact, a collection of subsets of Hr,s is locally finite if every compact subset of Hr,s

intersects only finitely many elements of the collection. A fundamental domain F of a group Γ
acting on Hr,s is said to be locally finite if {g(F ) : g ∈ Γ} is locally finite.

Lemma 3.9 The fundamental domains F of Γ and F∞ of Γ∞ are locally finite.

Proof. Let C be a compact subset of H2 × H2 and let γ ∈ Γ∞ such that C ∩ γ(F) 6= ∅. Let
Z = (x1, x2, y1, y2) ∈ C ∩ γ(F∞). As C is compact, the coordinates of Z are bounded. As

γ−1 ∈ Γ∞, γ−1 =
(

ǫm
0 b
0 ǫ−m

0

)
for some m ∈ Z and b ∈ R, and hence γ−1(Z) = (ǫ2mx1 +

b, ǫ−2mx2 + b′, ǫ2my1, ǫ−2my2). As y1 and y2 are bounded, there are only finitely many m ∈ Z such
that γ−1(Z) ∈ F∞, or equivalently Z ∈ γ−1(F∞), and this for every Z ∈ C. Moreover as the first
two coordinates of Z are bounded and {(b, b′) : b ∈ R} is a discrete subset of R2 for each m only
finitely many b’s in R satisfy that ǫ2mx1 + b and ǫ−2mx2 + b′ satisfy the conditions imposed on x1

and x2 for Z to be in F∞. Thus there are only finitely many γ ∈ Γ∞ such that C ∩ γ(F∞) 6= ∅ and
therefore F∞ is locally finite.

Now suppose C ∩ γ(F) 6= ∅ for C a compact subset of H2 × H2 and γ ∈ Γ. If γ ∈ Γ∞, then we

are done by the first part. So we may suppose that γ =
(

a b
c d

)
with c 6= 0. If Z ∈ C ∩ γ(F) and

c 6= 0 then, by (10), 1
‖−cZ+a‖ = ‖cγ−1(Z) + d‖ ≥ 1 and therefore ‖ − cZ + a‖ ≤ 1, in other words

(−c, a) ∈ VC,1, where VC,1 is defined as in Lemma 3.2. Using Lemma 3.2 we deduce that (−c, a)

belongs to a finite subset, up to units in R. So suppose γ =
(

a b
c d

)
and γu =

(
ua u−1b
uc u−1d

)
are

such that C ∩ γ(F) 6= ∅ and C ∩ γu(F) 6= ∅ respectively for some u ∈ U(R). Then

γ−1
u γ =

(
u−1 ∗

0 u

)
,

where ∗ denotes some element of R. Denote the latter matrix by U . Then γ = γuU and U ∈ Γ∞.
Hence we also have C∩γuU(F) 6= ∅ or equivalently γ−1

u (C)∩U(F) 6= ∅. As γ−1
u (C) is still a compact

subset of H2 × H2 and U(F) ⊆ U(F∞), by the first part of the proof there are only finitely many

units u such that γu satisfies C ∩ γu(F) 6= ∅ for every fixed γ =
(

a b
c d

)
. For every (−c, a) ∈ VC,1,

fix a matrix γ−c,a =
(

a b−c,a

c d−c,a

)
∈ Γ. Now consider an arbitrary matrix γ =

(
a b
c d

)
∈ Γ and set
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h = γ−1
−c,aγ. Then h ∈ Γ∞ and h−1(γ−1

−c,a(C)) ∩ F∞ 6= ∅ if and only if (γ−1
−c,a(C) ∩ h(F∞) 6= ∅. As

γ−1
−c,a(C) is compact, by the first part of the proof there are only finitely many h ∈ Γ∞ that satisfy

this and hence there are also only finitely many γ ∈ Γ satisfying C ∩ γ(F) 6= ∅.

Corollary 3.10 For every Z ∈ H2 × H2, there exists λ > 0 such that if B(Z, λ) ∩ g(F) 6= ∅, then
Z ∈ g(F) for g ∈ Γ.

Proof. Let Z ∈ H2 × H2. Take some λ′ > 0 randomly. As the closed ball B(Z, λ′) is compact,
B(Z, λ′) ∩ g(F) 6= ∅ for only finitely many g ∈ Γ. Hence also B(Z, λ′) ∩ g(F) 6= ∅ for only finitely
many g ∈ Γ. Set λ0 = min{d(Z, g(F)) : g ∈ Γ such that B(Z, λ′) ∩ g(F) 6= ∅ and Z 6∈ g(F)},
where d(Z, g(F)) denotes the Euclidean distance from Z to the the set g(F). Take λ = λ0

2 and the
corollary is proven.

The following corollary is now easy to prove.

Corollary 3.11 ∂F =
⋃

g 6=1 F ∩ g(F).

4 Some topological and geometrical properties of the fun-

damental domain

In order to determine a presentation of Γ, we need to obtain more information on the funda-
mental domain F of Γ constructed in the previous section. Thus in this section we will study
some properties of F . First we recall some notions from real algebraic geometry (for more de-
tails see [BCR98]). Recall that a real algebraic set is the set of zeros in Rn of some subset of
R [X1, . . . , Xn]. An algebraic variety is an irreducible algebraic set, i.e. one which is not the
union of two proper real algebraic subsets. Moreover, a real semi-algebraic set is a set of the form⋃s

i=1

⋂ni

j=1 {x ∈ Rn : fi,j(x) ∗i,j 0}, where fi,j(x) ∈ R [X1, . . . , Xn] and ∗i,j is either = or <, for
i = 1, . . . , s and j = 1, . . . , ni. We will use the notion of dimension and local dimension of semi-
algebraic sets as given in [BCR98]. For example the sets V ±,≥

i and V ≥
c,d are real semi-algebraic

sets and the sets V ±
i and Vc,d are real algebraic sets and in fact, we will prove that they are real

algebraic varieties.
The following lemma describes when two sets Vc1,d1

and Vc2,d2
are equal.

Lemma 4.1 Let (c1, d1), (c2, d2) ∈ S. Then Vc1,d1
= Vc2,d3

if and only if (c2, d2) = (uc1, ud1) for
some u ∈ U(R). Moreover if c1d2 = c2d1 and N(c1)2 6= N(c2)2 then Vc1,d1

∩ Vc2,d2
= ∅.

Proof. One implication has already been given in (18). For the other implication, suppose that
Vc1,d1

= Vc2,d2
. The case c1c2 = 0 follows from the fact that if (c, d) ∈ S then c = 0 if and only if

Vc,d = H2 × H2. So assume c1c2 6= 0. We can then rewrite fc,d as

fc,d(x1, x2, y1, y2) = N(c)2

[(
x1 +

d

c

)2

+ y2
1

][(
x2 +

d′

c′

)2

+ y2
2

]
.

In particular, if c 6= 0 then the intersection of Vc,d with A = {(x, 0, y, 1) : x ∈ R, y ∈ R+} is
formed by the points (x, 0, y, 1) such that (x, y) belongs to the ball with centre

(
d
c
, 0
)

and radius
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1
N(c)

√
1 +

(
d′

c′

)2
. Therefore, if Vc1,d1

= Vc2,d2
then d1

c1
= d2

c2
, or equivalently, c1d2 = c2d1, and

N(c1) = N(c2). As (c1, d1), (c2, d2) ∈ S, g1 =
(

a1 b1

c1 d1

)
∈ Γ and g2 =

(
a2 b2

c2 d2

)
∈ Γ and

g2g−1
1 ∈ Γ∞. Thus g2 =

(
u−1 b

0 u

)
g1 for some u ∈ U(R) and b ∈ R and so (c2, d2) = (uc1, ud1).

The second part follows easily.

Let

V∞ = {V +
i , V −

i : 1 ≤ i ≤ 3},

V = {Vc,d : (c, d) ∈ S, c 6= 0} and

M = {γ(M) : γ ∈ Γ and M ∈ V ∪ V∞} .

Observe that

∂F0 ⊆
⋃

V ∈V
V, ∂F∞ ⊆

⋃

V ∈V∞

V and ∂F ⊆
⋃

V ∈V∪V∞

V. (25)

Let V ∈ V ∪V∞. If V = V ±
i (respectively, V = Vc,d) then let V ≥ = V ±,≥

i (respectively, V ≥ = V ≥
c,d).

Define V ≤ in a similar way. Clearly, each V ≥ and V ≥ are real semi-algebraic sets, V is the
intersection with H2 × H2 of a real algebraic set and it is the boundary of V ≤ and V ≥ and its
intersection. Thus F∞, F0 and F and their boundaries are real semi-algebraic sets.

Let γ =
(

a b
c d

)
∈ Γ \ {1} such that if c = 0 then a > 0 and if moreover a = 1 then

b = s1 + s2ω with s1, s2 ∈ Z. Then let

Eγ =





V ≥
c,d, if c 6= 0;

V +,≤
3 , if c = 0 and a < 1;

V −,≥
3 , if c = 0 and a > 1;

V +,≤
1 , if c = 0, a = 1 and b = s1 + s2ω with s1 < 0;

V −,≥
1 , if c = 0, a = 1 and b = s1 + s2ω with s1 > 0;

V +,≤
2 , if c = 0, a = 1 and b = s2ω with s2 < 0;

V −,≤
2 , if c = 0, a = 1 and b = s2ω with s2 > 0.

(26)

Let E′
γ be the set obtained by interchanging in the definition of Eγ the roles of ≤ and ≥ and let

Vγ = ∂Eγ = Eγ ∩ E′
γ .

The following lemma follows by straightforward calculations.

Lemma 4.2 If γ ∈ Γ \ {1} then Vγ ∈ V∞ ∪ V, F ⊆ Eγ , γ−1(F) ⊆ E′
γ and hence F ∩ γ−1(F) ⊆ Vγ .

Using (18) it is easy to prove the following lemma.

Lemma 4.3 The set V ∪ V∞ is locally finite.

We first calculate the local dimensions of F and ∂F .
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Lemma 4.4 The fundamental domain F has local dimension 4 at every point and its boundary ∂F
has local dimension 3 at every point.

Proof. Let Z ∈ F . We have to prove that for every λ > 0, B(Z, λ) ∩ F is of dimension 4. This
is obvious for Z ∈ F◦. So suppose Z ∈ ∂F . If Z 6∈ ∂F0, then Z ∈ V for some V ∈ V∞. As ∂F0

is closed, there is λ0 > 0 such that B(Z, λ0) ∩ ∂F0 = ∅. We may assume without loss of generality
that λ0 is smaller than 1 and 2ǫ0. If Z = (s1, s2, r = s3, h) then let Z ′ = (s′

1, s′
2, r′ = s′

3, h) where
for i = 1, 2, 3 we have

s′
i =





si − λ0√
3
, if Z ∈ V +

i ;
si + λ0√

3
, if Z ∈ V −

i ;
si, otherwise.

Then Z ′ ∈ B(Z, λ0) ∩ F◦
∞ ∩ F◦

0 and thus there exists λ′ > 0 such that B(Z ′, λ′) ⊆ F◦ ∩ B(Z, λ0).
Hence B(Z, λ0) ∩ F is of dimension 4. By the choice of λ0, this is true for any λ < λ0 and of
course also for any λ > λ0. Finally suppose Z ∈ ∂F ∩ ∂F0. By (20) and (21) Z is of the form
(s1, s2, r, h0(s1, s2, r)) with (s1, s2, r) ∈ B. Let λ > 0. By (20) the point Z ′ = (s1, s2, r, h0(s1, s2, r)+
λ
2 ) is in B(Z, λ) ∩ F◦

0 . If Z ′ ∈ F◦, then there exists λ′ > 0 such that B(Z ′, λ′) ⊆ B(Z, λ) ∩ F◦ and
hence B(Z, λ) ∩ F has dimension 4. If not, then Z ′ ∈ ∂F ∩ F◦

0 and hence by the above there exists
λ′ > 0 such that B(Z ′, λ′) ⊆ B(Z, λ) and B(Z ′, λ′) ∩ F has dimension 4. Thus also B(Z, λ) ∩ F
has dimension 4.

To prove the second part, take Z ∈ ∂F , λ > 0 and set B = B(Z, λ), U1 = B ∩ F and
U2 = B ∩ (Fc ∪ ∂F), where Fc denotes the complementary of F in H2 × H2. Then B, U1 and U2

satisfy the conditions of Lemma A.3 and hence B(Z, λ) ∩ ∂F = U1 ∩ U2 has dimension 3.

The next three lemmas give more details on the elements of V ∪ V∞.

Lemma 4.5 The elements of V ∪V∞ are non-singular irreducible real algebraic varieties of dimen-
sion 3. Moreover if two different varieties M1 and M2 intersect non-trivially, with M1, M2 ∈ V∪V∞,
then their intersection has local dimension 2 at every point.

Proof. Applying the general implicit function theorem to the following functions

fc,d(x1, x2, y1, y2) =
[
(cx1 + d)2 + c2y2

1

] [
(c′x2 + d′)2 + c′2y2

2

]
,

F (x1, x2, y1, y2) = (fc1,d1
(x1, x2, y1, y2), fc2,d2

(x1, x2, y1, y2)),

for (c, d), (c1, d1), (c2, d2) ∈ S with c, c1, c2 6= 0 and Vc1,d1
6= Vc2,d2

, one gets that Vc,d and Vc1,d1
∩

Vc2,d2
are C∞-manifolds of dimension 3 and 2 respectively. The fact that the elements of V are

path-connected together with [BCR98, Proposition 3.3.10] yield the desired property. The same
argument works for the elements of V∞ or the combination of an element of V and an element of
V∞.

Lemma 4.6 The elements of M are non-singular irreducible real algebraic varieties of dimension
3 and the intersection of two different elements of M is of dimension at most 2.

Proof. The first part follows easily from Lemma 4.5 and [BCR98, Theorem 2.8.8] and the fact
that the action of PSL2(R) on H2 × H2 is a bijective semi-algebraic map. The second part follows
trivially from the irreducibility.
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Lemma 4.7 Let M1, M2, M3 be pairwise different elements of V ∪ V∞ with M1 ∩ M2 ∩ M3 6= ∅.
Then M1 ∩ M2 ∩ M3 is a real algebraic set of local dimension 1 at every point and with at most one
singular point.

Proof. Suppose that Mi = Vci,di
for i = 1, 2, 3. Similar, as in the proof of Lemma 4.5, we apply

the implicit function theorem to the function F : R4 → R3 defined by

(x1, x2, y1, y2) 7→ (fc1,d1
(x1, x2, y1, y2), fc2,d2

(x1, x2, y1, y2), fc3,d3
(x1, x2, y1, y2)).

So Vc1,d1
∩ Vc2,d2

∩ Vc3,d3
= F −1(1, 1, 1). It is sufficient to prove that the Jacobian matrix of F is

of rank 3 except possibly for at most one point. The Jacobian matrix of F has the following form

2




c1(c1x1 + d1)α1 c2(c2x1 + d2)α2 c3(c3x1 + d3)α3

c′
1(c′

1x2 + d′
1)β1 c′

2(c′
2x2 + d′

2)β2 c′
3(c′

3x2 + d′
3)β3

c2
1y1α1 c2

2y1α2 c2
3y1α3

c′2
1 y2β1 c′2

2 y2β2 c′2
3 y2β3


 , (27)

where αi = (c′
ix2 + d′

i)
2 + c′2

i y2
2 and βi = (cix1 + di)2 + c2

i y2
1 . Note that βi = α−1

i because
(x1, x2, y1, y2) ∈ Vc1,d1

∩ Vc2,d2
∩ Vc3,d3

. In particular αi is nonzero for every i = 1, . . . , 3. The
determinant det1 of the submatrix of (27) formed by the first three rows is

det1 = (γ1(c′
1x2 + d′

1) + γ2(c′
2x2 + d′

2) + γ3(c′
3x2 + d′

3))y1,

with γi = c′
ici+1ci+2α−1

i αi+1αi+2(ci+1di+2 − ci+2di+1), where the indexes are to be interpreted
modulo 3. Note that each γi 6= 0 because of Corollary 4.1 and the assumption that the three varieties
considered are distinct. Similar calculations show that the determinant det2 of the submatrix of
(27) formed by the rows 1, 3 and 4 is:

det2 = (−γ1c′
1 − γ2c′

2 − γ3c′
3)y1y2.

If both determinants are 0, then (because y1 6= 0 and y2 6= 0)
{

γ1c′
1 + γ2c′

2 + γ3c′
3 = 0

γ1d′
1 + γ2d′

2 + γ3d′
3 = 0.

Hence the vector (γ1, γ2, γ3) is perpendicular to the vectors (c′
1, c′

2, c′
3) and (d′

1, d′
2, d′

3) and thus

(γ1, γ2, γ3) = t((c′
1, c′

2, c′
3) × (d′

1, d′
2, d′

3))

for some t ∈ R. So



c′
1c2c3α−1

1 α2α3(c2d3 − c3d3)
c′

2c3c1α−1
2 α3α1(c3d1 − c1d3)

c′
3c1c2α−1

3 α1α2(c1d2 − c2d1)


 = t




c′
2d′

3 − c′
3d′

2

c′
3d′

1 − c′
1d′

3

c′
1d′

2 − c′
2d′

1


 .

Dividing the first coordinate by the second and the third, we get that

α−2
1 = µ2α−2

2 (28)

α−2
1 = µ3α−2

3 , (29)
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for some µ2 and µ3 depending only on ci and di for 1 ≤ i ≤ 3. Because α−1
i can be interpreted as c2

i

times the square of the Euclidean distance from the point (x1, y1) to the point (− di

ci
, 0), equations

(28) and (29) take the form

d

(
(x1, y1),

(
−d1

c1
, 0
))

= λid

(
(x1, y1),

(
−di

ci

, 0
))

with λi = ci

c1

4
√

µi for i = 2, 3. Hence, modulo a translation (x1, y1) is a solution for (x, y) of the
system

{
x2 + y2 = λ2

2((x − a)2 + y2)
x2 + y2 = λ2

3((x − b)2 + y2),

when a and b are different non-zero real numbers. If λi = 1 for i = 2 or i = 3, then the corresponding
equation represents the bisector (which is a line) of (0, 0) and (a, 0) or of (0, 0) and (b, 0). Otherwise,

the equation represents the circle Ci with centre
(

− λ2
i a

1−λ2
i

, 0
)

and radius λ2a
1−λ2

2

(because y > 0 and

a 6= b, the case λ1 = 1 = λ2 is impossible). Such two different lines, two different circles or a circle
and a line intersect in at most one point. So, if there are more than two points in H2 ×H2 satisfying
the two equations then λi 6= 1 for i 6= 2, 3 and the equations represent the same circles. In this case





λ2
2a

1−λ2
2

= λ2
3b

1−λ2
3

λ2a
1−λ2

2

= λ3b
1−λ2

3

.

Dividing the first equation by the second we conclude that λ2 = λ3 thus a = b, a contradiction.
So we have shown that there exists at most one possible couple (x1, y1) which can be completed

to a point (x1, x2, y1, y2) in the intersection and such that det1 = det2 = 0. Therefore, the condition
that the rank of the Jacobian matrix in (x1, x2, y1, y2) is less than 3 determines the coordinates
x1 and y1. By symmetry, it also determines the coordinates x2 and y2. This means that the
intersection Vc1,d1

∩ Vc2,d2
∩ Vc3,d3

is a real algebraic variety of dimension at most 1.
A similar argument shows that the result remains true if one of several of M1, M2 and M3 are

elements of V∞.

In order to determine the border of F , we need the following definition.

Definition 4.8 An essential hypersurface of F is an element M ∈ V ∪ V∞ such that M ∩ F is of
dimension 3. Let Ve denote the set of essential hypersurfaces of F .

Following the notation of [BCR98], for A a real semi-algebraic set, we denote by A(d) the set of
points of A with local dimension d, i.e.

A(d) = {Z ∈ A : ∀ λ > 0, dim(B(Z, λ) ∩ A) = d}. (30)

Lemma 4.9

∂F =
⋃

M∈Ve

(M ∩ F) =
⋃

M∈Ve

(M ∩ F)(3),
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Proof. Clearly
⋃

M∈Ve
(M∩F)(3) ⊆ ⋃M∈Ve

(M∩F) ⊆ ∂F . Let Z ∈ ∂F and VZ = {M ∈ V ∪ V∞ : Z ∈ M}.
We have to prove that M ∩ F has local dimension 3 at Z for some M ∈ VZ . By (25) and
Lemma 4.3, VZ is a non-empty finite set. Thus there is an open ball B = B(Z, λ0) such that
for every M ∈ V ∪ V∞, B ∩ M 6= ∅ if and only if M ∈ VZ . Thus, if 0 < λ ≤ λ0, then
∂F ∩ B(Z, λ) = ∪M∈VZ

F ∩ B ∩ M and by Lemma 4.5, ∂F ∩ B(Z, λ) has dimension 3. Thus
F ∩ B(Z, λ) ∩ M has dimension 3 for some M ∈ VZ . Therefore M ∩ F has local dimension 3 at Z.

Lemma 4.10 If V ∈ V∞, then V ∩F has local dimension 3 at every point, i.e. (V ∩F)(3) = V ∩F .

Proof. This follows by arguments similar to those used in the proof of Lemma 4.4.

The following proposition gives information about essential hypersurfaces and will be important
in the next two sections.

Proposition 4.11 Assume Z ∈ ∂F and Z is contained in at most two elements M and M ′ of
V ∪ V∞. Then M and M ′ are essential and for every λ > 0, the intersections B(Z, λ) ∩ M ∩ F and
B(Z, λ) ∩ M ′ ∩ F are of dimension 3.

Proof. If Z is contained in a single element M of V ∪V∞, then the statement is obvious. So suppose
that Z ∈ M ∩M ′ for some M, M ′ ∈ V ∪V∞ with M 6= M ′ and Z is contained in no other element of
V∪V∞. By Lemma 4.5, M ∩M ′ is of dimension 2. Moreover M = (M ∩M ′<)∪(M ∩M ′)∪(M ∩M ′>)
and, as by the proof of Lemma 4.5, both varieties M and M ′ are not tangent in Z the first and the
third intersections are of dimension 3. Thus B(Z, λ) ∩ M ∩ M ′> is of dimension 3 and is contained
in the boundary of F . Hence M is an essential hypersurface and B(Z, λ) ∩ M ∩ F is of dimension
3. Inverting the role of M and M ′, we get the same result for M ′.

Finally, if R is a PID, we can prove compactness of the intersection of F with the elements of
V .

Lemma 4.12 Assume R is PID and let Vc,d, for (c, d) ∈ S with c 6= 0. Then Vc,d ∩ F is compact.

Proof. Let Z = (s1, s2, r, h) ∈ Vc,d ∩ F . As Vc,d ∩ F ⊆ F∞, |s1| ≤ 1
2 , |s2| ≤ 1

2 and ǫ−2
0 ≤ r ≤ ǫ2

0.

Moreover Vc,d ∩ F ⊆ F0 and hence, by Lemma 3.7, h >
k2

0

2k
. As Z ∈ ∂F , Lemma 3.5 yields that

h ≤ 1. Thus Vc,d ∩ F is hyperbolically bounded and closed in H2 × H2 and hence it is compact.

5 Generators of Γ

In the remainder of the paper, T denotes the tessellation of H2 × H2 given by Γ and F , i.e
T = {γ(F) : γ ∈ Γ}. In order to get generators for Γ, we have to analyse the intersections between
elements of T . The next lemma is crucial.

Lemma 5.1 Let T1, T2 and T3 be three different elements of T . Then T1 ∩ T2 ∩ T3 ⊆ M1 ∩ M2

for M1, M2 two different elements of M. In particular the intersection of three different tiles has
dimension at most 2.
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Proof. For every i = 1, 2, 3, let γi ∈ Γ with Ti = γi(F). Let N = {M ∈ M : Ti ∩ Tj ⊆
M for some 1 ≤ i ≤ j ≤ 3}. By Lemma 4.2, for every 1 ≤ i < j ≤ 3, we have Ti ∩ Tj ⊆ γi(Vγ

−1

j
γi

).

Thus N 6= ∅ and it is enough to show that N has at least two different elements. By means of
contradiction, assume that N = {M = γ(V )} for some V ∈ V∞ ∩ V and γ ∈ Γ. Let M≥ = γ(V ≥)

and M≤ = γ(V ≤). Then M = γi

(
Vγ

−1

j
γi

)
and, by Lemma 4.2, for each 1 ≤ i < j ≤ 3 either

Ti ⊆ M≥ and Tj ⊆ M≤ or viceversa. By symmetry one may assume that T1 ⊆ M≥. Then
T2 ⊆ M≤ and hence T3 ⊆ M≤ ∩ M≥ = M , a contradiction because dim(T3) = 4 and dim(M) = 3.

Definition 5.2 For each γ ∈ Γ \ {1}, set

Sγ = F ∩ γ−1(F).

A side of F with respect to Γ is a set of the form Sγ that has dimension 3.

In that case, we say that γ is a side pairing transformation of Γ with respect to F , or simply a pairing
transformation. Observe that if γ is a pairing transformation then so is γ−1 and γ(Sγ) = Sγ−1 .
Hence the pairing transformations “pair” the sides of F . More generally, a side of T is a side of γ(F)
for some γ ∈ Γ. Equivalently, the sides of T are the sets of dimension 3 of the form γ(F) ∩ φ(F),
with γ, φ ∈ Γ.

We now can state the main result of this section.

Theorem 5.3 Let F be the fundamental domain of Γ = PSL2(R) described in Theorem 3.4. Then
Γ is generated by the pairing transformations of F with respect to Γ.

Proof. Let L = {⋂i∈I γi(F) : dim(
⋂

i∈I γi(F)) ≤ 2} and consider the set

Ω = H2 × H2 \
⋃

Y ∈L

Y.

This is a set of elements Z ∈ H2 × H2 that belong either to the interior of a tile of F or to a
unique side of T . Indeed, let Z ∈ Ω and suppose Z is not contained in the interior of a tile of F .
Then Z ∈ γ1(F) ∩ γ2(F) for at least two distinct elements γ1 6= γ2 ∈ Γ. Because of Lemma 5.1,
γ1(F) and γ2(F) are the only tiles containing Z. Thus, Z ∈ γ1(F) ∩ γ2(F) and Z 6∈ γ(F) for
γ ∈ Γ \ {γ1, γ2}. By the definition of Ω, dim(γ1(F) ∩ γ2(F)) = 3 and hence γ1(F) ∩ γ2(F) is the
unique side containing Z.

Note that X = H2 × H2 and L satisfy the hypotheses of Lemma A.1 and hence Ω is path-
connected. Let γ ∈ Γ and Z ∈ F◦. Put W = γ(Z) ∈ γ(F)◦. There exists a path p in Ω joining Z
and W . Let A = {h ∈ Γ : p ∩h(F) 6= ∅}. As p is compact and as F is locally finite by Lemma 3.9,
A is finite. We define recursively a sequence of subsets of A by setting A0 = {1} and if i ≥ 1 then
Ai = {h ∈ A : h(F) ∩ k(F) is a side for some k ∈ Ai−1 \⋃j<i−1 Aj}. Let B =

⋃
i≥0 Ai. We claim

that B = A. Otherwise let α : [0, 1] → p ⊆ Ω be a continuous function with image p and such that
α(0) = Z and α(1) = γ(Z) and let a = min{t ∈ [0, 1] : α(t) ∈ h(F) for some h ∈ A \ B}. This
minimum exists because A \ B is non-empty and

⋃
k∈A\B k(F) is closed. Moreover a > 0 because

α(0) = Z ∈ F◦ and 1 ∈ B, so that Z 6∈ h(F) for each h ∈ A \ B. Then α([0, a)) ⊆ ⋃
h∈B h(F)

and as this union is closed, α(a) ∈ h(F) ∩ k(F) for some h ∈ B and k ∈ A \ B. As α(a) ∈ Ω,
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h(F) ∩ k(F) has dimension 3 and hence it is a side. This contradicts the definition of B. Hence
A = B and in particular γ ∈ B. By using the sets Ai, we create a sequence γ0 = 1, γ1, . . . , γk = g
such that for every 1 ≤ j, γj−1(F) ∩ γj(F) is a side. Hence F ∩ γ−1

j−1γj(F) is a side of F and thus
γ−1

j−1γj is one of the proposed generators. As γ = (γ−1
0 γi1

)(γ−1
i1

γi2
) . . . (γ−1

ik−1γik
), the result follows.

Recall that the border of F is covered by the essential hypersurfaces of F . In fact it is also
covered by the sides of F .

Lemma 5.4 The border of F is the union of the sides of F .

Proof. Since the sides of F are contained in ∂F , we only have to prove that if Z ∈ ∂F , then Z
belongs to a side of F . As Z is in ∂F and F is a locally finite a fundamental domain, Z ∈ γ(F)
for only finitely many γ ∈ Γ, say γ1 = 1, . . . , γk. Choose λ0 > 0 such that the closed ball B(Z, λ0)
intersects γi(F) if and only if Z ∈ γi(F) (this is possible by Corollary 3.10). Then

Z ∈ B(Z, λ0) =
(

B(Z, λ0) ∩ F
)

∪
(

B(Z, λ0) ∩ ∪k
i=2γi(F)

)
.

Thus by Lemma A.3, F ∩ γi(F) is of dimension 3, for at least one 1 ≤ i ≤ k and hence Z is
contained in a side of F .

In order to give more precise information on the generators of Γ described in Theorem 5.3,
we need to analyse the relationship between pairing transformations and essential hypersurfaces.
By Lemma 4.9, ∂F is the union of the sets of the form (F ∩ V )(3) with V running through the
essential hypersurfaces and by Lemma 5.4, ∂F also is the union of the sides of F with respect to Γ.
Moreover, if γ is a pairing transformation then Sγ ⊂ F ∩Vγ , by Lemma 4.2. Hence Vγ is an essential
hypersurface of F and it is the unique essential hypersurface of F containing Sγ . Conversely, let V
be an essential hypersurface and let

ΓV = {γ : γ is a pairing transformations such that Sγ ⊆ V }.

Clearly, γ ∈ ΓV if and only if dim Sγ = 3 and V = Vγ . Moreover,

(V ∩ F)(3) ⊆
⋃

γ∈ΓV

Sγ .

Each pairing transformation belongs to ΓV for some essential hypersurface V . We will show that,
in order to generate Γ it is enough to take one element of ΓV for each essential hypersurface.

We start dealing with the elements of V∞. Clearly Γ∞ is generated by the following elements:

P1 =
(

1 1
0 1

)
, P2 =

(
1 ω
0 1

)
, P3 =

(
ǫ0 0
0 ǫ−1

0

)
.

Using (19) and (21) it is easy to see that the six sets V ±
i , with i = 1, 2, 3, are essential hypersurfaces.

Moreover, a straightforward calculation shows that if i = 1, 2 then

ΓV
±

i

= {P ∓1
i } (with opposite signs on both sides). (31)

Thus, for i = 1, 2, Pi (respectively, P −1
i ) is a pairing transformation and its side covers the part of

the boundary given by V +
i ∩ F (respectively, V −

i ∩ F ).
However to cover F ∩ V ±

3 with sides, we may need more than one side.
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Lemma 5.5 If g ∈ ΓV
±

3

then g = QP ∓
3 (with opposite signs on both sides) for some Q ∈ 〈P1, P2〉

and the inversion map is a bijection ΓV
+

3

→ ΓV
−

3

. Moreover ΓV
+

3

and ΓV
+

3

are finite.

Proof. The first statement follows from Lemma 4.2, Lemma 4.5, (26) and some easy computations.

If γ ∈ ΓV
+

3

then γ =
(

ǫ−1
0 b
0 ǫ0

)
with b ∈ R. Moreover, by (2) and (3), F ∩ γ(F) is a non-

empty subset formed by elements of the form (x1, x2, y1, y2) such that (x1, x2) and (x̂1, x̂2) =
(ǫ−2

0 x1 + ǫ−1
0 b, ǫ2

0x2 + ǫ0b′). belong to a compact set. As {(b, b′) : b ∈ R} is discrete, we deduce that
b belongs to a finite subset of R. Thus ΓV

+

3

is finite. Hence ΓV
−

3

is finite too.

We now deal with the essential hypersurfaces of the form Vc,d with (c, d) ∈ S (and necessarily
c 6= 0).

Lemma 5.6 Let (c, d) ∈ S with c 6= 0. Then the second row of every element of ΓVc,d
is of the form

(uc, ud) for some u ∈ U(R). Equivalently, if the second row of γ ∈ Γ is (c, d) then ΓVc,d
⊆ γΓ∞.

Proof. Let γ ∈ ΓVc,d
and let v ∈ R2 be the second row of γ. Then Sγ ⊆ Vγ ∩ Vc,d, by Lemma 4.2,

and hence Vγ = Vc,d, by Lemma 4.6. Then v = (uc, ud) for some u ∈ U(R), by Lemma 4.1.

Let Se denote the set of (c, d) ∈ S such that Vc,d is an essential hypersurface of F .

Corollary 5.7 For every (c, d) ∈ Se choose a, b ∈ R with Pc,d =
(

a b
c d

)
∈ Γ. Then Γ =

〈P1, P2, P3, Pc,d : (c, d) ∈ Se〉.

Proof. By Theorem 5.3, Γ is generated by ∪V ∈Ve
ΓV and hence it is enough to show that

〈P1, P2, P3, γc,d : (c, d) ∈ S〉 contains ΓV for each V ∈ Ve. This is a consequence of (31), Lemma 5.5,
Lemma 5.6 and the fact that Γ∞ is generated by P1, P2 and P3.

In case R is a PID we can combine Theorem 3.8 and Corollary 5.7 to get the following

Corollary 5.8 Suppose that R is a PID and let S1 be as in Theorem 3.8. For each (c, d) ∈ S1

choose a, b ∈ R such that Pc,d =
(

a b
c d

)
∈ Γ. Then Γ = 〈P1, P2, P3, Pc,d | (c, d) ∈ S1〉.

6 Defining Relations of Γ

In this section we construct the relations associated to the pairing transformations, and hence
we obtain a presentation of the group Γ. As in the classical case, there are two types of relations.
These will be called the pairing relations and the cycle relations. The pairing relations are quite
obvious to establish.

Notation 6.1 Given a side S of F , let γS denote the unique element of Γ such that S = F ∩γ−1
S (F)

and let S∗ = F ∩ γS(F).
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Observe that if S is a side then γS(S) = S∗. Moreover S 7→ γS and γ 7→ Sγ define mutually
inverse bijections between the sides of F and the pairing transformations such that γ−1

S = γS∗ , or
equivalently S∗

γ = Sγ−1. The pairing relation given by S is then simply γSγS∗ = 1. Note that in
case S = S∗, we get as pairing relation γ2

S = 1.
We will now turn to the cycle relations. For this we need to introduce the following definition.

Definition 6.2 A cell C of T is a non-empty intersection of tiles of F satisfying the following
property: for every γ ∈ Γ, either C ⊆ γ(F) or dim(C ∩ γ(F)) ≤ dim(C) − 1. Clearly, the cells of
dimension 4 are the tiles. By Lemma 5.1, the sides of T are the cells of dimension 3. A cell of
dimension 2 is called an edge. If a cell or edge is contained in a tile T , then it is called a cell or
an edge of T .

Observe that a cell is always a finite intersection of tiles. Indeed, consider Z ∈ C. As {Z}
is compact, Z is contained in only finitely many tiles of F , and hence so is C. The following
proposition generalizes in some sense the notion of relative interior of a cell.

Proposition 6.3 Let C be a cell of T . Then there exists Z ∈ C, such that, for every γ ∈ Γ,
Z ∈ γ(F) if and only if C ⊆ γ(F).

Proof. Let γ1, . . . , γn be the elements γ ∈ Γ such that C ⊆ γ(F). Suppose, by contradiction, that
there do not exist Z ∈ C that satisfy the statement of the proposition. Then, for every Z ∈ C,
there exists γZ ∈ (Γ \ {γi : 1 ≤ i ≤ n}) such that Z ∈ γZ(F). Put Γ∗ = {γZ : Z ∈ C}. This is a
countable set because Γ is countable, and clearly C ⊆ ∪γ∈Γ∗γ(F). Thus

C = ∪γ∈Γ∗ (γ(F) ∩ C) .

As C 6⊆ γ(F) for γ ∈ Γ∗ and because C is a cell, dim(C ∩ γ(F)) ≤ dim(C) − 1 and hence
C = ∪γ∈Γ∗ (γ(F) ∩ C) has dimension at most dim(C) − 1, a contradiction.

The next lemma is an obvious consequence of the definition of an edge.

Lemma 6.4 Let γ ∈ Γ. If E is an edge then γ(E) is an edge. In particular, if E is an edge of F
contained in some side Sγ = F ∩ γ−1(F), with γ ∈ Γ, then γ(E) is an edge of F .

In order to prove more results on the edges of F , we first have to analyse the sides a bit more
in detail.

Lemma 6.5 Let (c, d) ∈ S with c 6= 0. If t ∈ Γ∞ then there exists (c0, d0) ∈ S, c0 6= 0, such that
t(Vc,d) = Vc0,d0

.

Proof. Let Z ∈ Vc,d. Fix α, β ∈ R such that αc + βd = 1. Write t =
(

ǫ b
0 ǫ−1

)
. Let c0 = ǫ−2c ∈ R

and d0 = d − ǫ−1bc ∈ R. Then (c0, d0) ∈ S, because α′c0 + β′d0 = 1 for α′ = ǫβb + ǫ2α ∈ R and
β′ = β ∈ R. Moreover, for every Z ∈ H2 × H2, we have

‖c0t(Z) + d0‖ = ‖ǫ−2c(ǫ2Z + ǫb) + d − ǫ−1bc‖ = ‖cZ + d‖

Hence t(Vc,d) = Vc0,d0
.

Similarly to Lemma 5.1, one may analyse the intersection of three sides.
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Lemma 6.6 The intersection of three distinct sides of F is of dimension at most 1.

Proof. Let S1, S2, S3 be three distinct sides of F and let γi = γSi
. By Lemma 4.2, each Si ⊆ Vγi

and hence Vγi
is an essential hypersurface of F . If Vγi

6= Vγj
, for every 1 ≤ i < j ≤ 3, then by

Lemma 4.7, S1 ∩ S2 ∩ S3 is of dimension at most 1. Assume now that Vγ1
= Vγ2

= Vγ3
= Vc,d, for

some (c, d) ∈ S, c 6= 0. Then, by Lemma 5.6 and Lemma 4.2, γ1(S1 ∩ S2 ∩ S3) = F ∩ γ1(F) ∩
t−1
2 (F) ∩ t−1

3 (F) ⊆ V−c,a ∩ Vt2
∩ Vt3

, for some a ∈ R. If Vt2
6= Vt3

, then by Lemma 4.7, the last
intersection is of dimension at most 1 as desired. Suppose that Vt2

= Vt3
= V ±

i . Using that t2 6= t3

it is easy to prove that i = 3 and hence t2, t3 6∈ 〈P1, P2〉. By Lemma 5.5, t3 = Qt2 for Q ∈ 〈P1, P2〉.
Thus t2γ1(S1 ∩ S2 ∩ S3) ⊆ t2(V−c,a) ∩ F ∩ Q−1(F) ∩ t2(F). By Lemma 6.5, t2(V−c,a) = Vc′,d′ for
some (c′, d′) ∈ S, c′ 6= 0 and by Lemma 4.2 and the fact that t2 6∈ 〈P1, P2, 〉, t2(F) ∩ F ⊆ V±

3 and
Q−1(F∞) ∩ F∞ ⊆ V ±

i with i = 1 or 2. Hence Lemma 4.7 allows to conclude.
Next assume that Vγ1

= Vγ2
= Vγ3

= V ±
i with i = 1, 2 or 3. By Lemma 4.2 and the fact

that the γi’s are different we conclude that i = 3 and hence γ1, γ2, γ3 ∈ Γ∞ \ 〈P1, P2〉. Then,
again by the same argument as above, γ2 = Q2γ1 and γ3 = Q3γ1 for Q2, Q3 ∈ 〈P1, P2〉. Thus
γ1(S1 ∩ S2 ∩ S3) ⊆ F ∩ γ1(F) ∩ Q−1

2 (F) ∩ Q3(F) ⊆ V ±
3 ∩ V ±

i ∩ V ±
j . with i, j ∈ {1, 2}. However, as

Q2 6= Q3, V ±
i 6= V ±

j and again Lemma 4.7 allows to conclude.
So up to permutations of the sides, we are left to deal with the case Vγ1

= Vγ2
6= Vγ3

and four
possible subcases:

1. Vγ1
= Vc1,d1

and Vγ3
= Vc3,d3

with (c1, d1), (c3, d3) ∈ S and c1 and c3 different from 0;

2. Vγ1
= Vc1,d1

and Vγ3
∈ V∞ with (c1, d1) ∈ S and c1 6= 0;

3. Vγ1
∈ V∞ and Vγ3

= Vc3,d3
for (c3, d3) ∈ S and c3 6= 0.

4. Vγ1
, Vγ3

∈ V∞.

We deal with each case separately.
In the first case, by Lemma 5.6, γ2 = tγ1, for some 1 6= t ∈ Γ∞. Thus γ1(S1 ∩ S2 ∩ S3) =

γ1(F) ∩ F ∩ t−1(F) ∩ γ1γ−1
3 (F) ⊆ Vγ

−1

1

∩ Vt ∩ Vγ3γ
−1

1

. We claim that Vγ
−1

1

, Vt and Vγ3γ
−1

1

are
pairwise different. On the one side Vt ∈ V∞ while Vγ

−1

1

∈ V and hence Vγ1
6= Vt. On the other side,

since Vγ1
= Vc1,d1

, the last row of γ1 is of the form (uc1, ud1) with u ∈ U(R), by Lemma 4.1. If
γ3γ−1

1 ∈ Γ∞ then the last row of γ3 is of the same form and hence Vc1,d1
= Vc3,d3

contradicting the
hypothesis. Thus γ1γ−1

3 6∈ Γ∞ and therefore Vγ3γ
−1

1

6= Vt. Finally, if Vγ
−1

1

= Vγ3γ
−1

1

then the last

rows of γ−1
1 and γ3γ−1

1 differs in a unit and hence γ3 ∈ Γ∞.
In the second case, again by the same reasoning, γ2 = tγ1 for some t ∈ Γ∞ and γ3 ∈ Γ∞. Thus

S1 ∩ S2 ∩ S3 = F ∩ γ−1
1 (F) ∩ γ−1

1 t−1(F) ∩ γ−1
3 (F) ⊆ Vγ1

∩ V ∩
(
γ−1

1 (F) ∩ γ−1
1 t−1(F)

)
with V

en element of V∞. Observe that γ1

(
γ−1

1 (F) ∩ γ−1
1 t−1(F)

)
= F ∩ t−1(F) ⊆ V ′ for some element

V ′ ∈ V∞. Hence S1 ∩ S2 ∩ S3 ⊆ Vγ1
∩ V ∩ γ−1

1 (V ′). By applying the implicit function theorem, as
in the proof of Lemma 4.5 and distinguishing between the different cases for V and V ′, it is now a
matter of a straightforward tedious calculation to prove that Vγ1

∩ V ∩ γ−1
1 (V ′) has dimension at

most 1.
In the third case Vγ1

= V ±
3 by (31). and γ2 = Qγ1 ∈ 〈P1, P2〉P ±

3 for some Q ∈ 〈P1, P2〉. Then
γ1(S1 ∩ S2 ∩ S3) = F ∩ γ−1

1 (F) ∩ Q−1(F) ∩ γ1γ−1
3 (F) ⊆ Vγ

−1

1

∩ VQ ∩ Vγ3γ
−1

1

. Since γ3γ−1
1 6∈ Γ∞ and

γ−1
1 6∈ 〈P1, P2〉 we deduce that Vγ

−1

1

, VQ and Vγ3γ
−1

1

are different and hence the result follows from
Lemma 4.7.
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In the fourth case, again Vγ1
= Vγ2

= V ±
3 and γ2 = Qγ1, as above. Moreover S1 ∩ S2 ∩ S3 =

F ∩ γ−1
1 (F) ∩ Q−1γ−1

1 (F) ∩ γ−1
3 (F) ⊆ Vγ1

∩ Vγ3
∩
(
γ−1

1 (F) ∩ Q−1γ−1
1 (F)

)
, with Vγ1

and Vγ3
two

different elements of V∞. As in case 2,
(
γ−1

1 (F) ∩ Q−1γ−1
1 (F)

)
= γ−1

1 (V ′) for some V ′ ∈ {V ±
1 , V ±

2 }.
Again the implicit function theorem gives the desired result.

We now describe F ∩ V for V ∈ V ∪ V∞ in terms of intersection of tiles.

Lemma 6.7 Let V ∈ V ∪ V∞ and set Γ∗
V = {γ ∈ Γ : F ∩ γ(F) ⊆ V ∩ F}. Then

V ∩ F =
⋃

γ∈Γ∗
V

(F ∩ γ(F)) .

Proof. One inclusion is obvious. To prove the other one, take Z ∈ V ∩ F . Suppose V ∈ V , i.e.

V = Vc,d for some (c, d) ∈ S. Take γ =
(

a b
c d

)
∈ Γ for some a, b ∈ R. By (7), h(γ(Z)) = h(Z)

and hence by Lemma 3.3, γ(Z) ∈ F0. As F∞ is a fundamental domain for Γ∞, there exists τ ∈ Γ∞
such that τγ(Z) ∈ F∞. As, by (9), h(τγ(Z)) = h(γ(Z)) = h(Z), we have τγ(Z) ∈ F and thus
Z ∈ F ∩ γ−1τ−1(F). By Lemma 4.2, F ∩ γ−1τ−1(F) ⊆ Vc,d ∩ F .

If V ∈ V∞ a similar reasoning may be applied.

Next we show that every edge is contained in precisely two sides. To prove this we will make
use of the following lemma.

Lemma 6.8 Let Z ∈ F and let C denote the intersection of the tiles of T containing Z (i.e.
C =

⋂
Z∈γ(F) γ(F)). If dim(C) = 2, then the number of sides of F containing C is exactly 2.

Proof. By Lemma 6.6, C is not contained in three different sides. So we only have to show that
C is contained in two different sides.

Clearly, every intersection of tiles containing Z also contains C. We claim that a similar property
holds for the elements M ∈ M. Indeed, if M ∈ M then M = γ(V ) for some V ∈ V ∩ V∞ and
some γ ∈ Γ. If Z ∈ M then γ−1(Z) ⊆ V and hence, by Lemma 6.7, there is γ1 ∈ Γ such that
γ−1(Z) ∈ F ∩γ1(F) ⊆ V . Therefore Z ∈ γ(F)∩γγ1(F) and hence C ⊆ γ(F)∩γγ1(F) ⊆ γ(V ) = M ,
as desired. We claim that a similar property holds for the elements V ∈ V ∪ V∞. Indeed, if Z ∈ V
then by Lemma 6.7, there is γ1 ∈ Γ such that Z ∈ F ∩ γ1(F) ⊆ V . Hence C ⊆ F ∩ γ1(F) ⊆ V , as
desired.

By Lemma 4.9, Z is contained in at least one essential hypersurface W . Since C has dimension
2, Z cannot be contained in more than two elements of V ∪ V∞, by Lemma 4.7. Then, the elements
of V ∪ V∞ containing Z are essential hypersurfaces of F by Proposition 4.11. Take λ > 0 such that
B(Z, λ)∩γ(F) = ∅ for every γ with Z 6∈ γ(F) and B(Z, λ)∩W = ∅ for every essential hypersurface
W of F not containing Z. Again by Proposition 4.11, if W is an essential hypersurface of F
containing Z then B(Z, λ) ∩ W ∩ F is of dimension 3 and B(Z, λ) ∩ W ∩ F ⊆ ⋃

16=γ∈Γ,Z∈γ(F)(F ∩
γ(F) ∩ W ) and thus one of these intersections is of dimension 3. Therefore, if W is an essential
hypersurface of F containing C then it contains a side containing Z. Thus, if C is contained in
exactly two elements of V ∪ V∞ then each contains one side containing Z and these two sides have
to be different by Lemma 4.5.

Hence we may assume that Z is contained in exactly one element W of V ∪ V∞. Then C is
contained in at least one side S1 and S1 ⊆ W . Let γ1 ∈ ΓS1

(i.e. S1 = F ∩ γ−1
1 (F)). Then, by
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Lemma 4.2, W = Vγ1
. As dim(C) = 2, dim(Sγ1

) = 3 and C ⊆ F ∩ S1 there is γ2 ∈ Γ \ {1, γ1} with
Z ∈ γ−1

2 (F). Thus γ2 = tγ1 with t ∈ Γ∞ \ {1} and if γ1 ∈ Γ∞ then t ∈ 〈P1, P2〉, by Lemma 5.5 and
Lemma 5.6. We consider separately two cases.

First assume that W = V ±
i with i = 1 or 2 and without loss of generality, we may assume

that W = V +
1 . Then γ1 = P −1

1 by (31) and γ2 = P α
1 P β

2 for some integers α and β. Moreover
Z = (1

2 , s2, r, h) and (α + 1
2 , s2 + β, r, h) = γ2(Z) ∈ F . Thus α ∈ {0, −1}. However, if α = 0 then

Vγ2
= V ±

2 6= W . Thus α = −1 and hence β = ±1, because γ1 6= γ2. Then Z ∈ V ±
2 , a contradiction.

Assume now that either W ∈ V or W = V ±
3 . In both cases Vt 6= Vγ1

, because in the first
case Vγ1

∈ V and Vt ∈ V∞ and in the second case Vt = V ±
i with i = 1 or 2. Moreover γ1(C) ⊆

F∩γ1(F)∩t−1(F) ⊆ Vγ
−1

1

∩Vt. As F ⊆ Et, γ1(Sγ1
) = Sγ

−1

1

⊆ Et. Let M = γ−1
1 (Vt), M≥ = γ−1

1 (Et)

and M≤ = γ−1
1 (E′

t). Then, by the previous, Sγ1
⊆ M≥. By the choice of λ and Lemma 4.5,

B(Z, λ) ∩ W ∩ F ∩ M≤ has dimension 3. Thus, by Lemma 5.4, Z ∈ S for some side S ⊆ W and
different from Sγ1

. Hence also C is contained in two different sides.

The following is a consequence of Proposition 6.3 and Lemma 6.8.

Corollary 6.9 If E is an edge of the fundamental domain F , then there are precisely two sides
that contain E.

The following lemma is obvious.

Lemma 6.10 Let E1 and E2 be two different edges of some tile. Then the intersection E1 ∩ E2 is
of dimension at most 1.

Finally, in order to be able to describe the relations, we need two more lemmas.

Lemma 6.11 Let γ1, γ2 ∈ Γ. Assume γ1(F) ∩ γ2(F) has dimension 2. Then,

1. there exists Z0 ∈ γ1(F) ∩ γ2(F) such that
⋂

Z0∈γ(F) γ(F) is of dimension 2; and

2. for every such Z0, the set
⋂

Z0∈γ(F) γ(F) is an edge contained in γ1(F) ∩ γ2(F).

Proof. 1. We first show the existence of a point Z0 ∈ γ1(F) ∩ γ2(F) such that
⋂

Z0∈γ(F) γ(F) is of
dimension 2. For every Z ∈ γ1(F) ∩ γ2(F), let ΓZ = {γ ∈ Γ \ {γ1, γ2} : Z ∈ γ(F)}. We claim that
ΓZ 6= ∅ for every Z ∈ γ1(F) ∩ γ2(F). Otherwise there is a λ > 0 such that B(Z, λ) ∩ γ(F) = ∅ for
every γ ∈ Γ \ {γ1, γ2}. Then B(Z, λ) ⊆ γ1(F) ∪ γ2(F), which is in contradiction with Lemma A.3.

This proves the claim. Thus γ1(F) ∩ γ2(F) =
⋃

Z∈γ1(F)∩γ2(F)

(⋂
γ∈ΓZ

γ(F) ∩ γ1(F) ∩ γ2(F)
)

. As,

by assumption, γ1(F) ∩ γ2(F) has dimension 2 and Γ is countable, it follows that there exists
Z0 ∈ γ1(F) ∩ γ2(F) with

⋂
Z0∈γ(F) γ(F) of dimension 2.

2. Since Z0 belongs to only finitely many tiles (by Lemma 3.9), say γ1(F), γ2(F), . . . , γn(F), we
have that Z0 ∈ ⋂n

i=1 γi(F) and
⋂n

i=1 γi(F) has dimension 2. We want to prove that this intersection
is an edge. Let γ0 ∈ Γ \ {γ1, . . . , γn}. As Z0 6∈ γ0(F), it is clear that

⋂n
i=1 γi(F) 6⊆ γ0(F). Hence it

remains to prove that
⋂n

i=1 γi(F) intersects γ0(F) in dimension at most 1. Suppose this is not the
case, i.e.

⋂n
i=0 γi(F) is of dimension 2. As in the first part of the proof, there exists Z1 ∈ ⋂n

i=0 γi(F)
such that

⋂
Z1∈γ(F) γ(F) is of dimension 2. Let γ0, . . . , γm be all elements of Γ (with m ≥ n)

such that Z1 ∈ γi(F). So
⋂m

i=0 γi(F) is of dimension 2. By Corollary 3.10, let λ1 > 0 and
B = B(Z1, λ1) be such that B ∩ γ(F) 6= ∅ if and only if Z1 ∈ γ(F). Then B = (B ∩⋃n

i=1 γi(F)) ∪
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(
B ∩

(⋃m
i=n+1 γi(F) ∪ γ0(F)

))
, where both factors are closed sets of dimension 4 (by Lemma 4.4).

Hence by Lemma A.3, (B ∩⋃n
i=1 γi(F)) ∩

(
B ∩

(⋃m
i=n+1 γi(F) ∪ γ0(F)

))
is of dimension 3. Thus

there exists 1 ≤ j1 ≤ n and n + 1 ≤ j2 ≤ m or j2 = 0 such that Z1 ∈ γj1
(F) ∩ γj2

(F) and the latter
intersection is of dimension 3. Hence γj1

(F) ∩ γj2
(F) is a side of the tile γj1

(F). We now come
back to Z0. Let λ0 > 0 and B′ = B(Z0, λ0) be such that ∩γ(F) 6= ∅ if and only if Z0 ∈ γ(F). Thus
B′ = (B′ ∩ γj1

(F)) ∪⋃n
i=1,i6=j1

(B′ ∩ γi(F)) and again by Lemma A.3, there exists 1 ≤ j3 ≤ n and
j3 6= j1 such that γj1

(F) ∩ γj3
(F) is of dimension 3. Thus it is a side of the tile γj1

(F). Hence
Z0 ∈ ∂γj1

(F), such that
⋂

Z0∈γ(F) γ(F) is of dimension 2. Moreover the latter is contained in
γj1

(F) ∩ γj3
(F), which is a side. Hence by Lemma 6.8, there exists a second side of γj1

(F), which
contains

⋂
Z0∈γ(F) γ(F). Thus this side also contains Z0 and hence there exists 1 ≤ j4 ≤ n with

j4 6= j1 and j4 6= j3 such that γj1
(F) ∩ γj4

(F) is a side. Thus the tile γj1
(F) contains three sides,

γj1
(F) ∩ γj2

(F), γj1
(F) ∩ γj3

(F) and γj1
(F) ∩ γj4

(F) and their intersection contains
⋂m

i=0 γi(F),
which is of dimension 2. This contradicts Lemma 6.6. Hence

⋂n
i=1 γi(F) is an edge and it contains

Z0.

Lemma 6.12 Let E be an edge. The finitely many elements γ ∈ Γ with E ⊆ γ(F) can be ordered,
say as γ0, γ1, . . . , γm = γ0, such that γj−1(F)∩γj(F) is a side (containing E) for every 1 ≤ j ≤ m.
Moreover, up to cyclic permutations and reversing the ordering, there is only one possible ordering
with this property.

Proof. Recall that there are only finitely many γ ∈ Γ with E ⊆ γ(F). Let γ0 be such an element.
Then E is an edge of γ0(F) and hence, by Corollary 6.9, there exists two sides, say γ0(F) ∩ γ1F
and γ0(F) ∩ γm−1(F) of γ0(F) containing E. Now E also is an edge of γ1(F) and γ0(F) ∩ γ1(F)
is one of the two sides of γ1(F) containing E. Hence there exists a third tile, say γ2(F), such
that γ1(F) ∩ γ0(F) and γ1(F) ∩ γ2(F) are the two different sides of γ1(F) containing E. So
γ2 6∈ {γ0, γ1}. One may continue this process and have a sequence γ−1, γ0, γ1, γ2, . . . of elements
of Γ such that γi−1(F) ∩ γi(F) and γi(F) ∩ γi+1(F) are the two sides of γi(F) containing E for
every i ≥ 0. In particular every three consecutive elements of the list of γi’s are different. As
there are only finitely many tiles containing E, after finitely many steps we obtain γj ∈ Γ with
γi = γj and 0 ≤ i < j. Let i be minimal with this property. We claim that i = 0. Indeed, if
0 < i, then by construction, γi(F) ∩ γi−1(F), γi(F) ∩ γi+1(F), γj(F) ∩ γj−1(F) = γi(F) ∩ γj−1(F)
and γj(F) ∩ γj+1(F) = γi(F) ∩ γj+1(F) are sides of γi(F), all containing E. By Corollary 6.9,
γi−1 = γj−1 and γi+1 = γj+1 or γi+1 = γj−1 and γi−1 = γj+1. Both cases contradict the minimality
of i. It remains to prove that {γ0, . . . , γj−1} = {γ ∈ Γ : E ⊆ γ(F)}. This may be easily done by
arguments similar as the arguments used in the end of the proof of Lemma 6.11.

To prove the last part, notice that instead of starting with the chosen element γ0 one could have
started with any of the finitely many elements γ ∈ Γ such that E ⊆ γ(F). Second, note that once the
element γ0 is fixed, there exists two unique tiles γm−1(F) and γ1(F) such that γ0(F) ∩ γm−1(F)
and γ0(F) ∩ γ1(F) are sides. Hence, up to a choice of the first element γ0, thus up to a cyclic
permutations, and up to a choice of a second element, thus up to reversing ordering, there is only
one possible ordering.

Based on the previous lemma, we give the following new definition.

Definition 6.13 Let E be an edge. We call an ordering (γ0, . . . , γm−1, γ0) of the elements γ ∈ Γ
such that E ⊆ γ(F) as in Lemma 6.12 an edge loop of E.
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We now come to a description of the relations of Γ. We first define what is called a cycle. To
do so, we fix some notations.

Definition 6.14 Let E be an edge of F and S a side of F containing E. Then define recursively
the sequence (E1, S1, E2, S2, . . .) as follows:

1. E1 = E and S1 = S,

2. Ei+1 = γSi
(Ei),

3. Si+1 is the only side of F different from S∗
i that contains Ei+1.

Note that parts 2 and 3 are justified by Lemma 6.4 and Corollary 6.9. For every i, clearly Ei ⊆ Si

and Ei+1 ⊆ S∗
i , as γSi

(Si) = S∗
i . Moreover, each pair (Ei, Si) determines the pairs (Ei−1, Si−1)

and (Ei+1, Si+1). This is clear for the subsequent pair (Ei+1, Si+1) but also for the previous one
(Ei−1, Si−1) because if i ≥ 2, then S∗

i−1 is the only side of F containing Ei and different from Si

and Ei−1 = γ−1
Si−1

(Ei) = γS∗
i−1

(Ei). Thus each pair (Ei, Si) determines the sequence (E1, S1, . . .).
Now we relate the sequence (E1, S1, E2, S2, . . . ) with an edge loop of E. Let LF = {γ ∈ Γ :

E ⊆ γ(F)}. Clearly 1, γ−1
S1

∈ LF and as S1 is a side of F , there is a unique edge loop of E
of the form (γ0 = 1, γ1 = γS1

, γ2, . . . , γm−1, γ0). As S∗
1 = Sγ1

and S2 are the two sides of F
containing E2, S1 = γ−1

1 (S1)∗ and γ−1
1 (S2) are the two sides of γ−1

1 (F) containing γ−1
1 (E2) = E.

Therefore γ−1
1 (S2) = γ−1

1 (F) ∩ γ2(F) and hence S2 = F ∩ γ1γ2(F). A similar argument shows that
Si = F ∩ γ1γ2 . . . γi(F) for every i. In particular, the sequence (E1, S1, E2, S2, . . . ) is periodic, i.e.
there is n > 0 such that (Ei+n, Si+n) = (Ei, Si) for every i. If n is minimal with this property, then
(Ei, Si) 6= (Ej , Sj) for 1 ≤ i < j ≤ n. We call (E1, S1, . . . En, Sn) the cycle determined by (E1, S1).
Hence this proves the following lemma.

Lemma 6.15 Let E1 be an edge of F and S1 a side of F containing the edge E1. The cycle starting
with (E1, S1, . . .) is a finite cycle.

Note that S1 and S∗
n are the two different sides of F containing E1 and thus there are two cycles

starting with the edge E1, namely (E1, S1, . . . En, Sn) and (E1, S∗
n, En, S∗

n−1, . . . , E2, S∗
1 ).

It is now also clear that if E is an edge and S is a side containing E, then all the cycles containing
E are cyclic permutations of the cycle starting with (E, S) and the cycles obtained by replacing
in those the sides by their paired sides and reversing the order. In particular, if Ei = Ej with
1 ≤ i < j ≤ n, then Si 6= Sj and hence

(Ei, Si, Ei+1, Si+1, . . . , En, Sn, E1, S1, . . . , Ei−1, Si−1)

= (Ej , S∗
j−1, Ej−1, S∗

j−2, . . . , S∗
2 , E1, S∗

n, En, S∗
n−1, . . . , Ej+1, S∗

j ).

Lemma 6.16 If (E1, S1, E2, S2, . . . , En, Sn) is a cycle of F then γSn
γSn−1

, . . . , γS1
has finite order.

Proof. Let γ = γSn
γSn−1

, . . . , γS1
. Clearly γ(E1) = E1 and thus γk(E1) = E1 for all non-negative

integers k. Hence E1 ⊆ γk(F) and because every edge is contained in only finitely many tiles, γ
has finite order.

Because of Theorem 5.3, we thus obtain a natural group epimorphism

ϕ : ∆ → Γ : [γS ] 7→ γS (32)

where ∆ is the group given by the following presentation
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• Generators: a generator [γS ] for each side S of F

• Relations: [γS ] [γS∗] = 1 if the sides S and S∗ are paired and ([γSn
] . . . [γS1

])m = 1 if
(E1, S1, E2, S2, . . . , En, Sn) is a cycle and m is the order of γSn

. . . γS1
.

Our next aim is to show that ϕ is also injective and thus we obtain a presentation for Γ. To
that end we introduce the following definition.

Definition 6.17 A loop of tiles is a finite list of tiles (h0(F), h1(F), . . . , hn(F)) with hi ∈ Γ such
that h0(F) = hn(F) and hi−1(F) ∩ hi(F) is of dimension 3, for every i = 1, . . . n.

The last condition means that F ∩ h−1
i hi−1(F) is of dimension 3, which is equivalent to γi =

h−1
i−1hi being a side-paring transformation. Moreover we get the relation γ1γ2 . . . γn = 1 which is

called a loop relation. In Theorem 6.24 we will show that these relations form a complete set of
relations of Γ.

It is easy to see that the pairing and cycle relations are determined by loop relations. Indeed,
let S and S∗ be two paired sides of F . Then (F , γs(F), γSγS∗(F) = F) is a loop of tiles which gives
as loop relation the pairing relation. Let (E1, S1, E2, S2, . . . , En, Sn) be a cycle. We have seen that
there exists a positive integer m such that (γSn

γSn−1
. . . γS1

)m = 1. Set h0 = 1 and hi = hi−1γSj

where j ≡ i mod (n) and i ∈ {1, . . . , mn}. Consider (h0(F), . . . , hmn(F)). Clearly hmn = 1 and
hence hmn(F) = F = h0(F). Also, for every i ∈ {1, . . . , mn}, hi−1(F) ∩hi(F) = hi−1(F ∩γSj

(F)),
where γSj

is a side-paring transformation and hence F ∩ γSj
(F) and thus also hi−1(F) ∩ hi(F) is

of dimension 3. So, by definition, (h0(F), . . . , hmn(F)) is a loop of tiles and the associated loop
relation is the cycle relation.

Consider the union of intersections of varieties of M such that these intersections have dimension
at most 1. Let Ω denote the complement of this set in H2 × H2. Note that by Lemma A.1, Ω is
path-connected.

In the remainder we fix α to be a continuous map

α : [0, 1] → Ω,

such that
α(0) ∈ g(F)◦ and α(1) ∈ g′(F)◦,

for some g, g′ ∈ Γ and such that α is made up of a finite number of line segments, which are
parametrized by a polynomials of degree at most one. Moreover, for each line segment forming α,
we suppose that at least one of its end-points does not belong to any element in M. Note that such
a map exists. Indeed, let Mα denote the set consisting of the elements of M that have non-empty
intersection with (the image of) α. Then it is easy to see that Ω \⋃M∈Mα

M is dense in Ω. Hence,
by Lemma A.4, such a map α indeed exists.

Lemma 6.18 The set {t ∈ [0, 1] : α(t) ∈ ∂g(F) for some g ∈ Γ} is finite.

Proof. We know from Lemma 3.9 that the compact set α([0, 1]) only intersects finitely many tiles
and thus also only finitely many sides. By Lemma 4.2, for every side S of some tile g(F), g(F) ∩ S
is contained in a precise variety M ∈ M. As the elements of M are real semi-algebraic varieties,
which are given by polynomials, a line segment is either contained in such a variety or it intersects
it in finitely many points. The path α consists of finitely many line segments, such that at least
one of the end-points of these line segments does not belong to any element in M. If such a line
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segment l is parametrized by a polynomial of first degree then there are only finitely many t ∈ [0, 1]
such that l(t) ∈ M for some M ∈ M. Moreover, if a line segment l is parametrized by a polynomial
of degree 0, i.e. the image of l is just a point, then by definition this point is not contained in any
element of M and l ∩ M = ∅ for every M ∈ M. Thus α(t) belongs to a side for only finitely many
t. Hence the lemma follows by Lemma 5.4.

Lemma 6.19 Let α be a continuous map [0, 1] → Ω such that

1. α(0) ∈ g(F)◦ and α(1) ∈ g′(F)◦ for some g, g′ ∈ Γ,

2. α is made up of a finite number of line segments,

3. for each of these line segments at least one of its two end-points does not belong to any element
in M.

Then there exists a unique ordered list L = (a0, g1, a1, g2, a2 . . . , gn, an), where gi ∈ Γ, 0 = a0 <
a1 < . . . < an = 1 and for every 1 ≤ i ≤ n,

(i) gi−1 6= gi,

(ii) α([ai−1, ai]) ⊆ gi(F) and

(iii) there exists ǫ0 > 0, such that α((ai, ai + ǫ)) ∩ gi(F) = ∅.

We call L the partition of α.

Proof. As α(0) ∈ g(F)◦, we set g1 = g and a0 = 0. By Lemma 6.18, there are only finitely many
t ∈ [0, 1] such that α(t) ∈ ∂g(F) for some g ∈ Γ, say t1 < t2 < . . . < tm. Put t0 = 0 and tm+1 = 1.
For each 1 ≤ i ≤ m + 1, the set α(ti−1, ti) is contained in the interior of only one tile, say hi(F)
with hi ∈ Γ. We now construct recursively (a0 = 0 = t0, g1 = g, a1, g1, . . . , gn, an). Let a1 = ti

with ti maximal such that α([0, ti]) ⊆ g1(F). Then h1 = . . . = hi = g1, α([ti, ti+1]) ⊆ hi+1(F)
and we set g2 = hi+1. Assume we have constructed (a0, g1, a1, . . . , ak, gk) satisfying conditions
(i)-(iii) and such that ak = ti for some i and gk = hi+1. Then let ak+1 = tj with j maximal
with α([ti, tj]) ⊆ gk(F) and gk+1 = hj+1. After finitely many steps, we obtain an ordered list
(a0 = 0 = t0, g1 = g, a1, g1, . . . , gn, an) satisfying conditions (i)-(iii). Clearly such a sequence is
unique.

Remark 6.20 As, by assumption, α(0) ∈ g(F)◦ and α(1) ∈ g′(F)◦ for some g, g′ ∈ Γ, the first
element g1 of the partition of α equals g and the last element gn equals g′.

The remainder of the paper is based on ideas from a recent proof of the presentation part of the
classical Poincaré theorem [JKDR15]. Let g, h ∈ Γ. Let C be a cell of T of dimension m ≥ 2 and
that is contained in g(F) ∩ h(F). We define κC(g, h) ∈ ∆ as follows.

• If m = 4 then κC(g, h) = 1.

• If m = 3 then κC(g, h) = [g−1h].
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• If m = 2 then C is an edge contained in g(F) ∩ h(F) and thus, by Lemma 6.12, g and h
belong to an edge loop of C. Up to a cyclic permutation, we can write the edge loop of C as
(g = k0, . . . , kt = h, kt+1, . . . , km = g) (or the equivalent edge loop (g = km, km−1, . . . , kt =
h, kt−1, . . . , k1, k0 = g)) and we set

κC(g, h) = [k−1
0 k1][k−1

1 k2] · · · [k−1
t−1kt] = [k−1

m km−1] · · · [k−1
t+1kt].

Observe that κC(g, g) = 1 in the three cases.

Lemma 6.21 Let g, h ∈ Γ and let C be a cell of T of dimension m ≥ 2 and that is contained in
g(F) ∩ h(F). The following properties hold.

1. κC(g, h) = κC(h, g)−1.

2. If D is cell of T contained in C and of dimension at least 2 then κD(g, h) = κC(g, h).

3. If g1, . . . , gn ∈ Γ and C ⊆ ⋂n
i=1 gi(F) then κC(g1, gn) = κC(g1, g2)κC(g2, g3) · · · κC(gn−1, gn).

Proof. 1. If m = 4, then g = h and there is nothing to prove. If m = 3 then g−1h and h−1g are
pairing transformations and hence by the pairing relations of the group ∆, κC(g, h)κC(h, g) = 1.
Finally, if m = 2, then we can write the edge loop of C as (g = k0, . . . , kt = h, kt+1, . . . , km = g)
and thus

κC(g, h) = [k−1
0 k1][k−1

1 k2] · · · [k−1
t−1kt],

κC(h, g) = [k−1
t kt+1][k−1

t+1kt+2] · · · [k−1
m−1km].

It is now easy to see that κC(g, h)κC(h, g) = 1 and hence the result follows.
2. If C = D then there is nothing to prove. So assume that C 6= D. If C is a side then D is an

edge and g and h are two consecutive elements of the edge loop of D. Then κD(g, h) = [g−1h] =
κC(g, h). Otherwise, C is a tile and hence g = h. Thus κD(g, h) = 1 = κC(g, h).

3. By induction it is enough to prove the statement for n = 3. So assume n = 3. If either
g1 = g2 or g2 = g3 then the desired equality is obvious. So assume that g1 6= g2 and g2 6= g3.
If C is an edge then, up to a cyclic permutation, possibly reversing the order and making use of
Lemma 6.12, the edge loop of C is of the form (g1 = k0, . . . , g2 = kt, . . . , g3 = kl, . . . , km = g1).
Then,

κC(g1, g3) = [k−1
0 k1][k−1

1 k2] · · · [k−1
l−1kl]

= ([k−1
0 k1][k−1

1 k2] · · · [k−1
t−1kt]) ([k−1

t kt+1] · · · [k−1
l−1kl])

= κC(g1, g2)κC(g2, g3)

Otherwise, S = g−1
1 (C) is a side of F , gS = g−1

1 g2, gS′ = g−1
2 g1 and g1 = g3. Then,

κC(g1, g3) = 1 = [gS ][gS′ ] = κC(g1, g2)κC(g2, g3).

Let Z ∈ Ω, g, h ∈ Γ and Z ∈ C ⊆ g(F) ∩ h(F) for some cell C. Then, by the definition of Ω,
the dimension of C is at least 2 and we define

κZ(g, h) = κC(g, h).
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This is well defined. Indeed, suppose D is another cell containing Z and contained in g(F) ∩ h(F)
with κC(g, h) 6= κD(g, h). Then g 6= h and C 6= D. Hence neither C nor D is a tile. Both are not
edges, because otherwise Z ∈ C ∩D, where the latter is an intersection of tiles and it has dimension
1, which contradicts the definition of Ω. Thus either C or D is a side and contains the other.
Therefore, g(F)∩h(F) is a side and hence, by part 2 of Lemma 6.21, κC(g, h) = [g−1h] = κD(g, h),
a contradiction. This proves that indeed κZ(g, h) is well defined. By parts 1 and 3 of Lemma 6.21
we have κZ(g, h) = κZ(h, g)−1 and if Z ∈ ∩n

i=1gi(F) with g1, . . . , gn ∈ Γ then

κZ(g1, gn) = κZ(g1, g2) · · · κZ(gn−1, gn).

Definition 6.22 Let α be a continuous map [0, 1] → Ω as in Lemma 6.19 and let L = (a0, g1, a1, g2,
a2 . . . , gn, an) be the partition of α. We define

Φ(L) = κα(a1)(g1, g2) κα(a2)(g2, g3) · · · κα(an−1)(gn−1, gn),

if n 6= 1. If n = 1, we set Φ(L) = 1.

Observe that if i ∈ {1, . . . , n} then α(ai) ∈ gi(F) ∩ gi+1(F). By the definition of Ω, gi(F) ∩
gi+1(F) has dimension 2 or 3. If it has dimension 3, then gi(F)∩gi+1(F) is a side containing α(ai).
If gi(F) ∩ gi+1(F) has dimension 2, then

⋂
g, α(ai)∈g(F) g(F) has dimension 2 by the definition

of Ω and thus, by Lemma 6.11, gi(F) ∩ gi+1(F) contains an edge that contains α(ai). Hence
α(ai) ∈ C ⊆ gi(F) ∩ gi+1(F), for some cell C and thus κα(ai)(gi, gi+1) is well defined.

Let Z, W ∈ Ω and let P be the set of all the continuous maps α : [0, 1] → Ω with α(0) = Z and
α(1) = W , and such that α verifies the conditions of Lemma 6.19. The set P may be considered as
a metric space with the metric determined by the infinite norm: ‖α‖∞ = max{|α(t)| : t ∈ [0, 1]}.
We define the map

Φ : P → ∆

by Φ(α) = Φ(L), where L is the partition of α. This is well defined as by Lemma 6.19 the partition
of α exists and is unique. The next lemma will be a crucial part in the proof of the injectivity of
the map ϕ defined in (32).

Lemma 6.23 If both Z and W belong to the interior of some tile then Φ : P → ∆ is constant.

Proof. We claim that it is sufficient to show that Φ is locally constant. Indeed, assume this is
the case and let α, β ∈ P. By Lemma A.2, α and β are homotopic in Ω and by Lemma A.5, there
is a homotopy H(t, −) in P from α to β. Let c denote the supremum of the s ∈ [0, 1] for which
Φ(H(s, −)) = Φ(α). Since, by assumption, Φ is constant in a neighbourhood of H(x, −), it easily
follows that c = 1 and thus Φ(α) = Φ(β).

To prove that Φ is locally constant, let α, β ∈ P and let L1 = (a0, g1, a1, . . . , gn, an) and L2 be the
partition of α and β respectively. Moreover we denote by d(−, −) the Euclidean distance. Let {0 <
d1 < d2 < . . . < dm < 1} be the sets of elements d ∈ [0, 1] such that α(d) ∈ ∂g(F) for some g ∈ Γ for
every 1 ≤ i ≤ m. Lemma 6.18 ensures that this set is finite. Denote by k1, . . . , km+1 the elements
in Γ, such that α(di−1, di) ⊆ ki(F) for 1 ≤ i ≤ m+1, where we set d0 = a0 = 0 and dm+1 = an = 1.
Observe that k1 = g1, km+1 = gn and {k1, . . . , km+1} = {g1, . . . , gn}. Since F is locally finite, there
is δ1 > 0 such that for every i ∈ {0, 1, . . . , m + 1} and every g ∈ Γ, if B(α(di), 2δ1)) ∩g(F) 6= ∅ then

α(di) ∈ g(F). Since α is continuous there is ǫ < min
{

di−di−1

2 : i ∈ {1, . . . , m + 1}
}

such that, for

every i ∈ {0, 1, . . . , m+1}, d(α(t), α(di)) < δ1 for every t with |t−di| < ǫ. For every i ∈ {1, . . . , m},
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let d′
i = di − ǫ and d′′

i = di + ǫ. We also set d′
m+1 = 1 and d′′

0 = 0. Observe that d′′
i ≤ d′

i+1 for
every i ∈ {0, . . . , m + 1}. Each α([d′′

i−1, d′
i]) is compact and it is contained in ki(F)◦. Again using

that F is locally finite we obtain a positive number δ2 such that for every i ∈ {0, 1, . . . , m + 1},
d(α(t), g(F)) > δ2 for every t ∈ [d′′

i−1, d′
i] and every g ∈ Γ with g 6= ki. Let δ = min{δ1, δ2}.

We will prove that if β ∈ B‖ ‖∞
(α, δ), then Φ(α) = Φ(β). So assume β ∈ P with ‖α − β‖∞ < δ.

Then d(α(t), β(t)) < δ for every t ∈ [0, 1]. In particular, as d(β(t), α(di)) < 2δ1,

if t ∈ (d′
i, d′′

i ) and β(t) ∈ g(F) then α(di) ∈ g(F). (33)

Moreover, since d(α(t), β(t)) < δ2,

if t ∈ [d′′
i−1, d′

i] and β(t) ∈ g(F) then g = ki. (34)

The interval [0, 1] may be written as

[0, d′
1] ∪ [d′

1, d′′
1 ] ∪ [d′′

1 , d′
2] ∪ . . . [d′

m, d′′
m] ∪ [d′′

m, dm+1] .

Based on this information, we construct L2 and prove that Φ(L1) = Φ(L2). By (34), the elements
k1, . . . km+1 appear in that order in L2. Between those elements may appear other elements h ∈ Γ.
For each 1 ≤ i ≤ m + 1, there are two possibilities: ki and ki+1 are equal or they are different.
If ki = ki+1 and ki and ki+1 are two consecutive elements in L2, then β(

(
d′′

i−1, d′
i+1

)
) ⊆ ki(F) =

ki+1(F). According to the definition of the partition of β, ki and ki+1 are represented by just
one element in L2. Hence we may suppose, without loss of generality, that if ki and ki+1 are two
consecutive elements of L2, then they are different. Thus

L2 = (0, k1, b1, ∗1, k2, b2, ∗2, . . . , km, bm, ∗m, km+1, 1),

where d′
i < bi < d′′

i and ∗i represents a, possibly empty, sequence (hi1, bi1, hi2, gi2 . . . , hini
, bini

)
with hij ∈ Γ and d′

i < bij < d′′
i for every 1 ≤ j ≤ ni. As stated above, if ∗i is empty, then ki 6= ki+1.

In that case ki = gj and ki+1 = gj+1 are two consecutive elements in L1 and bi = aj. Moreover

β(
[
d′′

i−1, d′
i

]
) ⊆ ki(F),

β(
[
d′′

i , d′
i+1

]
) ⊆ ki+1(F),

β(bi) ∈ ki(F) ∩ ki+1(F).

By (33) and the fact that bi ∈ [d′
i, d′′

i ], for every g ∈ Γ such that β(bi) ∈ g(F) we have that
α(di) = α(aj) ∈ g(F). Hence, by Lemma 6.11,

⋂
g, α(aj)∈g(F) g(F) is a cell, which is contained in

every cell containing β(bi). Thus both α(aj) and β(bi) are included in a same cell C contained in
gj(F) ∩ gj+1(F). Thus,

κα(aj)(gj , gj+1) = κC(gj , gj+1) = κC(ki, ki+1) = κβ(bi)(ki, ki+1).

Suppose now that ∗i is not empty. We will analyse the subsequence

(ki, bi, hi1, bi1, hi2, bi2 . . . , hini
, bini

, ki+1, bi+1).

By lemma 6.11, α(di) ∈ C, β(bi) ∈ Ci and β(bij) ∈ Cij for C, Ci and Cij cells for 1 ≤ j ≤ ni.
As bi ∈ (d′

i, d′′
i ) and also bij ∈ (d′

i, d′′
i ) for every 1 ≤ j ≤ ni, by (33) we have that α(di) ∈
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ki(F) ∩ ki+1(F) ∩⋂ni

j=1 hij(F). Hence C ⊆ Ci ∩⋂ni

i=1 Cij . If ki 6= ki+1, then ki = gl, ki+1 = gl+1

and di = al for some 1 ≤ l ≤ n and by parts 2 and 3 of Lemma 6.21

κα(al)(gl, gl+1) = κC(ki, ki+1)

= κC(ki, hi1)κC(hi1, hi2) . . . κC(hini
ki+1)

= κCi
(ki, hi1)κCi1

(hi1, hi2) . . . κCini
(hini

ki+1)

= κβ(bi)(ki, hi1)κβ(bi1)(hi1, hi2) . . . κβ(bini
)(hini

ki+1)

If ki = ki+1, then ki = ki+1 = gl for some 1 ≤ l ≤ n. Then in Φ(α), there is no κ-term corresponding
to the subsequence above and by parts 2 and 3 of Lemma 6.21, we have

κβ(bi)(ki, hi1)κβ(bi1)(hi1, hi2) . . . κβ(bini
)(hini

ki+1) = κCi
(ki, hi1)κCi1

(hi1, hi2) . . . κCini
(hini

ki+1)

= κC(ki, hi1)κC(hi1, hi2) . . . κC(hini
ki+1)

= κC(ki, ki+1)

= κC(ki, ki)

= 1.

This shows that Φ(L1) = Φ(L2).

We are now ready to prove that ϕ : ∆ → Γ (see (32)) is injective. Proving the injectivity is
equivalent to proving that if g1 . . . gn = 1 with each gi ∈ Γ and F ∩gi(F) a side, then [g1] . . . [gn] = 1
in ∆. So, suppose that g1 . . . gn = 1 with each gi ∈ Γ and F ∩gi(F) a side. For every i = 0, 1, . . . , n,
put hi = g1 . . . gi and put h0 = 1. Choose Z ∈ F◦ and, for every i = 1, . . . , n, choose a path
from hi−1(Z) to hi(Z) which is only contained in hi−1(F) ∪ hi(F) and which is made up of a
finite number of line segments, whose end-points do not belong to any element in M. This is
possible by Lemma 3.6 and Lemma A.4. Let α be the path obtained by juxtaposing those paths.
So α(0) = Z = α(1) and α is contained in the space P. Let L1 = (a0 = 0, h0, a1, . . . , hn, an+1 = 1)
be the partition of α. Let β be the constant path β(t) = Z for every t ∈ [0, 1] and let L2 = (0, 1, 1)
be the partition of β. Clearly β is also contained in P. Now we have that

[g1] . . . [gn] = [h−1
0 h1][h−1

1 h2] . . . [h−1
n−1hn]

= κa1
(h0, h1)κa2

(h1, h2) . . . κan
(hn−1, hn)

= Φ(L1)

= Φ(α).

By Lemma 6.23, Φ(α) = Φ(β). However Φ(β) = Φ(L2) = κ1(1, 1) = 1 and hence [g1] . . . [gn] = 1.
To sum up we have proven the following theorem.

Theorem 6.24 Let F be the fundamental domain of Γ as defined above. Then the following is a
presentation of Γ:

• Generators: the pairing transformations of F ,

• Relations: the pairing relations and the cycle relations.

It is well known that Γ is finitely presented. However it is not clear whether the presentation
given in Theorem 6.24 is finite. The following proposition implies that at least the presentation is
finite in case R is a PID.
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Lemma 6.25 If R is a PID then every tile of F intersects only finitely many other tiles. In
particular the fundamental domain F has finitely many cells and thus finitely many sides and
edges.

Proof. It is enough to prove that F intersects only finitely many other tiles. Moreover, if 1 6= γ ∈ Γ
then F ∩ γ(F) ⊆ ∪V ∈Ve

F ∩ V and Ve is finite by Theorem 3.8. Thus it is enough to prove that
if V ∈ V ∩ V∞ then XV = {γ ∈ Γ : V ∩ F ∩ γ(F) 6= ∅} is finite. If V ∈ V then V ∩ F
is compact, by Lemma 4.12. Since F is locally finite (Lemma 3.9), XV is finite. So assume
that V ∈ V∞. By (19), (21) and Lemma 3.7, there are positive real numbers a < b such that
B × (b, +∞) ⊆ F ⊆ B × (a, +∞) (in the (s0, s1, r, h)-coordinates). Let K = B × [a, b]. If γ ∈ XV

then either K ∩ γ(F) 6= ∅ or V ∩ (B × (b, +∞)) ∩ γ(F) 6= ∅. As K is compact and T is locally
finite, only finitely many γ ∈ Γ satisfy the first condition. On the other hand it is easy to see that
R2 × R+ × (b, ∞) = ∪γ∈Γ∞

γ(B × (b, +∞)) (in the (s1, s2, r, h)-coordinates). Thus if γ satisfies the
second condition then γ ∈ Γ∞ and F ∩ γ(F) 6= ∅. It remains to prove that only finitely many
elements of Γ∞ satisfy the last condition. Fix h0 > 0. Assume that Z1 = γ(Z2) ∈ F∞ ∩ γ(F∞)
with γ ∈ Γ∞. Let Z ′

1 and Z ′
2 be the elements of H2 × H2 obtained by replacing the last coordinate

of Z1 and Z2 by h0. Then Z ′
1 = γ(Z ′

2) ∈ (B × {h0}) ∩ F∞ ∩ γ(F∞). Thus (B × {h0}) ∩ γ(F∞) 6= ∅.
As B × {h0} is compact and F∞ is a locally finite fundamental domain of Γ∞, only finitely many
elements satisfies the last condition. This finishes the proof.

A Appendix: Topological Lemmas

For completeness’ sake we state some results on real algebraic topology that have been used in
the previous sections. The proofs of these are probably well known to the specialists. We would
like to thank Florian Eisele for making us aware of these and for providing us proofs. Some of these
results can be stated in greater generality for arbitrary differential manifolds, but their proofs need
more sophisticated algebraic topology methods.

Lemma A.1 Let X be a path-connected open subset of Rn. Assume that if Z0 and Z1 are distinct
points in X, then there exists ǫ > 0 such that the open cylinder with axis [Z0, Z1] and radius ǫ is
contained X. If L is a locally finite collection of semi-algebraic varieties of dimension at most n − 2
in X then X \ L is path-connected.

Lemma A.2 Let n ≥ 3 and let X be a connected open subset of Rn. Assume π1(X) = 1. If {Ti}i

is a locally finite family of algebraic varieties in X of co-dimension at least 3 then

π1

(
X \

⋃

i

Ti

)
= 1.

Lemma A.3 Let B be a Euclidean closed ball in Rn. If B = U1 ∪ U2, where U1 and U2 are closed
semi-algebraic sets, with U1 6⊆ U2 and U2 6⊆ U1, then dim(U1 ∩ U2) ≥ n − 1.

Lemma A.4 Let X be a connected open subset of Rn. If Z and W are points in X then there exists
a path α : [0, 1] → X with α(0) = Z and α(1) = W and such that it is built from of a finite number
of line segments that are parametrized by polynomials of degree at most 1. Moreover, if Y is a subset
of X with dense complement in X and such that Z, W 6∈ Y then we can choose the end-points of the
line segments in X \ Y.
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Lemma A.5 Let X be a connected open subset of Rn. Let γ and γ′ be two homotopic paths in X

starting and ending at x0 which are built from line segments that are parametrized by polynomials
of degree at most 1. Assume we are additionally given a subset Y ⊂ X with dense complement in X

and which satisfies the property that a line which is not wholly contained in Y has finite intersection
with it. If x0 6∈ Y then there is an integer N and a homotopy

H : [0, 1] × [0, 1] −→ X

from γ to γ′ such that each loop H(t, −) for t ∈ [0, 1] starts and ends in x0 and there exist 0 =
τ1 < τ2 < . . . < τN = 1 such that H(t, −)|[τi,τi+1] is a line segment for each, t ∈ (0, 1), which
is parametrized by polynomials of degree at most 1 and at least one of the two points H(t, τi) and
H(t, τi+1) lies outside Y.
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