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ESTIMATING π(x) AND RELATED FUNCTIONS UNDER

PARTIAL RH ASSUMPTIONS

JAN BÜTHE

Abstract. We give a direct interpretation of the validity of the Riemann
hypothesis for all zeros with ℑ(ρ) ∈ (0, T ] in terms of the prime-counting
function π(x), by proving that Schoenfeld’s explicit estimates for π(x) and the

Chebyshov functions hold as long as 4.92
√

x/ log(x) ≤ T .
We also improve some of the existing bounds of Chebyshov type for the

function ψ(x).

1. introduction

The Riemann hypothesis has been subject to numerous numerical verifications,
which typically lead to statements of the form the first n complex zeros of the

Riemann zeta function are simple and lie on the critical line ℜ(s) = 1/2; see e.g.
[Bre79].

Whilst such results are used as an ingredient in many estimates for functions
of prime numbers, it is the purpose of this paper to give a direct interpretation in
terms of the prime-counting function π(x). This is done by proving the well-known
Schoenfeld bound

|π(x)− li(x)| ≤
√
x

8π
log(x) for x > 2657,

which is implied by the Riemann hypothesis [Sch76], holds for 4.92
√

x/ log(x) ≤ T
conditional on the Riemann hypothesis being valid for 0 < ℑ(ρ) ≤ T . We also prove
equivalent statements for the Riemann prime-counting function and the Chebyshov
functions.

These results also have practical relevance, since calculating the zeros up to
height T with fast methods like the Odlyzko-Schönhage algorithm has expected run
time O(T 1+ε) [OS88]. Therefore, one obtains strong bounds for π(x) for x ≤ x1 in

expected run time O(x
1/2+ε
1 ) if the Riemann hypothesis holds up to the according

height.
Apart from this, we also improve part of the bounds for ψ(x) given in [FK15].

2. A modified Chebyshov function

For A ⊂ X let

χ∗
A(x) =











1 x ∈ A \ ∂A
1/2 x ∈ ∂A

0 x ∈ X \A.
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2 JAN BÜTHE

denote the normalized characteristic function. We intend to construct a continuous
approximation to the (normalized) Chebyshov function

ψ(x) =
∑

pm

χ∗
[0,x](log p),

for which we will prove an explicit formula similar to the von Mangoldt explicit
formula

(2.1) ψ(x) = x−
∑∗

ρ

xρ

ρ
− log(2π)− 1

2
log(1− x−2),

where the sum is taken over all non-trivial zeros (according to their multiplicity) of
the Riemann zeta function and the ∗ indicates that the sum is computed as

lim
T→∞

∑

|ℑ(ρ)|<T

xρ

ρ

[vM95].
To this end, we use the Fourier transform of the Logan function

ℓc,ε(ξ) =
c

sinh c

sin(
√

(ξε)2 − c2)
√

(ξε)2 − c2
,

a sharp cuttoff filter kernel [Log88], which will allow us to flexibly control the
truncation point and the size of the remainder term of the sum over zeros. The
Fourier transform is given by

(2.2) ηc,ε(t) =
1

2π

∫

R

e−itξℓc,ε(ξ) dξ = χ∗
[−ε,ε](t)

c

2ε sinh c
I0
(

c
√

1− (t/ε)2
)

where I0(t) =
∑∞

n=0(t/2)
2n/(n!)2 denotes the 0-th modified Bessel function of the

first kind [FKBJar].
Now let λc,ε = ℓc,ε(i/2) and let

ϕx,c,ε =
1

λc,ε

(

χ[0,logx] exp(·/2)
)

∗ηc,ε,

where, as usual,

f ∗ g(x) :=
∫

R

f(y)g(x− y) dy

denotes the convolution of two functions. Then we define the modified Chebyshov
function by

ψc,ε(x) =
∑

pm

log p

pm/2
ϕx,c,ε(m log p).

Proposition 1. Let ε < 1/10 and let

(2.3) Mx,c,ε(t) =
log t

λc,ε

[

χ∗
[x,exp(ε)x](t)

∫ log(t/x)

−ε

ηc,ε(τ)e
−τ/2 dτ

− χ∗
[exp(−ε)x,x](t)

∫ ε

log(t/x)

ηc,ε(τ)e
−τ/2 dτ

]

.

Then we have

(2.4) ψ(x) = ψc,ε(x) −
∑

e−εx<pm<eεx

1

m
Mx,c,ε(p

m).
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Moreover, we have

ψ(e−αεx) ≤ ψc,ε(x)−
∑

e−εx<pm≤e−αεx

1

m
Mx,c,ε(p

m)(2.5)

and

ψ(eαεx) ≥ ψc,ε(x)−
∑

eαεx≤pm<eεx

1

m
Mx,c,ε(p

m)(2.6)

for every α > 0.

Proof. The identity (2.4) follows directly from

exp(·/2) ∗ ηc,ε(t) = λc,ε exp(t/2).

and from ηc,ε being compactly supported on [−ε, ε]. The inequalities (2.5) and
(2.6) then follow from (2.4), since (2.2) implies ηc,ε(t) ≥ 0. �

3. The explicit formula

The modified Chebyshov function satisfies an explicit formula similar to (2.1),
of which we prove an approximate version.

Proposition 2. Let 0 < ε < 1/10 and let log(x) > 2/|log ε|. We define

C1 = −γ/2− 1− log(π)/2

and

ac,ε(ρ) =
1

λc,ε
ℓc,ε

(ρ

i
− 1

2i

)

.

Then we have

(3.1) ψc,ε(x) = x−
∑

ρ

ac,ε(ρ)
xρ − 1

ρ
+ C1 −

1

2
log(1− x−2) + Θ(8ε|log ε|).

Proof. Let

fx(t) = χ∗
[0,log x](t) exp(t/2)

so that we have ϕx,c,ε = λ−1
c,εfx ∗ ηc,ε. The assertion of the proposition follows by

applying the Weil-Barner explicit formula [Bar81]

ws(f̂) = wf (f) + w∞(f),

where

ws(f̂) =
∑∗

ρ

f̂(i/2− iρ)− f̂(i/2)− f̂(i/2),

wf (f) = −
∑

p

∞
∑

m=0

log p

pm/2

(

f(m log p) + f(−m log p)
)

,

w∞(f) =
(Γ′

Γ
(1/4)− log π

)

f(0)−
∫ ∞

0

f(t) + f(−t)− 2f(0)

1− e−2t
e−t/2 dt,

and where

f̂(ξ) =

∫ ∞

−∞
eiξtf(t) dt,

to the function ϕx,c,ε.
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Let ∆ = ϕx,c,ε − fx and assume x > 2/|log(ε)|. It then suffices to prove the
following identities:

ws(ϕ̂x,c,ε) =
∑

ρ

ac,ε(ρ)
xρ − 1

ρ
− x− log x+ 1(3.2)

wf (ϕx,c,ε) = −ψc,ε(x)(3.3)

w∞(fx) = − logx− γ

2
− 1

2
log π − 1

2
log(1− x−2)(3.4)

w∞(∆) = Θ(8ε|log ε|).(3.5)

The identities (3.2) and (3.3) follow directly from the definitions of the function-
als. So we begin with the proof of (3.4). We have

w∞(fx) =
1

2

Γ′

Γ
(1/4)− 1

2
log π −

∫ log x

0

1− e−t/2

1− e−2t
dt+

∫ ∞

log x

e−t/2

1− e−2t
dt.

Using

1

2

Γ′

Γ
(1/4) =

∫ ∞

0

e−2t

t
− e−t/2

1− e−2t
dt

and

−
∫ log x

0

1− e−t/2

1− e−2t
dt = − log x+

∫ log x

0

e−t/2 − e−2t

1− e−2t
dt,

we get

w∞(fx) = − logx− 1

2
log π +

∫ log x

0

e−2t

2t
− e−2t

1− e−2t
dt+

∫ ∞

log x

e−2t

2t
dt

= − logx− 1

2
log π − 1

2
log(1− x−2) +

1

2
lim
δց0

(

E1(2δ)− log(1− e−2δ)
)

,

where

E1(y) =

∫ ∞

y

e−t

t
dt

denotes the first exponential integral. Since

E1(y) = −γ − log(y) +O(y)

holds for y ց 0 [Olv97, p. 40], we get

lim
δց0

(

E1(2δ)− log(1− e−2δ)
)

= −γ + log
(1− e−2δ

2δ

)

= −γ,

which concludes the proof of (3.4).
It remains to show (3.5), and we start by bounding ∆(t):

Lemma 1. Let ε and x be as in the proposition. Then ∆(t) vanishes for t /∈
Bε(0) ∪Bε(log x). Moreover, we have

(3.6) ∆(t) + ∆(−t) = 2∆(0) + Θ(2t) for 0 ≤ t ≤ ε,

(3.7) |∆(t)| ≤ 1

2
eε
√
x for t ∈ Bε(log x),

and

(3.8) |∆(0)| ≤ ε.
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Proof. Under the conditions imposed on x and ε, we have Bε(0) ∩ Bε(log x) = ∅
and

(3.9) et+τ = et +Θ(2|τ |)
for max{|t|, |τ |} ≤ ε.

Since exp(·/2) ∗ ηc,ε(t) = λc,ε exp(t/2) this gives

∆(0) =
1

2λc,ε

∫ ε

0

ηc,ε(τ)
(

eτ/2 − e−τ/2
)

dτ = Θ(ε),

so we get (3.8). Moreover, we have

∆(t) + ∆(−t) = 1

λc,ε

∫ ε

t

ηc,ε(τ)
(

e
τ−t

2 − e
t−τ

2

)

dt

=
1

λc,ε

∫ ε

t

ηc,ε(τ)
(

eτ/2 − e−τ/2
)

dt+Θ(t)

=
1

λc,ε

∫ ε

0

ηc,ε(τ)
(

eτ/2 − e−τ/2
)

dt+Θ(2t),

which gives (3.6). The remaining inequality (3.7) follows easily from

∆(t) =
χ(log x,∞)(t)

λc,ε

∫ ε

t−log x

ηc,ε(τ)e
t−τ

2 dτ − χ(0,logx)(t)

λc,ε

∫ t−log x

−ε

ηc,ε(τ)e
t−τ

2 dτ,

which holds for t ∈ Bε(log x). �

Now, we divide the integral in w∞(∆) as follows

(3.10)

∫ ∞

0

∆(t) + ∆(−t)− 2∆(0)

1− e−2t
e−t/2 dt =

∫ ε

0

∆(t) + ∆(−t)− 2∆(0)

1− e−2t
e−t/2 dt

− 2

∫ ∞

ε

∆(0)

1− e−2t
e−t/2 dt+

∫

Bε(log x)

∆(t)

1− e−2t
e−t/2 dt.

Since the mapping t 7→ 1−exp(−2t)
t is monotonously decreasing in (0,∞), we have

(3.11) 1− e−2t ≥ 1.8 t

for 0 ≤ t ≤ ε ≤ 0.1. So, using (3.6), we obtain the bound
∫ ε

0

|∆(t) + ∆(−t)− 2∆(0)|
1− e−2t

e−t/2 dt ≤
∫ ε

0

2t

1.8 t
dt ≤ 1.2 ε

for the first integral on the right hand side of (3.10).
For the second integral we use (3.8) and the bound |log ε| ≥ 2.3, which gives

2|∆(0)|
∫ ∞

ε

e−t/2

1− e−t
dt ≤ 2|∆(0)|

∣

∣

∣

∣

log
eε/2 − 1

eε/2 + 1

∣

∣

∣

∣

≤ 2 ε
∣

∣

∣
log

ε

2 · 2.1
∣

∣

∣
≤ 3.4 ε |log ε|.

It remains to bound the third integral on the right hand side of (3.10). From
(3.11) we get

1− e−2t ≥ 1− exp(2ε− 2 logx) ≥ 1− exp
(

− 4

|log ε|
)

≥ 2

|log ε|
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for t ∈ Bε(log x) which, together with (3.7), implies
∫

Bε(log x)

|∆(t)|
1− e−2t

e−t/2 dt ≤ 1

2
eε/2

√
x
eε/2√
x

∫

Bε(log x)

dt

1− e−2t
≤ ε |log ε|.

By the Gauß-Digamma theorem [AAR99, Theorem 1.2.7], we have

Γ′

Γ
(1/4) = −γ − π

2
− 3 log 2,

so (3.8) gives the bound
∣

∣

∣

∣

(Γ′

Γ
(1/4)− log π

)

∆(0)

∣

∣

∣

∣

≤ 5.4 ε

for the remaining summand in w∞(∆). Therefore, we arrive at

|w∞(∆)| ≤ ε(5.4 + 1.2 + (3.4 + 1)|log ε|) ≤ 8 ε |log ε|,
which concludes the proof of the proposition. �

4. Bounding the sum over zeros

We provide several bounds for parts of the sum over zeros in the explicit formula
for ψc,ε(x). First we truncate the sum, making use of the sharp cuttoff property of
the Logan function.

Proposition 3. Let x > 1, ε ≤ 10−3 and c ≥ 3. Then we have

(4.1)
∑

|ℑ(ρ)|> c

ε

∣

∣

∣

∣

ac,ε(ρ)
xρ

ρ

∣

∣

∣

∣

≤ 0.16
x+ 1

sinh(c)
e0.71

√
cε log(3c) log

( c

ε

)

.

Furthermore, if a ∈ (0, 1) such that a c
ε ≥ 103 holds, and if the Riemann hypoth-

esis holds for all zeros with imaginary part in (0, cε ], then we have

(4.2)
∑

ac

ε
<|ℑ(ρ)|≤ c

ε

∣

∣

∣

∣

ac,ε(ρ)
xρ

ρ

∣

∣

∣

∣

≤ 1 + 11cε

πca2
log
( c

ε

)cosh(c
√
1− a2)

sinh(c)

√
x.

Proof. Since exp(t/2) is convex and ηc,ε is non-negative and even, we have

λc,ε exp(t/2) = exp(·/2) ∗ ηc,ε(t) ≥ exp(t/2),

and therefore λc,ε ≥ 1. Thus
∣

∣

∣

∣

ac,ε(ρ)
xρ

ρ

∣

∣

∣

∣

≤ xℜ(ρ)

∣

∣ℓc,ε
(

ρ
i − 1

2i

)
∣

∣

|ℑ(ρ)|
holds for every non-trivial zero ρ. From this one obtains (4.2) from [Büt, Lemma
5.5], pairing ρ and 1 − ρ for every zero off the critical line, and (4.1) follows from
the following lemma. �

Lemma 2. Let 0 < ε < 10−3 and let c ≥ 3. Then we have

∑

|ℑ(ρ)|> c

ε

∣

∣ℓc,ε
(

ρ
i − 1

2i

)
∣

∣

|ℑ(ρ)| ≤ 0.32
e0.71

√
cε

sinh(c)
log(3c) log

( c

ε

)

.
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Proof. This is a more flexible version of [FKBJar, Lemma 2.4], which is proven in
detail in [Büt15]. We give a brief outline of the proof: We may weaken the condition
T > 106 to T ≥ 100 by replacing the constant 0.4 by 0.82 in Corollary 2.2 and by
replacing M +6 by M +18 in Corollary 2.3. In the proof of Lemma 2.4 we replace

the definition of f(z) by sinh(c)
c e−0.71

√
cε ℓc,1(z). It is then straightforward to show

that (2.7) and (2.8) and the final inequality remain true, which gives the desired
result. �

For the remaining part of the zeros, we will also be needing the following lemma.

Lemma 3. Let t2 > t1 ≥ 14. Then we have

(4.3)
∑

t1≤ℑ(ρ)<t2

1

ℑ(ρ) ≤ 1

4π

[

log
( t2
2π

)2

− log
( t1
2π

)2]

+Θ
(

5
log t1
t1

)

,

and for t2 ≥ 5000 we have

∑

0<ℑ(ρ)<t2

1

ℑ(ρ) ≤ 1

4π
log
( t2
2π

)2

.

Proof. Let N(t) denote the zero-counting function. Using the notation N(t) =
g(t) +R(t), where g(t) = t

2π log t
2πe + 7

8 , we get

∑

t1≤ℑ(ρ)<t2

1

ℑ(ρ) =

∫ t2

t1

g′(t)

t
dt+

∫ t2

t1

dR(t)

t
.

Here the first integral gives the main term in (4.3). Furthermore, Rosser’s esti-
mate [Ros41, p. 223] implies |R(t)| ≤ log t for t ≥ 14. Consequently, we get

∫ t2

t1

dR(t)

t
=
[R(t)

t

]t2

t1
+

∫ t2

t1

R(t)

t2
dt

≤ 2
log t1
t1

+

∫ t2

t1

log t

t2
dt

≤ 4
log t1
t1

+
1

t1
≤ 5

log t1
t1

.

In particular, we have

∑

0<ℑ(ρ)<t2

1

ℑ(ρ) ≤ 1

4π
log
( t2
2π

)2

+
∑

0<ℑ(ρ)<5000

1

ℑ(ρ) −
1

4π
log
(5000

2π

)2

+ 5
log(5000)

5000

≤ 1

4π
log
( t2
2π

)2

+ 3.54− 3.55 + 0.0086 <
1

4π
log
( t2
2π

)2

for t1 ≥ 5000. �

5. Bounding the sum over prime powers

The modified Chebyshov function ψc,ε can be used to trivially bound ψ(x), choos-
ing α = 1 in Proposition 1, but one obtains considerably better results choosing α
close to zero and bounding the sum over prime powers.
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We introduce the auxiliary functions

µc,ε(t) =











−
∫ t

−∞ ηc,ε(τ) dτ t < 0,

−µc,ε(−t) t > 0,

0 t = 0

and

νc,ε(t) =

∫ t

−∞
µc,ε(τ) dτ.

Proposition 4. Let 0 ≤ α < 1, x > 100, and ε < 10−2, such that

B =
εxe−ε|νc(α)|
2(µc)+(α)

> 1

holds. We define

A(x, c, ε, α) = e2ε log(eεx)
[2ε x |νc(α)|

logB
+ 2.01ε

√
x+

1

2
log log(2x2)

]

.

Then we have

ψ(e−αεx) ≤ ψc,ε(x) +A(x, c, ε, α)

and

ψ(eαεx) ≥ ψc,ε(x) −A(x, c, ε, α).

We will use the following two Lemmas from [Büt].

Lemma 4 ([Büt, Lemma 3.5]). Let x ≥ 100, ε ≤ 1
100 and let I = [e−εx, eεx]. Then

we have
∑

pm∈I
m≥2

1

m
≤ 4.01ε

√
x+ log log(2x2).

Lemma 5 ([Büt, Lemma 5.8]). Let x > 1, ε < 1 and α ∈ (0, 1), such that

B :=
εxe−ε|νc(α)|

2µc(α)
> 1

holds. Furthermore, let I+α = [eαεx, eεx] and I−α = [e−εx, e−εαx]. Then we have

∑

p∈I±
α

∣

∣

∣
µc,ε

(

log
p

x

)∣

∣

∣
≤ 2

εxeε|νc(α)|
logB

.

Proof of Proposition 4. By Proposition 1, it suffices to show that
∣

∣

∣

∣

∣

∣

∑

pm∈I±
α

1

m
Mx,c,ε(p

m)

∣

∣

∣

∣

∣

∣

≤ A(x, c, ε, α).

From (3.9) and (2.3) one easily obtains the bound

Mx,c,ε(t) =
log t

λc,ε
µc,ε

(

log
t

x

)

(1 + Θ(ε)) ≤ eε

2
log(eεx).

Then Lemma 5 gives the bound

2e2ε log(eεx)
εx|νc(α)|
logB
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for the contribution of the prime numbers in I±α , and Lemma 4 gives the bound

eε

2
log(eεx)

[

4.01ε
√
x+ log log(2x)2

]

for the contribution of the remaining prime powers in I±α .
�

Analyzing the asymptotic behavior of µc(α) and νc(α) as functions of c for
arbitrary α seems difficult. However, we can do this for the case α = 0, which is
usually not too far from the optimal choice. To this end, we introduce the modified
Bessel function of the first kind for real parameters γ ≥ 0 by

(5.1) Iγ(x) =
(x

2

)γ ∞
∑

n=0

(x/2)2n

n!Γ(γ + n+ 1)
.

Then we have the following proposition.

Proposition 5. For c0 > 0 let

D(c0) =

√

πc0
2

I1(c0)

sinh(c0)
.

Then the inequalities
D(c0)√
2πc

≤ |νc(0)| ≤
1√
2πc

hold for all c ≥ c0. Furthermore, we have D(c0) ր 1 for c0 → ∞.

Proof. Since

|νc(0)| =
I1(c)

2 sinh(c)

[FKBJar, p. 15] and since I1/2(x) =
√

2
πx sinh(x) the assertion follows directly

from the following lemma. �

Lemma 6. Let α, β ∈ [0,∞) such that α < β holds. Then the function

Iβ(x)

Iα(x)

is positive and monotonously increasing in (0,∞) and converges to 1 for x→ ∞.

Proof. The proof is based on the Sturm Monotony Principle [Stu36], [Wat44, p.
518]. We define the auxiliary function

fγ(x) =
√
xIγ(x).

The Bessel differential equation

d2

dx2
Iγ +

1

x

d

dx
Iγ −

(

1 +
γ2

x2

)

Iγ = 0

then implies
d2

dx2
fγ −

(

1− 1

4x
+
γ2

x2

)

fγ = 0.

Consequently, we have

fβf
′′
α − f ′′

β fα =
β2 − α2

x2
fαfβ > 0
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in (0,∞) and thus
[

fβf
′
α − f ′

βfα

]x

ε
> 0

for x > ε and every ε > 0. Since

fβf
′
α − f ′

βfα = Iβ

(

xI ′α + Iα

)

− Iα

(

xI ′β + Iβ

)

vanishes for x→ 0 we thus get

fβf
′
α − f ′

βfα ≥ 0.

Consequently, the function fβ/fα = Iβ/Iα increases monotonously in (0,∞), and
since

Iγ(x) ∼
ex√
2πx

holds for every γ ≥ 0, it converges to 1 for x→ ∞. �

6. Bounds of Chebyshov type

The previous results give rise to a simple method to calculate bounds of the form

|ψ(x) − x| ≤ δ0x for x ≥ x0,

which will be needed in the proof of the main result.

Theorem 1. Let 0 < ε < 10−3, c ≥ 3, x0 ≥ 100 and α ∈ [0, 1) such that the

inequality

B0 :=
εe−εx0|νc(α)|
2(µc)+(α)

> 1

holds. We denote the zeros of the Riemann zeta function by ρ = β + iγ with

β, γ ∈ R. Then, if β = 1/2 holds for 0 < γ ≤ c/ε, the inequality

|ψ(x) − x| ≤ x · eαε
(

E1 + E2 + E3
)

holds for all x ≥ eαεx0, where

E1 = e2ε log(eεx0)
[2ε|νc(α)|

logB0
+

2.01ε√
x0

+
log log(2x20)

2x0

]

+ (eαε − 1),

E2 = 0.16
1 + x−1

0

sinh(c)
e0.71

√
cε log

( c

ε

)

,

and

E3 =
2√
x0

∑

0<γ≤c/ε

ℓc,ε(γ)

γ
+

2

x0
.(6.1)

It is noteworthy that Theorem 1 gives better estimates than the more sophisti-
cated method in [FK15] in a large range, as can be seen from Tables 1 and 2.

Proof. Under the conditions of the theorem we get

ψ(e−αεx)− e−αεx ≤ ψc,ε(x) − e−αεx+
A(x0, c, ε, α)

x0
x ≤ ψc,ε(x) − x+ E1x

from Proposition 4, since A(x, c, ε, α)/x decreases monotonously. A similar calcu-
lation for the lower bound then gives

∣

∣ψ(e±αεx) − e±αεx
∣

∣ ≤ |ψc,ε(x)− x|+ E1x.
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Table 1. Bounds for T ≤ 3.061× 1010. The value δ0 is an upper
bound for eαε(E1 + E2 + E3) in Theorem 1, applied with ε = c/T .

eαεx0 c T α δ0

e45 25 3.5× 109 0.11 1.11742× 10−8

e50 30 3.061× 1010 0.11 1.16465× 10−9

e55 30 3.061× 1010 0.1 2.88434× 10−10

e60 28 3.061× 1010 0.09 2.08162× 10−10

e65 28 3.061× 1010 0.09 1.96865× 10−10

e70 28 3.061× 1010 0.08 1.91910× 10−10

e80 28 3.061× 1010 0.07 1.84848× 10−10

e90 29 3.061× 1010 0.06 1.79330× 10−10

e100 29 3.061× 1010 0.05 1.75185× 10−10

e500 29 3.061× 1010 0.01 1.47067× 10−10

e1000 29 3.061× 1010 0.005 1.43770× 10−10

e3000 29 3.061× 1010 0.001 1.41594× 10−10

Furthermore, we get

|ψc,ε(x)− x| ≤
∑

|ℑ(ρ)|≤c/ε

∣

∣

∣

∣

ac,ε(ρ)
xρ

ρ

∣

∣

∣

∣

+ 2 + E2x ≤ (E2 + E3)x

from Propositions 2 and 3, so the assertion follows. �

6.1. Numerical estimates for E1 and E3. The sum over zeros in (6.1) can either
be evaluated, which is recommended if c/ε is small, or the sum can be estimated
piecewise, using the following lemma.

Lemma 7. Let c, ε > 0 and let 14 ≤ T0 < T1 < c/ε. Then we have

∑

T0≤γ<T1

ℓc,ε(γ)

γ
≤ ℓc,ε(T0)

4π

[

log
(T1
2π

)2

− log
(T0
2π

)2

+ 20π
log(T1)

T1

]

.

Proof. This follows directly from ℓc,ε being monotonously decreasing in [0, c/ε] and
Lemma 3. �

The values µc(α) and νc(α) can be evaluated by power series representations, as
shown in [FKBJar]. Alternatively, these values can be bounded by Riemann sums.

Lemma 8. Let α ∈ (0, 1), K ∈ N and let h = 1−α
K . Then we have

hc

K−1
∑

k=0

I0(c
√
2kh− k2h2)

2 sinh(c)
≤ µc(α) ≤ hc

K
∑

k=1

I0(c
√
2kh− k2h2)

2 sinh(c)
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Table 2. Bounds for T ≤ 2.445× 1012. The value δ0 is an upper
bound for eαε(E1 + E2 + E3) in Theorem 1, applied with ε = c/T .

eαεx0 c T α δ0

e55 39 8.5× 1011 0.1 1.12494× 10−10

e60 33 2.445× 1012 0.11 1.22147× 10−11

e65 33 2.445× 1012 0.1 3.57125× 10−12

e70 33 2.445× 1012 0.09 2.79233× 10−12

e75 32 2.445× 1012 0.08 2.70358× 10−12

e80 33 2.445× 1012 0.08 2.61079× 10−12

e90 33 2.445× 1012 0.07 2.52129× 10−12

e100 33 2.445× 1012 0.06 2.45229× 10−12

e500 33 2.445× 1012 0.012 1.99986× 10−12

e1000 33 2.445× 1012 0.005 1.94751× 10−12

e2000 33 2.445× 1012 0.003 1.92155× 10−12

e3000 33 2.445× 1012 0.001 1.91298× 10−12

e4000 33 2.445× 1012 0.001 1.90866× 10−12

and

h2c

K−1
∑

k=0

k
∑

j=0

I0(c
√

2jh− j2h2)

2 sinh(c)
≤ |νc(α)| ≤ h2c

K
∑

k=1

k
∑

j=1

I0(c
√

2jh− j2h2)

2 sinh(c)
.

Proof. This follows from µ′
c = −ηc,1 in (0, 1) and ν′c = µc, since both ηc,1 and µc

are monotonously decreasing and non-negative in this region. �

7. A partial prime number theorem

We now come to the main result of this paper, the proof of Schoenfeld’s bounds
[Sch76] for the functions ψ(x),

π(x) =
∑

p

χ∗
[0,x](p), ϑ(x) =

∑

p

χ∗
[0,x](p) log(p), and π∗(x) =

∑

pm

1

m
χ∗
[0,x](p

m),

in limited ranges under partial RH assumptions. This is a slight improvement of
[Büt15, Theorem 6.1].
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Theorem 2. Let T > 0 such that the Riemann hypothesis holds for 0 < ℑ(ρ) ≤ T .

Then, under the condition 4.92
√

x
log x ≤ T , the following estimates hold:

|ψ(x) − x| ≤
√
x

8π
log(x)2 for x > 59,

|ϑ(x) − x| ≤
√
x

8π
log(x)2 for x > 599,

|π∗(x) − li(x)| ≤
√
x

8π
log(x) for x > 59,(7.1)

and

|π(x) − li(x)| ≤
√
x

8π
log(x) for x > 2657.(7.2)

In particular the numerical verification in [Pla15] (T ≈ 3.061× 1010) gives these
bounds for x ≤ 1.89× 1021, the result in [FKBJar] (T = 1011) gives them for x ≤
2.1×1022 and the result in [Gou04] (T ≈ 2.445×1012) gives them for x ≤ 1.4×1025.

Proof. We will first prove the stronger bounds

(7.3) |ψ(x) − x| ≤
√
x

8π
log(x)

(

log(x) − 3
)

for x ≥ 5000,

and

(7.4) |ϑ(x) − x| ≤
√
x

8π
log(x)

(

log(x) − 2
)

for x ≥ 5000.

These imply the bounds in (7.1) and (7.2) for x ≥ 5000, since if (f, g) is one of the
tuples (ψ, π∗) or (ϑ, π), we have

g(x)− g(a) = li(x)− li(a)− x− f(x)

log(x)
+
a− f(a)

log a
−
∫ x

a

t− f(t)

t log(t)2
dt

by partial summation, and so we get

|π∗(x) − li(x)| ≤
√
x

8π
(log(x)− 3) +

∣

∣

∣

∣

π∗(5000)− li(5000)− ψ(5000)− 5000

log(5000)

∣

∣

∣

∣

+

√
x

4π
−

√
5000

4π
<

√
x

8π
log(x)

and

|π(x)− li(x)| ≤
√
x

8π
(log(x) − 2) +

∣

∣

∣

∣

π(5000)− li(5000)− ϑ(5000)− 5000

log(5000)

∣

∣

∣

∣

+

√
x

4π
−

√
5000

4π
<

√
x

8π
log(x).

For the remaining values of x the validity of the claimed inequalities is easily checked
by a short computer calculation (the author did this with the pari/gp calculator).

We will prove (7.3) for x ≥ 1019 first, choosing

c =
1

2
log(x) + 5
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and

ε =
log(x)3/2

8
√
x

in Proposition 2. In particular, we then have c > 26 and ε < 1.2× 10−8. If we take
into account that

∣

∣

∣

∣

∣

∑

ρ

ac,ε(ρ)

ρ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

ℑ(ρ)>0

ac,ε(ρ)

ρ(1− ρ)

∣

∣

∣

∣

∣

∣

≤ eε/2|1 + i100|
100

∑∗

ρ

1

ρ
≤ 0.024

holds under these conditions, (3.1) can be simplified to

(7.5) x− ψc,ε(x) =
∑∗

ρ

ac,ε(ρ)

ρ
xρ +Θ(2).

Furthermore, we have

c

ε
≤ 4.92

√

x

log x
≤ T,

so we may assume ℜ(ρ) = 1/2 for all zeros ρ with imaginary part up to c/ε.
We divide the sum in (7.5) into three parts. For |ℑ(ρ)| > c/ε we get

∑

|ℑ(ρ)|> c

ε

∣

∣

∣

∣

ac,ε(ρ)
xρ

ρ

∣

∣

∣

∣

≤ 0.16
x+ 1

sinh(c)
e0.71

√
cε log(3c) log

( c

ε

)

≤ 0.0013
√
x log(x) log log(x) =: E1(x)(7.6)

from Proposition 3. Furthermore, choosing a =
√

2
c in Proposition 3 gives

∑

√
2c

ε
<|ℑ(ρ)|≤ c

ε

∣

∣

∣

∣

ac,ε(ρ)
xρ

ρ

∣

∣

∣

∣

≤ 1 + 11cε

2π
log
( c

ε

)cosh(c
√
1− a2)

sinh(c)

√
x

≤ 1.001

4πe
log(x)

√
x ≤ 0.03 log(x)

√
x =: E2(x).(7.7)

For the remaining part of the sum we bound |ac,ε(ρ)/ρ| trivially by 1/|ℑ(ρ)| and
use Lemma 3, which gives

∑

0<|ℑ(ρ)|≤
√

2c

ε

∣

∣

∣

∣

ac,ε(ρ)
xρ

ρ

∣

∣

∣

∣

≤
√
x

2π
log

(√
2c

2πε

)2

(7.8)

≤
√
x

2π

(

1

2
log(x) + log(1.45)− log log(x)

)2

≤
√
x

8π
log(x)2 + E3(x),

where

E3(x) =
√
x
(

0.061 log(x) + 0.16 log log(x)2

+ 0.024− 0.15 log(x) log log(x)− 0.114 log log(x)
)

.
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Next, we treat the difference ψ(x) − ψc,ε(x). Lemma 6 implies

0.98√
2πc

≤ |νc(0)| =
I1(c)

2 sinh(c)
≤ 1√

2πc

for c > 26, so that we get

|ψ(x) − ψc,ε(x)| ≤
2.001

√
x log(x)5/2

8
√

π(log(x) + 10)
log
( 0.97

√
x log(x)3/2

8
√

π(log(x) + 10)

)−1

+
2.02

8
log(x)5/2 + 0.51 log log(2x2) log(x)

(7.9)

from Proposition 4. Since we have
√

log(x)
log(x)+10 ≥ 0.9, the first summand on the

right hand side is bounded by

E4(x) := 0.283
√
x

log(x)3/2
√

log(x) + 10
.

So if we define

E5(x) := 0.26 log(x)5/2 + 0.51 log(x) log log(2x)2 + 2,

we get

|ψ(x)− x| ≤
√
x

8π
log(x)2 + E1(x) + E2(x) + E3(x) + E4(x) + E5(x)

from (7.5), (7.6), (7.7), (7.8), and (7.9). Differentiating with respect to the variable
y = log(x) shows that

1√
x log(x)

(

E1(x) + E2(x) + E3(x) + E4(x) + E5(x)
)

is monotonously decreasing for x ≥ 1019 and smaller than − 3
8π , so (7.3) holds in

this region.
For exp(18) ≤ x ≤ exp(44) (7.3) can be proven by calculating a sufficient amount

of Chebyshov bounds with the method from the previous section. To this end, it
suffices to verify

(7.10) |ψ(x)− x| ≤ δnx

for x ≥ yn = exp(n/4), with a δn satisfying

(7.11) δnyn ≤ e−1/8

√
yn

8π
log(yn)(log(yn)− 3),

since then (7.10) implies (7.3) for x ∈ [yn, yn+1] by concavity of the right hand
side. This has been carried out with the choice x0 = exp(−αε)yn, c = n/8 + 5,
T = 2

√
yn, ε = c/T and α = 0.2 in Theorem 1 for 72 ≤ n ≤ 129, and with the

altered choice T = 4
√

yn/ log(yn) and α = 0.1 for 129 ≤ n ≤ 175. In all cases
(7.11) turned out to hold.

For the remaining x ∈ [5000, exp(18)] the validity of (7.3) is easily checked
numerically by evaluating ψ(x) at all prime powers in this interval.

Since we have

ψ(x) − ψ(
√
x) ≤ ϑ(x) ≤ ψ(x),

(7.3) implies (7.4) for x ≥ 1011. For the remaining x (7.4) follows from the bound

0 ≤ x− ϑ(x) ≤ 1.938
√
x for 5000 ≤ x ≤ 1011,
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which the author obtained numerically. �
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