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Abstract. We consider the question of approximating the inverse W = V−1

of the Galerkin stiffness matrix V obtained by discretizing the simple-layer
operator V with piecewise constant functions. The block partitioning of W

is assumed to satisfy any one of several standard admissibility criteria that
are employed in connection with clustering algorithms to approximate the
discrete BEM operator V. We show that W can be approximated by block-
wise low-rank matrices such that the error decays exponentially in the block
rank employed. Similar exponential approximability results are shown for the
Cholesky factorization of V.

1. Introduction

The system matrices arising in the boundary element method (BEM) such as
the matrix V for the classical simple-layer operator V are fully populated. The
classical BEM is therefore often deemed inefficient with respect to memory require-
ments and, in turn, fast iterative solvers. These reservations can be met with
various compression techniques that have been developed in the past to store the
BEM matrices and realize the matrix-vector multiplication with log-linear (or even
linear) complexity. We mention here multipole expansions, [Rok85, GR97], panel
clustering, [NH88, HN89, HS93, Sau92], wavelet compression techniques, [Rat98,
Rat01, Sch98, vPSS97, Tau03, TW03], the mosaic-skeleton method, [Tyr00], the
adaptive cross approximation (ACA) method, [Beb00], and the hybrid cross ap-
proximation (HCA), [BG05]. Many of these data-sparse methods can be under-
stood as specific instances of H-matrices, which were introduced and analyzed in
[Hac99, GH03, Gra01, Hac09] as blockwise low rank matrices. H-matrices come
with the additional feature that they permit an (approximate) arithmetic with
log-linear complexity. In particular, this arithmetic includes the (approximate) in-
version of matrices. Thus, the H-matrix arithmetic can provide an approximation
to the inverse, the LU factorization, or the Cholesky decomposition. However, the
accuracy of this approximate inverse or factorization depends on various parame-
ters including the rank of the blocks and is, for the matrices arising from BEM,
mathematically not fully understood. In the present paper we show that for a block
structure typically employed in the context of H-matrices, the inverse W = V−1 of
the discretization of the simple-layer operator V can be approximated from the set

2010 Mathematics Subject Classification. Primary 65F05; Secondary 65N38, 65F30, 65F50.

c©XXXX American Mathematical Society

1

http://arxiv.org/abs/1311.5028v2


2 MARKUS FAUSTMANN, JENS MARKUS MELENK, AND DIRK PRAETORIUS

of blockwise rank-r matrices at an exponential rate in the block rank. While this
result does not fully analyze the accuracy of the H-matrix inversion algorithms, it
shows that inversion algorithms within the H-matrix framework could work. It thus
gives some mathematical underpinning to the success of theH-matrix calculus when
employed to compute (approximate) inverses of BEM-matrices, which is observed
numerically, for example, by Bebendorf [Beb05] and Grasedyck [Gra01, Gra05].

Quickly after the introduction of the H-matrix arithmetic, also H-factorizations
mimicking the classical LU - and Cholesky decompositions were proposed, [Lin04,
Beb05]. Again, numerical evidence indicates their great usefulness for example,
for black box preconditioning in iterative solvers, [Beb05, Gra05, GHK08, LBG06,
GKLB08].

The class of H-matrices is not the only one for which inversion and factorizations
of system matrices arising in the discretization of differential and integral operators
have been devised. Closely related to the concept of H-matrices and its arithmetic
are “hierarchically semiseparable matrices”, [Xia13, XCGL09, LGWX12] and the
idea of “recursive skeletonization”, [HG12, GGMR09, HY13a]; for discretizations
of PDEs, we mention [HY13a, GM13, SY12, Mar09], and particular applications
to boundary integral equations are [MR05, CMZ13, HY13b]. These factorization
algorithms aim to exploit that some off-diagonal blocks of certain Schur comple-
ments are low rank. Following [Beb07, GKLB09, CDGS10], we rigorously establish
that the off-diagonal blocks of certain Schur complements can be approximated by
low-rank matrices. We exploit this fact to show that the Cholesky decomposition
of V can be approximated at an exponential rate in the block rank in the H-matrix
format.

Hitherto, the mathematical analysis of approximability of the inverse of system
matrices in the H-matrix format has focused on the setting of the finite element
method (FEM). The first result in this direction is due to [BH03]. Generalizations
to elliptic systems [Sch06] and approximations in the framework of H2-matrices
[Bör10a, Bör10b] are also analyzed. Our recent works [FMP12, FMP13] differ from
the above mentioned references for H-matrices for FEM-matrices in several ways.
Among the differences, we highlight that, as in present paper, [FMP12, FMP13]
work in a fully discrete setting in contrast to the earlier technique of approximating
on the continuous level and then projecting into discrete spaces. This technique
avoids the projection error associated with the transition from the continuous level
to the discrete one, and leads to exponential convergence in the block rank.

In the present paper, we focus on the lowest-order discretization of the simple-
layer operator associated with the Laplace operator. However, our arguments are
based on rather general properties of elliptic operators so that similar assertions can
be shown for higher order discretizations and the hypersingular integral equation,
which can be found in the forthcoming work [FMP14]. Moreover, we expect that
our approach can cover the case of elliptic systems amenable to a treatment with
the BEM such as the Lamé system.

The paper is structured as follows. In Section 2, we present the main results for
H-matrices. Mathematically, the core of the paper is Section 3, where we investigate
the question of how well solutions of the discrete system can be approximated locally
from low dimensional spaces. These results are transferred to the matrix level in
Sections 4 and 5 to show the approximability result for V−1 and for Cholesky
decompositions, respectively. Section 6 is concerned with various extensions of
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our approximation result: We show a similar compression result for the Poincaré-
Steklov operator and we show that V−1 can be approximated at an exponential
rate in the format of H2-matrices, [HKS00, Bör10a, Bör10b].

2. Main Result

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain such that Γ := ∂Ω
is polygonal (for d = 2) or polyhedral (for d = 3). We consider the simple-layer
operator V ∈ L(H−1/2(Γ), H1/2(Γ)) associated with the Laplacian given by

V φ(x) =

∫

Γ

G(x − y)φ(y)dsy, x ∈ Γ,

where G(x) = − 1
2π log |x| for d = 2 and G(x) = 1

4π
1
|x| for d = 3 is the fundamental

solution of the Laplacian. The simple-layer operator is an elliptic isomorphism for
d = 3 and for d = 2 provided diam(Ω) < 1, which can be assumed by scaling.
We refer the reader to the monographs [McL00, HW08, SS11, Ste08] for a detailed
discussion of the pertinent properties of boundary integral operators such as the
simple-layer operator studied here.

We assume that Γ is triangulated by a quasiuniform mesh Th = {T1, . . . , TN} of
mesh width h := maxTj∈Th

diam(Tj). The elements Tj ∈ Th are open line segments
(d = 2) or triangles (d = 3). Additionally, we assume that the mesh Th is regular
in the sense of Ciarlet and γ-shape regular in the sense that for d = 2 the quotient
of the diameters of neighboring elements is bounded by γ and for d = 3 we have
diam(Tj) ≤ γ |Tj|1/2 for all Tj ∈ Th. In the following, the notation . abbreviates ≤
up to a constant C > 0 which depends only on Ω, the dimension d, and the γ-shape
regularity of the quasiuniform triangulation Th. Moreover, we use ≃ to indicate
that both estimates . and & hold.

We consider the lowest-order Galerkin discretization of V by piecewise constant
functions in S0,0(Th) :=

{
u ∈ L2(Γ) : u|Tj is constant∀Tj ∈ Th

}
. Throughout, we

will work with the basis Bh :=
{
χj : j = 1, . . . , N

}
of the space S0,0(Th), where

χj is the characteristic function associated with Tj ∈ Th. With the isomorphism

Φ : RN → S0,0(Th), x 7→∑N
j=1 xjχj, we note

(2.1) hd/2 ‖x‖2 . ‖Φ(x)‖L2(Γ) . hd/2 ‖x‖2 ∀x ∈ Rd.

With the basis Bh, the Galerkin discretization of V leads to a symmetric and
positive definite matrix V ∈ RN×N , where

(2.2) Vjk = 〈V χk, χj〉 =
∫

Tj

∫

Tk

G(x − y)dsydsx, χj , χk ∈ Bh,

and 〈·, ·〉 denotes the L2(Γ)-scalar product.
In the following, we study the approximability of the inverse BEM matrix W =

V−1 by some blockwise low-rank matrix WH. First, we need to define the under-
lying block structure, which is based on the concept of “admissibility”, introduced
in the following definition.

Definition 2.1 (bounding boxes and η-admissibility). A cluster τ is a subset of
the index set I = {1, . . . , N}. For a cluster τ ⊂ I, we say that BRτ ⊂ Rd is a
bounding box if:

(i) BRτ is a hyper cube with side length Rτ ,
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(ii) Ti ⊂ BRτ for all i ∈ τ ,

For η > 0, a pair of clusters (τ, σ) with τ, σ ⊂ I is η-admissible if there exist
bounding boxes BRτ , BRσ satisfying (i)–(ii) such that

(2.3) min{diam(BRτ ), diam(BRσ )} ≤ η dist(BRτ , BRσ ).

Remark 2.2. Since the operator V is symmetric, we are able to use the admissibility
condition (2.3) instead of the stronger admissibility condition

(2.4) max{diam(BRτ ), diam(BRσ)} ≤ η dist(BRτ , BRσ ),

which is often encountered in clustering algorithms. This follows from the fact
that Proposition 3.1 only needs an admissibility criterion of the form diam(BRτ ) ≤
η dist(BRτ , BRσ). Due to the symmetry of V , deriving a block approximation for
the block τ × σ is equivalent to deriving an approximation for the block σ × τ .
Therefore, we can interchange roles of the boxesBRτ and BRσ , and as a consequence
the weaker admissibility condition (2.3) is sufficient.

Definition 2.3 (blockwise rank-r matrices). Let P be a partition of I × I and
η > 0. A matrix WH ∈ RN×N is said to be a blockwise rank-r matrix, if for every
η-admissible cluster pair (τ, σ) ∈ P , the block WH|τ×σ is a rank-r matrix, i.e., it
has the form WH|τ×σ = XτσY

T
τσ with Xτσ ∈ R|τ |×r and Yτσ ∈ R|σ|×r. Here and

below, |σ| denotes the cardinality of a finite set σ.

2.1. Approximation of V−1. The following Theorem 2.4 shows that admissi-
ble matrix blocks of V−1 can be approximated by rank-r matrices and the error
converges exponentially in the block rank.

Theorem 2.4. Fix the admissibility parameter η > 0 and q ∈ (0, 1). Let the cluster
pair (τ, σ) be η-admissible. Then, for every k ∈ N, there are matrices Xτσ ∈ R|τ |×r,
Yτσ ∈ R|σ|×r of rank r ≤ Cdim(2 + η)dq−dkd+1 such that

(2.5)
∥∥V−1|τ×σ −XτσY

T
τσ

∥∥
2
≤ CapxN

(d+2)/(d−1)qk.

The constants Capx, Cdim > 0 depend only on Ω, d, and the γ-shape regularity of
the quasiuniform triangulation Th.

The approximation estimates for the individual blocks can be combined to assess
the approximability of V−1 by blockwise rank-r matrices. Particularly satisfactory
estimates are obtained if the blockwise rank-r matrices have additional structure.
To that end, we introduce the following definitions.

Definition 2.5 (cluster tree). A cluster tree with leaf size nleaf ∈ N is a binary tree
TI with root I such that for each cluster τ ∈ TI the following dichotomy holds:
either τ is a leaf of the tree and |τ | ≤ nleaf , or there exist so called sons τ ′, τ ′′ ∈ TI ,
which are disjoint subsets of τ with τ = τ ′ ∪ τ ′′. The level function level : TI → N0

is inductively defined by level(I) = 0 and level(τ ′) := level(τ) + 1 for τ ′ a son of τ .
The depth of a cluster tree is depth(TI) := maxτ∈TI level(τ).

Definition 2.6 (far field, near field, and sparsity constant). A partition P of I ×I
is said to be based on the cluster tree TI , if P ⊂ TI × TI . For such a partition P
and fixed admissibility parameter η > 0, we define the far field and the near field
as

(2.6) Pfar := {(τ, σ) ∈ P : (τ, σ) is η-admissible}, Pnear := P\Pfar.
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The sparsity constant Csp, introduced in [HK00a, HK00b, Gra01], of such a parti-
tion is defined by
(2.7)

Csp := max

{
max
τ∈TI

|{σ ∈ TI : τ × σ ∈ Pfar}| ,max
σ∈TI

|{τ ∈ TI : τ × σ ∈ Pfar}|
}
.

The following Theorem 2.7 shows that the matrix V−1 can be approximated by
blockwise rank-r matrices at an exponential rate in the block rank r:

Theorem 2.7. Fix the admissibility parameter η > 0. Let a partition P of I × I
be based on a cluster tree TI . Then, there is a blockwise rank-r matrix WH such
that

(2.8)
∥∥V−1 −WH

∥∥
2
≤ CapxCspN

(d+2)/(d−1)depth(TI)e
−br1/(d+1)

.

The constant Capx depends only on Ω, d, and the γ-shape regularity of the quasiu-
niform triangulation Th, while the constant b > 0 additionally depends on η.

Remark 2.8. For quasiuniformmeshes withO(N) elements, typical clustering strate-
gies such as the “geometric clustering” described in [Hac09] lead to fairly balanced
cluster trees TI of depth O(logN) and a sparsity constant Csp that is bounded
uniformly in N . We refer to [HK00a, HK00b, Gra01, Hac09] for the fact that the
memory requirement to store WH is O

(
(r + nleaf)N logN

)
.

Remark 2.9. Using h ≃ N−1/(d−1) and 1
‖V−1‖2

≤ ‖V‖2 . h(d−1)/2 ≃ N−1/2, where

the last estimate can be found, e.g, in [Ste08, Lemma 12.6], we get a bound for the
relative error

(2.9)

∥∥V−1 −WH
∥∥
2

‖V−1‖2
. CapxCspN

(d+5)/(2d−2)depth(TI)e
−br1/(d+1)

.

Remark 2.10. The approximation result of Theorem 2.7 is formulated in the spec-
tral norm. In fact, inspection of the proof of Theorem 2.4 shows that we prove
an approximation result in the weighted L2-operator norm ‖·‖√hL2→ 1√

h
L2 . Other

norms such as the Frobenius-norm are possible, and the estimates change only by
some powers of h. For the Frobenius norm, we can for instance employ the estimate
‖A‖2 ≤ ‖A‖F ≤

√
N ‖A‖2 for A ∈ RN×N .

2.2. H-Cholesky decomposition of V. LU - and Cholesky decompositions are
well-established tools of numerical linear algebra. Properties of these factorizations
depend on the choice of the ordering of the unknowns. For the H-Cholesky decom-
position of Theorem 2.11 below we assume that the unknowns are organized in a
binary cluster tree TI . This induces an ordering of the unknowns by requiring that
the unknowns of one of the sons are numbered first and those of the other son later;
the precise numbering for the leaves is immaterial for our purposes. This induced
ordering of the unknowns allows us to speak of block lower triangular matrices, if
the block partition P is based on the cluster tree TI . With this notation, we have
the following factorization result:

Theorem 2.11. Let V = CCT be the Cholesky decomposition. Let a partition P
of I × I be based on a cluster tree TI . Then, there exist a block lower triangular,
blockwise rank-r matrix CH such that

(i)
‖C−CH‖2

‖C‖2
≤ CcholN

3
2d−2depth(TI)e

−br1/(d+1)
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(ii)

∥∥∥V −CHCH
T
∥∥∥
2

‖V‖2
≤ 2CcholN

3
2d−2depth(TI)e

−br1/(d+1)

+ C2
cholN

3
d−1depth(TI)

2e−2br1/(d+1)

,

where Cchol = CspCsc

√
κ2(V), with the sparsity constant Csp of (2.7), the spectral

condition number κ2(V) := ‖V‖2
∥∥V−1

∥∥
2
, and a constant Csc depending only on

Ω, d, the γ-shape regularity of the quasiuniform triangulation Th, and η.

3. Local approximation from low dimensional spaces

For a given function f ∈ L2(Γ), we consider the boundary integral equation

V φ = f on Γ.

Here, we may consider the simple-layer operator V ∈ L(H−1(Γ), L2(Γ)) as a map-
ping from H−1(Γ) to L2(Γ), see, e.g., [SS11]. The discrete variational problem is
to find φh ∈ S0,0(Th) such that

(3.1) 〈V φh, ψh〉 = 〈f, ψh〉 ∀ψh ∈ S0,0(Th).
With V from (2.2) and b ∈ RN defined by bj = 〈f, χj〉, the variational problem
(3.1) is equivalent to solving the linear system

(3.2) Vx = b.

By ellipticity of the simple-layer operator, both problems (3.1) and (3.2) have a

unique solution. The solution x ∈ RN is linked to (3.1) via φh =
∑N

j=1 xjχj .

In the following, we repeatedly employ the L2(Γ)-orthogonal projection ΠL2

:
L2(Γ)→S0,0(Th) defined by

(3.3)
〈
ΠL2

v, ψh

〉
= 〈v, ψh〉 ∀ψh ∈ S0,0(Th).

The question of approximating the matrix block V−1|τ×σ ≈ XτσY
T
τσ can be

rephrased in terms of functions and function spaces as the question of how well
φh|BRτ

can be approximated from low dimensional spaces for (arbitrary) data f ∈
L2(Γ) with supp f ⊂ BRσ ∩ Γ. The present section is devoted to the proof of such
an approximation result formulated in the following Proposition 3.1.

Proposition 3.1. Let (τ, σ) be a cluster pair with bounding boxes BRτ , BRσ . As-
sume η dist(BRτ , BRσ) ≥ diam(BRτ ) for some η > 0, and Rτ ≤ 2 diam(Ω). Fix
q ∈ (0, 1). Then, for each k ∈ N there exists a subspace Wk of S0,0(Th) with
dimWk ≤ Cdim(2 + η)dq−dkd+1 such that for arbitrary f ∈ L2(Γ) with supp f ⊂
BRσ ∩ Γ, the solution φh of (3.1) satisfies

(3.4) min
w∈Wk

‖φh − w‖L2(BRτ ∩Γ) ≤ Cboxh
−2qk‖ΠL2

f‖L2(Γ) ≤ Cboxh
−2qk‖f‖L2(Γ).

The constants Cdim, Cbox > 0 depend only on Ω, d, and the γ-shape regularity of
the quasiuniform triangulation Th.

The proof of Proposition 3.1 will be given at the end of this section and relies
on several observations. First, the potential

u(x) := Ṽ φh(x) =

∫

Γ

G(x− y)φh(y)dsy, x ∈ Rd \ Γ,
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generated by the solution φh of (3.1) is harmonic on Ω as well as on Ωc := Rd \ Ω
and satisfies the jump conditions

[γ0u] := γext0 u− γint0 u = 0 ∈ H1/2(Γ),

[∂nu] := γext1 u− γint1 u = −φh ∈ H−1/2(Γ).(3.5)

Here, γext0 , γint0 denote the exterior and interior trace operator and γext1 , γint1 the
exterior and interior conormal derivative, see, e.g., [SS11]. Hence, the potential u
is in a space of piecewise harmonic functions, and the jump of the normal deriva-
tive is piecewise constant on the mesh Th. These properties will characterize the
spaces Hh(D) to be introduced below. The second observation is an orthogonality
condition. For f with supp f ⊂ BRσ ∩ Γ equation (3.1) implies

(3.6) 〈u, ψh〉 = 〈f, ψh〉 = 0 ∀ψh ∈ S0,0(Th)with suppψh ⊂ Γ \BRσ .

With the admissibility condition ηdist(BRτ , BRσ)≥min{diam(BRτ ), diam(BRσ )}>
0, this leads to the orthogonality condition

(3.7) 〈u, ψh〉 = 0 ∀ψh ∈ S0,0(Th)with suppψh ⊂ BRτ ∩ Γ,

i.e., on BRτ ∩ Γ the potential u is orthogonal to piecewise constants.
With these observations we are able to prove a Caccioppoli-type estimate

(Lemma 3.9) for piecewise harmonic functions satisfying the orthogonality (3.7).
Then, a low dimensional approximation result (Lemma 3.10) derived by Scott-
Zhang interpolation of the Galerkin solution φh, can be iterated as in [BH03,
Bör10a], which finally leads to exponential convergence (Lemma 3.11).

3.1. Properties of piecewise polynomial spaces. For an edge/face T ⊂ Γ
with affine parametrization ξ and p ≥ 0, we let Pp(T ) be the space Pp(T ) :=

{
π ◦

ξ|T : π ∈ Pp(R
d−1)

}
of polynomials of degree p. Moreover, we define Sp,1(Th) :={

v ∈ C(Γ) : v|T ∈ Pp(T ) ∀T ∈ Th
}
to be the space of all Th-piecewise polynomials

of degree p that are continuous on Γ.
Throughout this section we make use of the Scott-Zhang projection

Ih : H1(Γ) → S1,1(Th)
introduced in [SZ90]. We note that the Scott-Zhang projection in [SZ90] is only
defined for functions in H1(Γ), but by averaging only over triangles (and not over
faces) it may also be well defined for functions in L2(Γ).

By

ωT := interior
(⋃{

T ′ ∈ Th : T ∩ T ′ 6= ∅
})

,

we denote the element patch of T , which contains T and all elements T ′ ∈ Th
that share a node with T . The operator Ih has well-known local approximation
properties for Hℓ-functions

(3.8) ‖v − Ihv‖2Hm(T ) ≤ Ch2(ℓ−m) |v|2Hℓ(ωT ) , 0 ≤ m ≤ 1, m ≤ ℓ ≤ 1.

The constant C > 0 depends only on the γ-shape regularity of Th and the dimension
d. With the triangle inequality this also implies the L2-stability estimate

(3.9) ‖Ihv‖L2(T ) ≤ C ‖v‖L2(ωT ) .

The following lemma constructs a stable operator on L2(Γ) that features addi-
tional orthogonality properties:
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Lemma 3.2. There exists a linear operator Jh : L2(Γ) → Sd,1(Th) with the fol-
lowing properties for all v ∈ H1(Γ)

(i) ‖Jhv‖L2(T ) ≤ C ‖v‖L2(ωT ) ∀T ∈ Th;
(ii) ‖∇Jhv‖L2(T ) ≤ C ‖∇v‖L2(ωT ) ∀T ∈ Th;
(iii) 〈v − Jhv, ψ〉 = 0 ∀ψ ∈ S0,0(Th);
(iv) ‖v − Jhv‖L2(T ) ≤ Ch ‖∇v‖L2(ωT ) ∀T ∈ Th.

The constant C > 0 depends only on d and the γ-shape regularity of the quasiuni-
form triangulation Th.

Proof. Let bT ∈ Sd,1(Th) be the element bubble function for each T ∈ Th, which is
the product of the d hat-functions associated with T and scaled such that ‖bT ‖∞ =
1. Denote by χT the characteristic function of T . With the Scott-Zhang projection
Ih, we define

Jhv := Ihv +
∑

T∈Th

bT
〈v − Ihv, χT 〉∫

T bT
.

For T ′ ∈ Th we have

〈v − Jhv, χT ′〉 =
〈
v − Ihv −

∑

T∈Th

bT
〈v − Ihv, χT 〉∫

T
bT

, χT ′

〉

= 〈v − Ihv, χT ′〉 − 〈bT ′ , χT ′〉∫
T ′ bT ′

〈v − Ihv, χT ′〉 = 0,

which proves (iii). The Cauchy-Schwarz inequality and the approximation property
(3.8) of Ih imply

‖v − Jhv‖L2(T ) ≤ ‖v − Ihv‖L2(T ) +
‖bT ‖L2(T )∣∣∫

T
bT
∣∣ |T |1/2 ‖v − Ihv‖L2(T )

. ‖v − Ihv‖L2(T ) . h ‖∇v‖L2(ωT ) .

This proves (iv). The first assertion (i) follows with the same argument due to the
L2-stability of the Scott-Zhang projection Ih (3.9). Finally, we get

‖∇(v − Jhv)‖L2(T ) ≤ ‖∇(v − Ihv)‖L2(T ) +
‖∇bT ‖L2(T )∣∣∫

T bT
∣∣ |T |1/2 ‖v − Ihv‖L2(T )

. ‖∇(v − Ihv)‖L2(T ) +
1

h
‖v − Ihv‖L2(T ) . ‖∇v‖L2(ωT ) ,

and the triangle inequality finishes the proof of (ii). �

The following inverse inequalities also holds for locally refined K-meshes, but we
will only require it for the quasiuniform mesh Th at hand.

Lemma 3.3 ([DFG+01, Thm 4.1, Thm. 4.7]). There is a constant C > 0 depending
only on Γ, the γ-shape regularity of the quasiuniform triangulation Th, and the
polynomial degree p such that

‖vh‖H1/2(Γ) ≤ Ch−1/2 ‖vh‖L2(Γ) ∀vh ∈ Sp,1(Th),(3.10)

‖vh‖L2(Γ) ≤ Ch−1/2 ‖vh‖H−1/2(Γ) ∀vh ∈ Sp,0(Th).(3.11)
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3.2. The spaces Hh(D) and Hh,0(D,Γρ) of piecewise harmonic functions.

For an index set ρ ⊂ I, let Γρ ⊂ Γ be a relative open polygonal manifold, consisting
of the union of elements in Th associated with the elements in ρ, i.e.,

(3.12) Γρ = interior


⋃

j∈ρ

Tj


 .

Let D be a domain and set D− := D ∩ Ω and D+ := D ∩ Ω
c
. A function v ∈

H1(D+ ∪D−) is called piecewise harmonic, if
∫

D±
∇v · ∇ϕdx = 0 ∀ϕ ∈ C∞

0 (D±).

Remark 3.4. For a piecewise harmonic function v ∈ H1(D+ ∪D−), we can define
the jump of the normal derivative [∂nv]|D∩Γ on D ∩ Γ as the functional

(3.13) 〈[∂nv]|D∩Γ, ϕ〉 :=
∫

D+∪D−
∇v · ∇ϕdx ∀ϕ ∈ H1

0 (D).

We note that the value 〈[∂nv]|D∩Γ, ϕ〉 depends only on ϕ|D∩Γ in the sense that
〈[∂nv]|D∩Γ, ϕ〉 = 0 for all ϕ ∈ C∞

0 (D) with ϕ|D∩Γ = 0. Moreover, if [∂nv]|D∩Γ is a
function in L2(D ∩Γ), it is unique. The definition (3.13) is consistent with (3.5) in
the following sense: For the potential V φh with φh ∈ S0,0(Th), we have the jump
condition [∂nV φh]|D∩Γ = −φh|D∩Γ.

The space of piecewise harmonic functions on D with piecewise constant jump
of the normal derivative is defined by

Hh(D) := {v ∈ H1(D+ ∪D−) : v is piecewise harmonic,

∃ṽ ∈ S0,0(Th) s.t. [∂nv]|D∩Γ = ṽ|D∩Γ}.

The potential u = Ṽ φh for the problem (3.1) indeed satisfies u ∈ Hh(D)∩H1(D)
for any bounded domain D. Moreover, for a bounding box BRσ with (2.3), the po-
tential u additionally satisfies the orthogonality condition (3.7). These observations
are captured by the following space Hh,0(D,Γρ):

Hh,0(D,Γρ) := Hh(D) ∩ {v ∈ H1(D) : supp[∂nv]|D∩Γ ⊂ Γρ,

〈v, ϕ〉 = 0 ∀ϕ ∈ S0,0(Th)with suppϕ ⊂ D ∩ Γρ}.(3.14)

For the proof of Proposition 3.1 and subsequently of Theorem 2.4 and Theorem 2.7,
we will only need the case Γρ = Γ. The general case of the screen problem Γρ ( Γ
will only be required for our analysis of the H-Cholesky decomposition in Section 5.

The following lemma shows that this space is a closed subspace of H1(D \
Γ); later, this property will allow us to consider the orthogonal projection from
H1(D\Γ) onto Hh(D) and from H1(D) onto Hh,0(D,Γρ).

Lemma 3.5. The space Hh(D) is a closed subspace of H1(D\Γ), and Hh,0(D,Γρ)
is a closed subspace of H1(D).

Proof. We first show that Hh(D) is a closed subspace of H1(D \Γ). Let (vj)j∈N ⊂
Hh(D) be a sequence converging to v ∈ H1(D\Γ). For ϕ ∈ C∞

0 (D±), we have

〈∇v,∇ϕ〉L2(D±) = lim
j→∞

〈
∇vj ,∇ϕ

〉
L2(D±)

= 0.

Hence, v is piecewise harmonic on D+ ∪D−.
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Pick ϕ ∈ C∞
0 (D) \ {0} with suppϕ ∩ Γ ⊂ T ∈ Th. Then

[∂nv
j ]|T 〈1, ϕ〉L2(T ) =

〈
[∂nv

j ], ϕ
〉
L2(T )

=
〈
∇vj ,∇ϕ

〉
L2(D\Γ)

j→∞−→ 〈∇v,∇ϕ〉L2(D\Γ)

shows that the piecewise constant function [∂nv
j ] converges elementwise. Hence,

the sequence
(
[∂nv

j ]
)
j∈N

converges pointwise to a piecewise constant function ṽ.

This piecewise constant limit ṽ coincides with the jump of the normal derivative
[∂nv] ∈ H−1/2(Γ) as the following calculation for arbitrary ϕ ∈ C∞

0 (D) shows:

〈ṽ, ϕ〉L2(D∩Γ) = lim
j→∞

〈
[∂nv

j ], ϕ
〉
L2(D∩Γ)

= 〈∇v,∇ϕ〉L2(D\Γ) = 〈[∂nv], ϕ〉L2(D∩Γ) .

Finally, Hh,0(D,Γρ) is a closed subspace ofH1(D), sinceHh(D) is a closed subspace
of H1(D \ Γ) and the intersection of closed spaces is again closed. �

We will derive an approximation of the Galerkin solution φh by approximating

the potential u = Ṽ φh. In view of the relation φh = −[∂nu] we have to control
the jump of the normal derivative by a norm of u. Lemma 3.8 below provides such
an estimate, which may be seen as an inverse estimate, since [∂nu] is a discrete
function. For its proof, we need the following Lemma 3.7 as well as the definition
of “concentric boxes”.

Definition 3.6. Two (open) boxes BR, BR′ are said to be concentric boxes with
side lengths R and R′, if they have the same barycenter and BR can be obtained
by a stretching of BR′ by the factor R/R′ taking their common barycenter as the
origin.

The following Lemma 3.7 is quite classical, and we include its short proof for the
reader’s convenience.

Lemma 3.7. (i) For R ≤ 1 denote by SR := {x ∈ Rd : dist(x,Γ) < R} the
tubular neighborhood of Γ of width R. Then, there is a constant C > 0 that
depends only on Γ such that

‖v‖L2(SR) ≤ C
[√
R‖γint0 v‖L2(Γ) +R‖∇v‖L2(SR)

]
∀v ∈ H1(SR).

(ii) Let δ, R > 0. Let BR and B(1+δ)R be two concentric boxes with side lengths
R and (1 + δ)R. Then, there is a constant C > 0, which depends only on
the dimension d, such that for all v ∈ H1(B(1+δ)R), we have

‖v‖2L2(B(1+δ)R\BR) ≤ CδR

(
1

(1 + δ)R
‖v‖2L2(B(1+δ)R) + (1 + δ)R‖∇v‖2L2(B(1+δ)R)

)
.

Proof. ad (i): For smooth univariate functions v the fundamental theorem of cal-
culus yields v(x) = v(0)+

∫ x

0 v
′(t) dt. Hence, the Young inequality and the Cauchy-

Schwarz inequality yield v2(x) ≤ 2v2(0) + 2R‖v′‖2L2(0,R). Integration over the in-

terval (0, R) gives

‖v‖2L2(0,R) ≤ 2Rv2(0) + 2R2‖v′‖2L2(0,R).

This 1D result implies the desired estimate by using (locally) boundary fitted co-
ordinates.

ad (ii): We start with the 1D Gagliardo-Nirenberg inequality for the interval
I = (0, 1): ‖v‖2L∞(I) ≤ C‖v‖L2(I)‖v‖H1(I) ≤ C‖v‖2L2(I) + C‖v‖L2(I)‖v′‖L2(I). A
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scaling argument then yields

‖v‖2L∞(0,(1+δ)R) .
1

(1 + δ)R
‖v‖2L2(0,(1+δ)R) + ‖v‖L2(0,(1+δ)R)‖v′‖L2(0,(1+δ)R)

.
1

(1 + δ)R
‖v‖2L2(0,(1+δ)R) + (1 + δ)R‖v′‖2L2(0,(1+δ)R).

We may assume that B(1+δ)R = (0, (1 + δ)R)d. Then, this 1D estimate implies

‖v‖2L2((0,δR)×(0,(1+δ)R)d−1) .
δR

(1 + δ)R
‖v‖2L2(B(1+δ)R)

+ δR(1 + δ)R‖∇v‖2L2(B(1+δ)R).

By arguing similarly for the remaining parts of B(1+δ)R \ BR, we get the desired
result. �

Lemma 3.8. Let δ ∈ (0, 1), R > 0 be such that h
R ≤ δ

4 . Let BR, B(1+δ)R be
two concentric boxes of side lengths R and (1 + δ)R. Then, there exists a constant
C > 0 depending only on Ω, d, and the γ-shape regularity of the quasiuniform
triangulation Th, such that for all v ∈ Hh(B(1+δ)R)

‖[∂nv]‖L2(B(1+δ/2)R∩Γ) ≤ Ch−1/2 ‖∇v‖L2(B(1+δ)R) .(3.15)

Proof. We prove (3.15) in two steps, the first step being the proof of the auxiliary
estimate (3.16) below. The second step shows (3.15) with the aid of (3.16) and a
simple covering argument.

Step 1: We show the following assertion: If h
r ≤ ε

4 for r, ε > 0, then there exists
a constant C > 0 depending only on the shape regularity constant γ, the domain
Ω, and d such that for all v ∈ Hh(B(1+ε)r)

‖[∂nv]‖L2(Br∩Γ) ≤ Ch−1/2

√
1 +

1

ε
‖∇v‖L2(B(1+ε)r)

.(3.16)

To see this, let E int : H1/2(Γ) → H1(Ω) and Eext : H1/2(Γ) → H1(Ω
c
) be (bounded,

linear) lifting operators for Ω and Ωc (cf. [Neč67, Thm. 5.7]). Then, introduce the
(bounded, linear) lifting L : H1/2(Γ) → H1(Rd) by

Lw :=

{ E intw in Ω,

Eextw in Ω
c
.

Lemma 3.2 provides an operator Jh : L2(Γ) → Sd,1(Th) ⊂ H1(Γ). Furthermore,
w − Jhw is orthogonal to piecewise constant functions so that

(3.17) ‖[∂nv]‖L2(Br∩Γ) = sup
w∈L2(Γ)

suppw⊂Br

〈[∂nv], w〉
‖w‖L2(Γ)

= sup
w∈L2(Γ)

suppw⊂Br

〈[∂nv],Jhw〉
‖w‖L2(Γ)

.

Note that the construction of Jh implies suppJhw ⊂ B(1+ε/2)r ∩ Γ. Let η be a
smooth cut-off function with 0 ≤ η ≤ 1, η ≡ 1 on B(1+ε/2)r, and supp η ⊂ B(1+ε)r
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and ‖∇η‖L∞(B(1+ε)r)
. 1

εr . With the lifting L(Jhw), we can estimate

〈[∂nv],Jhw〉L2(Br+2h∩Γ) =
〈
[∂nv], γ

int
0 ηLJhw

〉
L2(Br+2h∩Γ)

=

∫

B(1+ε)r

∇v · ∇(ηLJhw)dx

≤ ‖∇v‖L2(B(1+ε)r)
‖∇(ηLJhw)‖L2(B(1+ε)r)

.(3.18)

We have to estimate ηLJhw further. Noting that η ≡ 1 on Br, we use the product
rule to estimate

‖∇(ηLJhw)‖L2(B(1+ε)r) .
1

εr
‖LJhw‖L2(B(1+ε)r\Br) + ‖∇LJhw‖L2(B(1+ε)r).(3.19)

The continuity of the lifting L : H1/2(Γ) → H1(Rd) and the inverse estimate (3.10)
of Lemma 3.3 give

‖∇LJhw‖L2(S√
d(1+ε)r)

≤ ‖∇LJhw‖L2(Rd)

. ‖Jhw‖H1/2(Γ) .
1√
h
‖Jhw‖L2(Γ),(3.20)

which is the key step for the treatment of the second term in (3.19). Let us now
turn to the first term in (3.19). Using Lemma 3.7, (ii) and then Lemma 3.7, (i)
with the observation B(1+ε)r ⊂ S√

d(1+ε)r, we get

1

εr
‖LJhw‖L2(B(1+ε)r\Br) .

1√
εr
√
(1 + ε)r

‖LJhw‖L2(B(1+ε)r)

+

√
(1 + ε)r√
εr

‖∇LJhw‖L2(B(1+ε)r)

.
1√
εr

‖LJhw‖L2(Γ) +

√
(1 + ε)r√
εr

‖∇LJhw‖L2(S√
d(1+ε)r)

.

We have LJhw|Γ = Jhw, and (3.20) leads to

1

εr
‖LJhw‖L2(B(1+ε)r\Br) .

1√
εr

‖Jhw‖L2(Γ) + h−1/2
√
1 + ε−1‖Jhw‖L2(Γ).(3.21)

We note that εr ≥ 4h so that 1/
√
εr . h−1/2. Inserting (3.20) and (3.21) in (3.19)

and using the L2(Γ)-stability of Jh given by Lemma 3.2, we obtain

‖∇(ηLJhw)‖L2(B(1+ε)r) . h−1/2
√
1 + ε−1‖Jhw‖L2(Γ) . h−1/2

√
1 + ε−1‖w‖L2(Γ).

Finally, inserting this bound into (3.18) and then into (3.17) allows us to conclude
the proof of (3.16).

Step 2: The bound (3.15) is shown with the aid of (3.16) and a covering ar-
gument. We may assume that BR = (0, R)d. Set r = δR. Let n ∈ N be given
by n = ⌈R/r⌉. Let xi, i = 1, . . . , (n + 1)d =: N be the points of a regular grid
in the closed box BR with spacing R/n. For i = 1, . . . , N consider the boxes

Bi := xi+(−r/2, r/2)d as well as the scaled boxes B̂i := xi+(−r, r)d, i = 1, . . . , N .
The essential properties of these boxes are: first, the boxes Bi, i = 1, . . . , N cover

B(1+δ/2)R; secondly, the scaled boxes B̂i, i = 1, . . . , N are contained in B(1+δ)R;
thirdly, and most importantly, they have a finite overlap property (with an over-
lap constant that depends solely on the spatial dimension d, since the ratio of the
spacing R/n and the side length r satisfies r/(R/n) = (1/δ)/⌈1/δ⌉ ∈ [1/2, 1] for
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the case δ ∈ (0, 1) under consideration here). Observing h
r = h

δR ≤ 1
4 due to our

assumption h
R ≤ δ

4 , the estimate (3.16) implies for each i

‖[∂nv]‖L2(Bi∩Γ) ≤ Ch−1/2‖∇v‖L2(B̂i)
.

The desired estimate (3.15) follows from the covering and overlap properties. �

For a box BR with side length R, we introduce the norm

|||v|||2h,R :=

(
h

R

)2

‖∇v‖2L2(BR) +
1

R2
‖v‖2L2(BR) ,

which is, for fixed h, equivalent to the H1-norm.
Similarly as in [BH03, Bör10a], a main part of the proof is a Caccioppoli-type in-

equality, which is, for functions in Hh,0(B(1+δ)R,Γρ), stated in the following lemma.

Lemma 3.9. Let δ ∈ (0, 1) and h
R ≤ δ

16 and let Γρ ⊂ Γ be of the form (3.12). Let
BR, B(1+δ)R be two concentric boxes. Then, there exists a constant C > 0 depending
only on Ω, d, and the γ-shape regularity of the quasiuniform triangulation Th, such
that for v ∈ Hh,0(B(1+δ)R,Γρ)

(3.22) ‖∇v‖L2(BR) ≤ C
1 + δ

δ
|||v|||h,(1+δ)R .

Proof. The proof of (3.22) is done in two steps.
Step 1: We show that for ε > 0 with h

R ≤ ε
8 , the estimate

(3.23) ‖∇v‖2L2(BR) .
h

εR
‖∇v‖2L2(B(1+ε)R) +

1

(εR)2
‖v‖2L2(B(1+ε)R).

holds. To see this, let η be a smooth cut-off function with supp η ⊂ B(1+ε/4)R and

η ≡ 1 on BR, and ‖∇η‖L∞(B(1+ε)R) . 1
εR . We will need a second smooth cut-off

function η̃ with supp η̃ ⊂ B(1+ε)R and η̃ ≡ 1 on B(1+ε/2)R and ‖∇η̃‖L∞(B(1+ε)R) .
1
εR . Since h is the maximal element diameter, 8h ≤ εR implies T ⊂ B(1+ε/2)R for
all T ∈ Th with T ∩ supp η 6= ∅. Integration by parts, the fact that v is piecewise
harmonic and supp([∂nv]|B(1+ε)R∩Γ) ⊂ Γρ lead to

‖∇(ηv)‖2L2(B(1+ε)R) =

∫

B(1+ε)R

∇(ηv) · ∇(ηv) dx

=

∫

B(1+ε)R

∇v · ∇(η2v) + v2 |∇η|2 dx

=

∫

Γ∩B(1+ε)R

η2[∂nv]v dsx +

∫

B(1+ε)R

v2 |∇η|2 dx

=

∫

Γ

η2[∂nv]v dsx +

∫

B(1+ε)R

v2 |∇η|2 dx,(3.24)

where in the last step we used the support property supp η ⊂ B(1+ε/4)R to extend

the function η2[∂nv]v, which is defined on Γ∩B(1+ε)R, by zero to the whole set Γ. We

first focus on the surface integral in (3.24). With the L2(Γ)-orthogonal projection

ΠL2

onto S0,0(Th) from (3.3), we get by definition of the space Hh,0(B(1+ε)R,Γρ)
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that suppΠL2

(η2[∂nv]) ⊂ Γρ ∩ B(1+ε)R. Therefore, we can use the orthogonality
(3.14) satisfied by v to get

〈η2[∂nv], v〉 = 〈η2[∂nv]−ΠL2

(η2[∂nv]), v〉
= 〈η2[∂nv]−ΠL2

(η2[∂nv]), η̃
2v〉

= 〈η2[∂nv]−ΠL2

(η2[∂nv]), η̃
2v −ΠL2

(η̃ 2v)〉,(3.25)

where we were able to insert the cut-off function η̃ since η̃ ≡ 1 on supp(η2[∂nv] −
ΠL2

(η2[∂nv])) ⊂ (B(1+ε/2)R \BR−2h) ∩ Γρ. With these observations in hand, we
estimate

‖η2[∂nv]−ΠL2

(η2[∂nv])‖2L2(Γ) .
∑

T∈Th

h2‖∇Γ(η
2[∂nv])‖2L2(T )

. C
h2

(εR)2
‖[∂nv]‖2L2((B(1+ε/2)R)∩Γρ)

.

The standard approximation property ‖η̃ 2v −ΠL2

(η̃ 2v)‖L2(Γ) . h1/2‖η̃ 2v‖H1/2(Γ)

and the bound (3.15) of Lemma 3.8 as well as the trace inequality for Γ give

∣∣〈η2[∂nv], v〉
∣∣ . h

εR
‖[∂nv]‖L2((B(1+ε/2)R)∩Γρ)h

1/2‖η̃ 2v‖H1/2(Γ)

.
h

εR
‖∇v‖L2(B(1+ε)R)‖η̃ 2v‖H1/2(Γ) .

h

εR
‖∇v‖L2(B(1+ε)R)‖η̃ 2v‖H1(Ω).(3.26)

The properties of η̃ imply ‖η̃ 2v‖H1(Ω) . ‖∇v‖L2(B(1+ε)R) + (εR)−1‖v‖L2(B(1+ε)R).

Inserting this into (3.26) and the result into (3.24) yields

‖∇(ηv)‖2L2(B(1+ε)R) .
h

εR
‖∇v‖2L2(B(1+ε)R) +

h

(εR)2
‖∇v‖L2(B(1+ε)R)‖v‖L2(B(1+ε)R)

+
1

(εR)2
‖v‖2L2(B(1+ε)R)

.
h

εR
‖∇v‖2L2(B(1+ε)R) +

1

(εR)2
‖v‖2L2(B(1+ε)R),

where we employed an appropriate Young inequality in the last step and h/(εR) ≤
1. This implies (3.23).

Step 2: Starting from estimate (3.23) with ε = δ
2 , we use (3.23) again with

ε = δ
2+δ and R̃ = (1+ δ/2)R. Since

(
1 + δ

2

) (
1 + δ

2+δ

)
= 1+ δ and h

R ≤ δ
16 implies

h

R̃
≤ ε

8 , we arrive at

‖∇v‖2L2(BR) .
h

δR
‖∇v‖2L2(B(1+δ/2)R) +

1

(δR)2
‖v‖2L2(B(1+δ/2)R)

.

(
h

δR

)2

‖∇v‖2L2(B(1+δ)R) +

(
h

(δR)3
+

1

(δR)2

)
‖v‖2L2(B(1+δ)R),

and with h/(δR) ≤ 1 we conclude the proof. �

3.3. Low-dimensional approximation in Hh,0(D,Γρ). Since Hh,0(BR,Γρ) ⊂
H1(BR) is a closed subspace by Lemma 3.5, the orthogonal projection Πh,R :
(H1(BR), |||·|||h,R) → (Hh,0(BR,Γρ), |||·|||h,R) is well-defined.
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Lemma 3.10. Let δ ∈ (0, 1), R > 0 such that h
R ≤ δ

16 and BR, B(1+δ)R, B(1+2δ)R

be concentric boxes. Let Γρ ⊂ Γ be of the form (3.12) and v ∈ Hh,0(B(1+2δ)R,Γρ).

Let KH be an (infinite) γ-shape regular triangulation of Rd of mesh width H and
assume H

R ≤ δ
4 for the corresponding mesh width H. Let IH : H1(Rd) → S1,1(KH)

be the Scott-Zhang projection. Then, there exists a constant Capp > 0 that depends
only on Ω, d, and γ, such that

(i)
(
v −Πh,RIHv

)
|BR ∈ Hh,0(BR,Γρ);

(ii) |||v −Πh,RIHv|||h,R ≤ Capp
1+2δ
δ

(
h
R + H

R

)
|||v|||h,(1+2δ)R;

(iii) dimW ≤ Capp

(
(1+2δ)R

H

)d
, where W := Πh,RIHHh,0(B(1+2δ)R,Γρ).

Proof. Since v ∈ Hh,0(B(1+2δ)R,Γρ) implies v ∈ Hh,0(BR,Γρ), we have that
Πh,R (v|BR) = v|BR , which proves (i).

The assumption H
R ≤ δ

4 implies
⋃{K ∈ KH : K ∩ BR 6= ∅} ⊂ B(1+δ)R. Then,

the locality and approximation properties (3.8) of the Scott-Zhang projection IH
yield

1

H
‖v − IHv‖L2(BR) + ‖∇(v − IHv)‖L2(BR) . ‖∇v‖L2(B(1+δ)R) .

We apply Lemma 3.9 with R̃ = (1 + δ)R and δ̃ = δ
1+δ . Note that (1 + δ̃)R̃ =

(1 + 2δ)R. Moreover, 16h ≤ δR = δ̃R̃ implies h

R̃
≤ δ̃

16 . Therefore, we get

|||v −Πh,RIHv|||2h,R = |||Πh,R (v − IHv)|||2h,R ≤ |||v − IHv|||2h,R

=

(
h

R

)2

‖∇(v − IHv)‖2L2(BR) +
1

R2
‖v − IHv‖2L2(BR)

.
h2

R2
‖∇v‖2L2(B(1+δ)R) +

H2

R2
‖∇v‖2L2(B(1+δ)R)

.

(
1 + δ

δ

(
h

R
+
H

R

))2

|||v|||2h,(1+2δ)R ,

which concludes the proof of (ii). Finally, the statement (iii) follows from the fact
that dim IH(Hh,0(B(1+2δ)R,Γρ)) . ((1 + 2δ)R/H)d. �

The property (i) of Lemma 3.10 can be used to iterate the approximation result
(ii) on suitable concentric boxes. This will allow us to construct a subspace of
Hh,0(B(1+κ)R,Γρ) for κ ∈ (0, 1) with the capability to approximate at an exponen-
tial rate.

Lemma 3.11. Let Capp be the constant of Lemma 3.10. Let q, κ ∈ (0, 1), R > 0,
k ∈ N and Γρ ⊂ Γ be of the form (3.12). Assume

(3.27)
h

R
≤ κq

64kmax{1, Capp}
.

Then, there exists a finite dimensional subspace Ŵk of Hh,0(B(1+κ)R,Γρ) with di-
mension

dim Ŵk ≤ Cdim

(
1 + κ−1

q

)d

kd+1
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such that for every v ∈ Hh,0(B(1+κ)R,Γρ)

min
ŵ∈Ŵk

√
h ‖[∂nv]− [∂nŵ]‖L2(BR∩Γρ)

≤ min
ŵ∈Ŵk

√
h ‖[∂nv]− [∂nŵ]‖L2(BR∩Γ)(3.28)

≤ Clow
R

h
min
ŵ∈Ŵk

|||v − ŵ|||h,(1+κ/2)R ≤ Clow
R

h
qk |||v|||h,(1+κ)R .

The constants Cdim, Clow > 0 depend only on Ω, d, and the γ-shape regularity of
the quasiuniform triangulation Th.
Proof. Let BR and B(1+δj)R, with δj := κ(1 − j

2k ) for j = 0, . . . , k be concentric
boxes. We have κ = δ0 > δ1 > · · · > δk = κ

2 . In the following, we iterate
the approximation result of Lemma 3.10 on the boxes B(1+δj)R. Choosing H =

κqR
64kmax{Capp,1} , we have h ≤ H . We apply Lemma 3.10 with R̃j = (1+δj)R and δ̃j =

κ
4k(1+δj)

< 1
4 . Note that δj−1 = δj+

κ
2k gives (1+δj−1)R = (1+2δ̃j)R̃j and our choice

of H implies H

R̃j
≤ δ̃j

4 . Hence, for j = 1, Lemma 3.10 provides an approximation

w1 in a subspace W1 of Hh,0(B(1+δ1)R,Γρ) with dimW1 ≤ Capp

(
(1+2δ̃1)R̃1

H

)d
=

Capp

(
(1+κ)R

H

)d
, satisfying

|||v − w1|||h,(1+δ1)R
= |||v − w1|||h,R̃1

≤ Capp
1 + 2δ̃1

δ̃1

(
h

R̃1

+
H

R̃1

)
|||v|||h,(1+2δ̃1)R̃1

≤ 2Capp
H

(1 + δ1)R

1 + 2δ̃1

δ̃1
|||v|||h,(1+δ0)R

= 8Capp
kH

κR
(1 + 2δ̃1) |||v|||h,(1+κ)R ≤ q |||v|||h,(1+κ)R .

Since v|B(1+δ1)R
− w1 ∈ Hh,0(B(1+δ1)R,Γρ), Lemma 3.10 can be applied to v − w1,

and provides an approximation w2 of v−w1 in a subspaceW2 of Hh,0(B(1+δ2)R,Γρ)

with dimW2 ≤ Capp

(
(1+κ)R

H

)d
. Arguing as for j = 1, we get

|||v − w1 − w2|||h,(1+δ2)R
≤ q |||v − w1|||h,(1+δ1)R

≤ q2 |||v|||h,(1+κ)R .

Continuing this process k−2 times, one obtains an approximation ŵ :=
∑k

j=1 wi in

the space Ŵk :=
∑k

j=1Wj of dimension dim Ŵk ≤ Cappk
(

(1+κ)R
H

)d
≤ Cdim((1 +

κ−1)q−1)dkd+1 with

|||v − ŵ|||h,(1+κ/2)R = |||v − ŵ|||h,(1+δk)R
≤ qk |||v|||h,(1+κ)R .

Finally, since (3.27) ensures h/R ≤ κ/8, we may use Lemma 3.8 to estimate

√
h‖[∂nv]− [∂nŵ]‖L2(BR∩Γ) ≤ C ‖∇(v − ŵ)‖L2(B(1+κ/2)R) ≤ C

R

h
|||v − ŵ|||h,(1+κ/2)R

to conclude the argument. �

Now we are able to prove the main result of this section, Proposition 3.1.

Proof of Proposition 3.1. Due to the admissibility condition and the definition of
bounding boxes, we have dist(BRτ , BRσ ) ≥ η−1 diam(BRτ ) = η−1

√
dRτ . The
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choice κ = 1
1+η implies

dist(B(1+κ)Rτ
, BRσ) ≥ dist(BRτ , BRσ )− κRτ

√
d

≥
√
dRτ (η

−1 − κ) =
√
dRτ

(
1

η
− 1

1 + η

)
> 0.

The potential u = Ṽ φh with the Galerkin solution φh ∈ S0,0(Th) of (3.1) then

satisfies u ∈ Hh,0(B(1+κ)Rτ
,Γ). The inverse estimate

√
h ‖φh‖L2(Γ) . ‖φh‖H−1/2(Γ)

of (3.11) and the ellipticity of the simple-layer operator as well as the discrete
boundary integral equation (3.1) provide

‖φh‖2H−1/2(Γ) . 〈V φh, φh〉 = 〈f, φh〉 =
〈
ΠL2

f, φh

〉
.
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

‖φh‖L2(Γ)

. h−1/2
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

‖φh‖H−1/2(Γ) .

Then, the boundedness of Ṽ : H−1/2(Γ) → H1
loc(R

d) and h
Rτ

< 1 lead to

∣∣∣
∣∣∣
∣∣∣Ṽ φh

∣∣∣
∣∣∣
∣∣∣
h,Rτ (1+κ)

≤ 2

(
1 +

1

Rτ

)∥∥∥Ṽ φh
∥∥∥
H1(B2Rτ )

.

(
1 +

1

Rτ

)
‖φh‖H−1/2(Γ)

.

(
1 +

1

Rτ

)
h−1/2

∥∥∥ΠL2

f
∥∥∥
L2(Γ)

.

After these preparations, we are in a position to define the space Wk, for which we
distinguish two cases.

Case 1: The condition (3.27) is satisfied with R = Rτ .

With the space Ŵk provided by Lemma 3.11 we set Wk := {[∂nŵ] : ŵ ∈ Ŵk}.
Then, Lemma 3.11 and Rτ ≤ 2 diam(Ω) lead to

min
w∈Wk

‖φh − w‖L2(BRτ ∩Γ) .
Rτ

h3/2
qk
∣∣∣
∣∣∣
∣∣∣Ṽ φh

∣∣∣
∣∣∣
∣∣∣
h,(1+κ)Rτ

. (Rτ + 1)h−2qk
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

. h−2qk
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

,

and the dimension of Wk is bounded by

dimWk ≤ Cdim

(
1 + κ−1

q

)d

kd+1 = Cdim(2 + η)dq−dkd+1.

Case 2: The condition (3.27) is not satisfied.
Then, we select Wk :=

{
w|BRτ ∩Γ : w ∈ S0,0(Th)

}
and the minimum in (3.4) is

obviously zero. By the choice of κ and h
R > κq

64kmax{1,Capp} , the dimension of Wk is

bounded by

dimWk .

(
Rτ

h

)d−1

.

(
64kmax{Capp, 1}

κq

)d−1

≃
(
(1 + η)q−1k

)d−1

. (2 + η)dq−dkd+1.

This concludes the proof of the first inequality in (3.4). The second inequality in
(3.4) follows from the L2(Γ)-stability of the L2(Γ)-orthogonal projection. �
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4. Proof of the approximation results for V−1

In this section, the approximation result given in Proposition 3.1 is used to
construct a low-rank approximation of a matrix block V−1|τ×σ and in turn an
H-matrix approximation of V−1. This is achieved with local variants of the iso-
morphism (2.1), and our arguments follow the lines of [Bör10a, Theorem 2].

Proof of Theorem 2.4. If Cdim(2 + η)dq−dkd+1 ≥ min(|τ | , |σ|), we use the exact
matrix block Xτσ = V−1|τ×σ and Yτσ = I ∈ R|σ|×|σ|.

If Cdim(2 + η)dq−dkd+1 < min(|τ | , |σ|), we employ the approximation result of
Proposition 3.1 in the following way. For the cluster τ ⊂ I, we define
Rτ :=

{
x ∈ RN : xi = 0 ∀i /∈ τ

}
and the mappings

Φτ : Rτ → S0,0(Th), x 7→
∑

j∈τ

xjχj , and Λτ : L2(Γ) → R|τ |, w 7→ (wi)i∈τ ,

where wi denotes the mean value on the element Ti ∈ Th. Hence, for a piecewise
constant function the mapping Λτ returns the constant value on each element cor-
responding to the cluster τ . Moreover, ΦτΛτ is the restriction of the L2-projection
onto S0,0(Th) to Γτ := interior

(⋃
i∈τ Ti

)
⊂ BRτ . Thus, in particular, for a piece-

wise constant function φ̃ ∈ S0,0(Th) we get Φτ (Λτ φ̃) = φ̃|Γτ . For x ∈ Rτ , (2.1)
implies

Chd/2 ‖x‖2 ≤ ‖Φτ (x)‖L2(Γ) ≤ C̃hd/2 ‖x‖2 , x ∈ Rτ .

The adjoint Λ∗
I : RN → L2(Γ)′ ≃ L2(Γ),b 7→ ∑

i∈I bi(u 7→ ui) of ΛI satisfies,

because of (2.1) and the L2-stability of ΦIΛI ,

‖Λ∗
Ib‖L2(Γ) = sup

w∈L2(Γ)

〈b,ΛIw〉2
‖w‖L2(Γ)

. ‖b‖2 sup
w∈L2(Γ)

h−d/2 ‖ΦIΛIw‖L2(Γ)

‖w‖L2(Γ)

. h−d/2 ‖b‖2 .

Let b ∈ RN . Defining f := Λ∗
Ib|σ, we get bi = 〈f, χi〉 for i ∈ σ, and supp f ⊂

BRσ ∩ Γ. Proposition 3.1 provides a finite dimensional space Wk and an element
w ∈ Wk that is a good approximation to the Galerkin solution φh|BRτ ∩Γ. It is
important to note that the space Wk is constructed independently of the function
f ; it depends only on the cluster pair (τ, σ). The estimate (2.1), the approximation

result from Proposition 3.1, and
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

= ‖Λ∗
Ib‖L2(Γ) . h−d/2 ‖b‖2 imply

‖Λτφh − Λτw‖2 . h−d/2 ‖Φτ (Λτφh − Λτw)‖L2(Γ) . h−d/2 ‖φh − w‖L2(BRτ ∩Γ)

. h−d/2−2qk
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

. h−(d+2)qk ‖b‖2 .

In order to translate this approximation result to the matrix level, let

W := {Λτw : w ∈ Wk}.
Let the columns of Xτσ be an orthogonal basis of the space W . Then, the rank of
Xτσ is bounded by Cdim(2+η)

dq−dkd+1. SinceXτσX
T
τσ is the orthogonal projection

from RN onto W , we get that z := XτσX
T
τσΛτφh is the best approximation of Λτφh

in W and arrive at

(4.1) ‖Λτφh − z‖2 ≤ ‖Λτφh − Λτw‖2 . h−(d+2)qk ‖b‖2 ≃ N (d+2)/(d−1)qk ‖b‖2 .
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Noting that Λτφh = V−1|τ×σb|σ, if we define Yτ,σ := V−1|Tτ×σXτσ, we thus get

z = XτσY
T
τσb|σ. The bound (4.1) expresses

(4.2) ‖
(
V−1|τ×σ −XτσY

T
τσ

)
b|σ‖2 . N (d+2)/(d−1)qk ‖b‖2 .

The spaceWk depends only on the cluster pair (τ, σ) and the estimate (4.2) is valid
for any b. This concludes the proof. �

The following lemma gives an estimate for the global spectral norm by the local
spectral norms.

Lemma 4.1 ([Gra01],[Hac09, Lemma 6.5.8]). Let M ∈ RN×N and P be a parti-
tioning of I × I. Then,

‖M‖2 ≤ Csp

( ∞∑

ℓ=0

max{‖M|τ×σ‖2 : (τ, σ) ∈ P, level(τ) = ℓ}
)
,

where the sparsity constant Csp is defined in (2.7).

Now we are able to prove our main result, Theorem 2.7.

Proof of Theorem 2.7. Theorem 2.4 provides matricesXτσ ∈ R|τ |×r, Yτσ ∈ R|σ|×r,
so we can define the H-matrix VH by

WH =

{
XτσY

T
τσ if (τ, σ) ∈ Pfar,

V−1|τ×σ otherwise.

On each admissible block (τ, σ) ∈ Pfar we can use the blockwise estimate of Theorem
2.4 and get ∥∥(V−1 −WH)|τ×σ

∥∥
2
≤ CapxN

(d+2)/(d−1)qk.

On inadmissible blocks, the error is zero by definition. Therefore, Lemma 4.1 leads
to

∥∥V−1 −WH
∥∥
2
≤ Csp

( ∞∑

ℓ=0

max{
∥∥(V−1 −VH)|τ×σ

∥∥
2
: (τ, σ) ∈ P, level(τ) = ℓ}

)

≤ CapxCspN
(d+2)/(d−1)qk depth(TI).

With r = Cdim(2 + η)dq−dkd+1, defining b = − ln(q)

C
1/(d+1)
dim

qd/(d+1)(2 + η)−d/(1+d) > 0

leads to qk = e−br1/(d+1)

, and hence
∥∥V−1 −WH

∥∥
2
≤ CapxCspN

(d+2)/(d−1)depth(TI)e
−br1/(d+1)

,

which concludes the proof. �

5. H-Cholesky decomposition: Proof of Theorem 2.11

The aim of this section is the proof of Theorem 2.11. Our procedure follows
[Beb07, GKLB09, FMP13] and is based on showing that the off-diagonal block
of certain Schur complements can be approximated by low-rank matrices. The
analysis of these Schur complement matrices in Section 5.1 is therefore the main
contribution of the section.

The matrix V is symmetric and positive definite and therefore has a (classi-
cal) Cholesky-decomposition V = CCT , where C is a lower triangular matrix.
Moreover, the existence of the Cholesky decomposition does not depend on the
numbering of the degrees of freedom, i.e., for every other numbering of the basis
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functions there is a Cholesky decomposition as well (see, e.g., [HJ13, Cor. 3.5.6]).
The existence of the Cholesky decomposition implies the invertibility of the matrix
V|ρ×ρ for any n ≤ N and index set ρ := {1, . . . , n} (see, e.g., [HJ13, Cor. 3.5.6]).

The first step is the approximation of appropriate Schur complements.

5.1. Schur complements. For a cluster pair (τ, σ), we define the index set ρ :=
{i ∈ I : i < min(τ ∪ σ)} and the Schur complement

(5.1) S(τ, σ) = V|τ×σ −V|τ×ρ(V|ρ×ρ)
−1V|ρ×σ.

One way to approximate the Schur complement is to use the H-arithmetic. As
stated in [GKLB09, Theorem 15], this results in a low-rank approximation to S(τ, σ)
of rank CidCsp(depth(TI)+1)2r, where the idempotency constant Cid is defined in
[GH03], and r is the block rank used for the approximation of the inverse matrix
V−1. In the following Theorem 5.2, we provide a low-rank approximation by using
a different approach, which uses the techniques developed in Section 3 and gives
a better bound in terms of the rank of the approximation, i.e., a rank of Cr is
sufficient to obtain the same accuracy. This approach relies on interpreting Schur
complements as BEM matrices from certain constrained spaces.

The key step is Theorem 5.2 below. For its proof, we need a degenerate approx-
imation of the Green’s function G(·, ·). This is a classical result that underlies the
log-linear matrix-vector multiplication in BEM and can be achieved by multipole
expansions [Rok85, GR97], Taylor expansions [NH88, HN89, Sau92, HS93] or by
interpolation (see, e.g., [SS11, Sec. 7.1.3.1]). The following lemma recalls a variant
of such a degenerate approximation that is obtained with Chebyshev interpolation:

Lemma 5.1. Let η̃ > 0 and fix η′ ∈ (0, 2η̃). Then, for every hyper cube BY ⊂ Rd,
d ∈ {2, 3} and closed DX ⊂ Rd with dist(BY , DX) ≥ η̃ diam(BY ) the following is
true: For every r ∈ N there exist functions g1,i, g2,i, i = 1, . . . , r, such that
∥∥∥∥∥G(x, ·)−

r∑

i=1

g1,i(x)g2,i(·)
∥∥∥∥∥
L∞(BY )

≤ C
(1 + 1/η̃)

dist({x}, BY )d−2
(1 + η′)−r1/d ∀x ∈ DX ,

for a constant C that depends solely on the choice of η′ ∈ (0, 2η̃).

Proof. Let Iyk : C(BY ) → Qk be the tensor product interpolation operator of degree

k defined on C(BY ) and mapping into the space Qk of polynomial of degree k in
each variable. Note that dimQk = (k + 1)d =: r. The approximation Gr(x, y) :=∑r

i=1 g1,i(x)g2,i(y) is then taken to be Gr(x, ·) := IykG(x, ·). The stated error bound
follows from estimates for Chebyshev interpolation. We note that the Green’s
function for the Laplacian is asymptotically smooth (see [Hac09, Definition 4.2.5]
with constant cas(ν) = Cν!). Tensorial interpolation in the form given in [BG04]
allows us to estimate

‖G(x, ·) − IykG(x, ·)‖L∞(BY ) .
1

dist({x}, BY )d−2

(
1 +

diam(BY )

dist(BY , {x})

)
Λd
kr

1/d

·
(
1 +

2 dist(BY , {x})
diam(BY )

)−r1/d

,

where Λk ≤ 1 + 2
π ln(k + 1) is the Lebesgue constant of Chebyshev interpolation,

cf. [Riv74]. The observation dist({x}, BY ) ≥ dist(BY , DX) ≥ η̃ diam(BY ) and the
choice η′ < 2η̃ imply the claimed estimate. �
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Theorem 5.2. Let (τ, σ) be an η-admissible cluster pair, set ρ := {i ∈ I : i <
min(τ ∪ σ)}, and let the Schur complement S(τ, σ) be defined in (5.1). Then, there
exists a rank-r matrix Sr(τ, σ) such that

‖S(τ, σ) − Sr(τ, σ)‖2 ≤ CscN
3/(2d−2)e−br1/(d+1) ‖V‖2 ,

where the constants Csc, b > 0 depend only on Ω, d, the γ-shape regularity of the
quasiuniform triangulation Th, and η.

Proof. Let BRτ , BRσ be bounding boxes for the clusters τ , σ satisfying (2.3). We

define Γρ = interior
(⋃

i∈ρ suppψi

)
⊂ Γ. First, we recall that the Schur com-

plement matrix S(τ, σ) can be understood in terms of an orthogonalization with
respect to the degrees of freedom in ρ. More precisely, a direct calculation (see for
the essentials, e.g., [Bre99]) shows for φ ∈ R|τ |, ψ ∈ R|σ| the representation

(5.2) φTS(τ, σ)ψ =
〈
V φ̃, ψ

〉
,

with the following relation between the functions ψ, φ̃ and the vectors ψ, φ, respec-

tively: ψ =
∑|σ|

j=1ψjχjσ , where the index jσ denotes the j-th basis function corre-

sponding to the cluster σ, and the function φ̃ ∈ S0,0(Th) is defined by φ̃ = φ + φρ

with φ =
∑|τ |

j=1 φjχjτ and suppφρ ⊂ Γρ such that

(5.3)
〈
V φ̃, ψ̂

〉
= 0 ∀ψ̂ ∈ S0,0(Th) with supp ψ̂ ⊂ Γρ.

Our low-rank approximation of the Schur complement matrix S(τ, σ) will have
two ingredients: first, based on the the techniques of Section 3 we exploit the

orthogonality (5.3) to construct a low-dimensional space Ŵk from which for any φ,

the corresponding function φ̃ can be approximated well. Second, we exploit that
the function ψ in (5.2) is supported by Γσ, and we will use Lemma 5.1.

Let δ = 1
1+η and BRσ , B(1+δ)Rσ

be concentric boxes. The symmetry of V leads
to

〈
V φ̃, ψ

〉
=
〈
φ̃, V ψ

〉

=
〈
φ̃, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

+
〈
φ̃, V ψ

〉
L2(Γ\B(1+δ)Rσ )

.(5.4)

First, we treat the first term on the right-hand side of (5.4). The choice of δ and the
admissibility condition (2.3), where we can assume min{diam(BRτ ), diam(BRσ )} =√
dRσ due to the symmetry S(τ, σ) = S(σ, τ)T , imply

dist(B(1+2δ)Rσ
, BRτ ) ≥ dist(BRσ , BRτ )−

√
dδRσ ≥

√
dRσ(η

−1 − δ) > 0.

Therefore, we have φ̃|B(1+2δ)Rσ∩Γρ = φρ|B(1+2δ)Rσ∩Γρ and the orthogonality (5.3)
holds on the box B(1+2δ)Rσ

. Thus, by definition of Hh,0, we have that the potential

Ṽ φ̃ ∈ Hh,0(B(1+2δ)Rσ
,Γρ).

As a consequence, Lemma 3.11 can be applied to Ṽ φ̃ with R := (1 + δ)Rσ and
κ := 1

2+η = δ
1+δ . Note that (1 + κ)(1+ δ) = 1+ 2δ and 1+ κ−1 = 3+ η. Hence, we

get a low dimensional space Ŵk of dimension dim Ŵk ≤ Cdim(3+ η)dq−dkd+1 =: r,
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and the best approximation φ̂ = Π
Ŵk
φ̃ to φ̃ from the space Ŵk satisfies

∥∥∥φ̃− φ̂
∥∥∥
L2(B(1+δ)Rσ∩Γρ)

. Rσh
−3/2qk

∣∣∣
∣∣∣
∣∣∣Ṽ φ̃

∣∣∣
∣∣∣
∣∣∣
h,(1+2δ)Rσ

. h−3/2e−b1r
1/(d+1)

∥∥∥φ̃
∥∥∥
H−1/2(Γ)

,

where we defined b1 := − ln(q)

C
1/(d+1)
dim

qd/(d+1)(3 + η)−d/(1+d) > 0 to obtain

qk = e−b1r
1/(d+1)

. Therefore, we get

(5.5)

∣∣∣∣
〈
φ̃− φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

∣∣∣∣ . h−3/2e−b1r
1/(d+1)

∥∥∥φ̃
∥∥∥
H−1/2(Γ)

‖V ψ‖L2(Γ) .

The ellipticity of V , supp(φ̃−φ) = suppφρ ⊂ Γρ, and the orthogonality (5.3) yield
∥∥∥φ̃− φ

∥∥∥
2

H−1/2(Γ)
.
〈
V (φ̃− φ), φ̃ − φ

〉
= −

〈
V φ, φ̃− φ

〉

. ‖V φ‖H1/2(Γ)

∥∥∥φ̃− φ
∥∥∥
H−1/2(Γ)

. ‖φ‖L2(Γ)

∥∥∥φ̃− φ
∥∥∥
H−1/2(Γ)

.(5.6)

Thus, with the triangle inequality, (5.6), and the stability of V : L2(Γ) → H1(Γ),
we can estimate (5.5) by
∣∣∣∣
〈
φ̃− φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

∣∣∣∣ . h−3/2e−br1/(d+1)
(∥∥∥φ̃− φ

∥∥∥
H−1/2(Γ)

‖V ψ‖L2(Γ)

+ ‖φ‖H−1/2(Γ) ‖V ψ‖L2(Γ)

)

. h−3/2e−br1/(d+1) ‖φ‖L2(Γ) ‖ψ‖L2(Γ) .

For the second term in (5.4), we exploit the asymptotic smoothness of the Green’s
function G(·, ·): Lemma 5.1 can be applied with BY = BRσ and DX = Γ\B(1+δ)Rσ

,
where the choice of δ implies

(5.7) dist(BY , DX) ≥ 1

2
√
d(1 + η)

diam(BY ).

Therefore, we get an approximation Gr(x, y) =
∑r

i=1 g1,i(x)g2,i(y) such that

‖G(x, ·) −Gr(x, ·)‖L∞(BRσ ).
1

dist({x}, BRσ )
d−2

e−b2r
1/d ∀x ∈ Γ \B(1+δ)Rσ

;(5.8)

here, the constant b2 > 0 depends only on d and η. As a consequence of (5.7) and
(5.8), the rank-r operator Vr given by Vrψ(x) :=

∫
BRσ∩ΓGr(x, y)ψ(y)dsy satisfies

∣∣∣∣
〈
φ̃, (V − Vr)ψ

〉
L2(Γ\B(1+δ)Rσ )

∣∣∣∣

=

∣∣∣∣∣

∫

Γ\B(1+δ)Rσ

φ̃(x)

∫

BRσ∩Γ

(G(x, y) −Gr(x, y))ψ(y)dsydsx

∣∣∣∣∣

.
∥∥∥φ̃
∥∥∥
L2(Γ)

√
meas(Γ ∩BRσ)

∥∥∥G− G̃r

∥∥∥
L∞((Γ\B(1+δ)Rσ )×(BRσ∩Γ))

‖ψ‖L2(Γ)

. h−1/2δ2−dR(3−d)/2
σ e−b2r

1/d
∥∥∥φ̃
∥∥∥
H−1/2(Γ)

‖ψ‖L2(Γ)

. h−1/2e−b2r
1/d ‖φ‖L2(Γ) ‖ψ‖L2(Γ) ,
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where the last two inequalities follow from the inverse estimate Lemma 3.3, the

stability estimate (5.6) for the mapping φ 7→ φ̃, the assumption d ≤ 3 as well as
Rσ ≤ η diam(Ω), and the choice δ = 1

1+η . Here, the hidden constant additionally

depends on η. Therefore, we get
∣∣∣∣
〈
V φ̃, ψ

〉
−
〈
φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

−
〈
φ̃, Vrψ

〉
L2(Γ\B(1+δ)Rσ )

∣∣∣∣

. h−3/2e−br1/(d+1) ‖φ‖L2(Γ) ‖ψ‖L2(Γ) ,

with b := min{b1, b2}. Since the mapping (φ, ψ) 7→
〈
φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

+
〈
φ̃, Vrψ

〉
L2(Γ\B(1+δ)Rσ )

defines a bounded bilinear form on L2(Γ), there exists a

linear operator V̂ : L2(Γ) → L2(Γ) such that
〈
φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

+
〈
φ̃, Vrψ

〉
L2(Γ\B(1+δ)Rσ )

=
〈
V̂ φ, ψ

〉
,

and the dimension of the range of V̂ is bounded by 2r. Therefore, we get a matrix
Sr(τ, σ) of rank 2r such that

‖S(τ, σ)− Sr(τ, σ)‖2 = sup
φ∈R|τ|,ψ∈R|σ|

∣∣∣φT (S(τ, σ) − Sr(τ, σ))ψ
∣∣∣

‖φ‖2 ‖ψ‖2
≤ Chd−3/2e−br1/(d+1)

,

where we have used (2.1). The estimate 1
‖V‖2

. h−d from [Ste08, Lemma 12.6] and

h ≃ N−1/(d−1) finish the proof. �

As a direct consequence of the representation (5.2) and the results from Section 3,
we can get a blockwise rank-r approximation of the inverse of the Schur complement
S(τ, τ). For the existence of the inverse S(τ, τ)−1, we refer to the next subsection.
For a given right-hand side f ∈ L2(Γ), (5.2) implies that solving S(τ, τ)φ = f with

f ∈ R|τ | defined by fi = 〈f, χiτ 〉, is equivalent to solving a(φ̃, ψ) = 〈f, ψ〉 for all
ψ ∈ S0,0(Th) with suppψ ⊂ Γτ . Let τ1 × σ1 ⊂ τ × τ be an η-admissible subblock.
For f ∈ L2(Γ) with supp f ⊂ BRσ1

∩ Γ, the support properties as well as the
admissibility condition (2.3) for the cluster pair (τ1, σ1) imply the orthogonality

a(φ̃, ψ) = 0 ∀ψ ∈ S0,0(Th)with suppψ ⊂ BRτ1
∩ Γτ .

Therefore, we have Ṽ φ̃ ∈ Hh,0(BRτ1
,Γτ ), and Lemma 3.11 provides an approxima-

tion to φ̃ on BRτ1
∩Γτ . Then, a rank-r factorization of the subblock S(τ, τ)−1|τ1×σ1

can be constructed as in Section 4, which is summarized in the following theorem.

Theorem 5.3. Let τ ⊂ I, ρ := {i ∈ I : i < min(τ)}, τ1 × σ1 ⊂ τ × τ be η-
admissible, and let the Schur complement S(τ, τ) be defined in (5.1). Then, there
exist rank-r matrices Xτ1σ1 ∈ R|τ1|×r, Yτ1σ1 ∈ R|σ1|×r such that

(5.9)
∥∥S(τ, τ)−1|τ1×σ1 −Xτ1σ1Y

T
τ1σ1

∥∥
2
≤ CapxN

(d+2)/(d−1)e−br1/(d+1)

.

The constants Capx depends only on Ω, d, and the γ-shape regularity of the quasi-
uniform triangulation Th, and the constant b > 0 additionally depends on η.
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5.2. Existence of H-Cholesky decomposition: conclusion of the proof of

Theorem 2.11. In this subsection, we will use the approximation of the Schur
complement from the previous section to prove the existence of an (approximate)
H-Cholesky decomposition. We start with a hierarchical relation of the Schur com-
plements S(τ, τ).

The Schur complements S(τ, τ) for a block τ ∈ TI can be derived from the Schur
complements of its sons τ1, τ2 by

S(τ, τ) =

(
S(τ1, τ1) S(τ1, τ2)
S(τ2, τ1) S(τ2, τ2) + S(τ2, τ1)S(τ1, τ1)

−1S(τ1, τ2)

)
,

A proof of this relation can be found in [Beb07, Lemma 3.1]. One should note that
the proof does not use any properties of the matrix V other than invertibility and
existence of a Cholesky decomposition. Moreover, we have by definition of S(τ, τ)
that S(I, I) = V.

If τ is a leaf, we get the Cholesky decomposition of S(τ, τ) by the classical
Cholesky decomposition, which exists since V has a Cholesky decomposition. If τ
is not a leaf, we use the hierarchical relation of the Schur complements to define a
Cholesky decomposition of the Schur complement S(τ, τ) by

(5.10) C(τ) :=

(
C(τ1) 0

S(τ2, τ1)(C(τ1)
T )−1 C(τ2)

)
,

with S(τ1, τ1) = C(τ1)C(τ1)
T , S(τ2, τ2) = C(τ2)C(τ2)

T and indeed get S(τ, τ) =
C(τ)C(τ)T . Moreover, the uniqueness of the Cholesky decomposition of V implies
that due to CCT = V = S(I, I) = C(I)C(I)T , we have C = C(I).

The existence of the inverse C(τ1)
−1 follows from the representation (5.10) by

induction over the levels, since on a leaf the existence is clear and the matrices C(τ)
are block triangular matrices. Consequently, the inverse of S(τ, τ) exists.

Moreover, as shown in [GKLB09, Lemma 22] in the context of LU -factorizations
instead of Cholesky decompositions, the restriction of the lower triangular part
S(τ2, τ1)(C(τ1)

T )−1 of the matrix C(τ) to a subblock τ ′2 × τ ′1 with τ ′i a son of τi
satisfies

(5.11)
(
S(τ2, τ1)(C(τ1)

T )−1
)
|τ ′

2×τ ′
1
= S(τ ′2, τ

′
1)(C(τ ′1)

T )−1.

The following lemma shows that the spectral norm of the inverse C(τ)−1 can be
bounded by the norm of the inverse C(I)−1.

Lemma 5.4. For τ ∈ TI , let C(τ) be given by (5.10). Then,

max
τ∈TI

∥∥C(τ)−1
∥∥
2
=
∥∥C(I)−1

∥∥
2
.

Proof. With the block structure of (5.10), we get the inverse

C(τ)−1 =

(
C(τ1)

−1 0
−C(τ2)

−1S(τ2, τ1)(C(τ1)
T )−1C(τ1)

−1 C(τ2)
−1

)
.

So, we get by choosing x such that xi = 0 for i ∈ τ1 that
∥∥C(τ)−1

∥∥
2
= sup

x∈R|τ|,‖x‖2=1

∥∥C(τ)−1x
∥∥
2

≥ sup
x∈R|τ2|,‖x‖2=1

∥∥C(τ2)
−1x

∥∥
2
=
∥∥C(τ2)

−1
∥∥
2
.
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The same argument for
(
C(τ)−1

)T
leads to

∥∥C(τ)−1
∥∥
2
=
∥∥∥
(
C(τ)−1

)T∥∥∥
2
≥
∥∥C(τ1)

−1
∥∥
2
.

Thus, we have
∥∥C(τ)−1

∥∥
2

≥ maxi=1,2

∥∥C(τi)
−1
∥∥
2

and as a consequence

maxτ∈TI

∥∥C(τ)−1
∥∥
2
=
∥∥C(I)−1

∥∥
2
. �

We are now in position to prove Theorem 2.11:

Proof of Theorem 2.11. In the following, we show that every admissible subblock
τ × σ of C(I), recursively defined by (5.10), has a rank-r approximation. Since an
admissible block of the lower triangular part ofC(I) has to be a subblock of a matrix
C(τ ′) for some τ ′ ∈ TI , we get in view of (5.11) that C(I)|τ×σ = S(τ, σ)(C(σ)T )−1.
Theorem 5.2 provides a rank-r approximation Sr(τ, σ) to S(τ, σ). Therefore, we
can estimate
∥∥C(I)|τ×σ − Sr(τ, σ)(C(σ)T )−1

∥∥
2
=
∥∥(S(τ, σ) − Sr(τ, σ)) (C(σ)T )−1

∥∥
2

≤ CscN
3/(2d−2)e−br1/(d+1) ∥∥(C(σ)T )−1

∥∥
2
‖V‖2 .

Since Sr(τ, σ)(C(σ)T )−1 is a rank-r matrix for each η-admissible cluster pair (τ, σ),
we immediately get an H-matrix approximation CH of the Cholesky factor C(I) =
C. With Lemma 4.1 and Lemma 5.4, we get

‖C−CH‖2 ≤ CscCspN
3/(2d−2) depth(TI)e

−br1/(d+1) ∥∥C−1
∥∥
2
‖V‖2 ,

and with ‖V‖2 = ‖C‖22, we conclude the proof of (i).
Since V = CCT , the triangle inequality finally leads to
∥∥V −CHCT

H
∥∥
2
≤ ‖C−CH‖2

∥∥CT
∥∥
2
+
∥∥CT −CT

H
∥∥
2
‖C‖2

+ ‖C−CH‖2
∥∥CT −CT

H
∥∥
2

≤ 2CscCspκ2(C) depth(TI)N
3/(2d−2)e−br1/(d+1) ‖V‖2

+ κ2(C)2C2
scC

2
sp depth(TI)

2N3/(d−1)e−2br1/(d+1) ‖V‖22
‖C‖22

,

and the equality κ2(V) = κ2(C)2 finishes the proof. �

6. Extensions

6.1. The Poincaré-Steklov operator. The interior Poincaré-Steklov operator
Sint is defined as Sint := V −1

(
1
2I +K

)
: H1/2(Γ) → H−1/2(Γ), where K denotes

the double-layer operator. In a similar way, the exterior Poincaré-Steklov operator
Sext is given by Sext = −V −1(12I −K).

The discrete Poincaré-Steklov operators are given by Sint = V−1
(
1
2M+K

)
and

Sext = −V−1
(
1
2M−K

)
, whereK is the stiffness matrices corresponding toK, and

M is the mass matrix. Here, we consider piecewise affine basis functions for the the
discretizations K,M. We illustrate the use of the H-arithmetic to derive H-matrix
approximations to the discrete Poincaré-Steklov operators, which is stated in the
following corollary of Theorem 2.7.
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Corollary 6.1. Fix η > 0. Let a partition P of I × I be based on a cluster tree
TI created by the geometric clustering algorithm from [Hac09, Section 5.4.2]. Let
S ∈ {Sint,Sext}. Then, there is a blockwise rank-r matrix SH such that

(6.1) ‖S− SH‖2 ≤ CPSN
(d+2)/(d−1) logN exp

(
−b
(

r

logN + 1

)1/(d+1)
)
.

The constant CPS > 0 depends only on Ω, d, and the γ-shape regularity of the
quasiuniform triangulation Th, and the constant b > 0 depends additionally on η.

Proof. By H-arithmetic, [GH03, Theorem 2.24], the rank of the multiplication of
H-matrices increases by a factor of CidCsp(depth(TI) + 1), where the appearing
idempotency constant Cid is defined in [GH03] and can be bounded uniformly in
N for geometrically balanced cluster trees. �

Remark 6.2. In computations, due to stability reasons, usually the symmetric for-
mulation of the Poincaré-Steklov operator Sint := W +

(
1
2I +K ′)V −1

(
1
2I +K

)

with the hypersingular integral operator W : H1/2(Γ) → H−1/2(Γ) and the ad-
joint double-layer potential K ′ is used, see, e.g., [Ste08]. Using H-arithmetics, an
approximation for this representation can be derived as well, but leads to an addi-
tional logarithmic factor in the exponential in (6.1). Since we are only interested
in an existence result, the non symmetric formulation is sufficient for our purpose.

6.2. H2-approximation. In this section, we briefly describe how an approxima-
tion in the more refined framework of H2-matrices can be derived. The main
advantage of H2-matrices compared to H-matrices is that the storage complexity
as well as the complexity of the matrix-vector multiplication is O(rN), i.e., linear in
the degrees of freedom instead of the logarithmic-linear complexity of O(rN logN)
for H-matrices.

In fact, [Bör10a] proves that an H2-approximation can be derived from blockwise
estimates as in Theorem 2.4. Therefore, this can be done in the same way, and this
section follows the lines of [Bör10a].

H2-matrices are based on nested cluster bases, which are defined in the following.

Definition 6.3 (Nested cluster basis). A family of matrices (Uτ )τ∈TI ,Uτ ∈ R|τ |×r

is said to be a nested cluster basis, if there exists a family of transfer matrices
(Tτ )τ∈TI ,Tτ ∈ Rr×r such that Uτ |τ ′ = Uτ ′Tτ ′ ∀τ ∈ TI , τ ′ ∈ sons(τ). If the ma-
trices Uτ are orthogonal for all τ ∈ TI , (Uτ )τ∈TI is said to be a nested orthogonal
cluster basis.

Definition 6.4 (Descendants, predecessors, block row). The set of descendants of
τ ∈ TI is recursively defined by

sons∗(τ) :=

{ {τ} if sons(τ) = ∅,
{τ} ∪⋃τ ′∈sons(τ) sons

∗(τ ′) otherwise.

The set of predecessors is given by

pred(τ) := {τ+ ∈ TI : τ ∈ sons∗(τ+)}.
Further, the block row is defined by

row∗(τ) := {σ ∈ TI : ∃τ+ ∈ pred(τ) : (τ+, σ) ∈ Pfar}.
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Definition 6.5 (H2-matrix). Let the partition P of I × I be based on the cluster
tree TI and η > 0. Let (Sτ )τ∈TI

and (Uσ)σ∈TI
be nested cluster bases. A matrix

WH2 is said to be an H2-matrix, if for each η-admissible cluster pair (τ, σ) ∈ Pfar,
there is a coupling matrix Mτσ ∈ Rr×r such that WH2 |τ×σ = SτMτσU

T
σ .

We refer to [HB02] for the storage complexity of O(rN) for the family of transfer
matrices (Tτ )τ∈TI and coupling matrices (Mτσ)(τ,σ)∈Pfar

. Since the cluster basis

only needs to be stored for the leaf clusters, we get a storage requirement of O(rN)
for the cluster bases (Sτ )τ∈TI

and (Uτ )τ∈TI
, and therefore a total storage require-

ment of O(rN) for H2-matrices.

The following theorem shows that the matrix V−1 can be approximated by an
H2-matrix and that the error converges exponentially in the block rank.

Theorem 6.6. Fix the admissibility parameter η > 0. Let a partition P of I × I
be based on a cluster tree TI . Then, there is a blockwise rank-r H2-matrix WH2

such that

∥∥V−1 −WH2

∥∥
2
≤ CH2N

(d+2)/(d−1)depth(TI)
√
|TI |e−br1/(d+1)

.

The constant CH2 > 0 depends only on Ω, d, and the γ-shape regularity of the
quasiuniform triangulation Th, where the constant b > 0 additionally depends on η.

Proof. We define the total cluster basis Mτ :=
⋃{σ : σ ∈ row∗(τ)}. By definition

of row∗(τ), there exists a cluster τ+ ∈ pred(τ) such that (τ+, σ) ∈ Pfar for all
σ ∈ row∗(τ). Let BRτ , BR

τ+
, BRσ be bounding boxes for the clusters τ, τ+, σ, and

we assume that BRτ ⊂ BRτ+ for τ ∈ sons∗(τ+). Then, we have

diam(BRτ ) ≤ diam(BRτ+ ) ≤ η dist(BRτ+ , BRσ )

≤ η dist(BRτ , BRσ ) ∀σ ∈ row∗(τ).

Therefore, Theorem 2.4 can be used to derive a low-rank approximation of the
matrix block V−1|τ×Mτ , i.e., it provides matrices XτMτ ∈ R|τ |×r,YτMτ ∈ R|Mτ |×r

with r = Cdim(2 + η)dq−dkd+1, such that

∥∥V−1|τ×Mτ −XτMτY
T
τMτ

∥∥
2
. N (d+2)/(d−1)qk ≃ N (d+2)/(d−1)e−br1/(d+1)

,

where the constant b > 0 depends only on Ω, d, the γ-shape regularity of the
quasiuniform triangulation Th and η. Then, [Bör10b, Corollary 6.18] states that
there exists a nested orthogonal cluster basis (Uτ )τ∈TI ∈ R|τ |×r of rank r ≤
Cdim (2 + η)

d
q−dkd+1 such that for each (τ, σ) ∈ Pfar we have

∥∥V−1|τ×σ −UτU
T
τ V

−1|τ×σ

∥∥2
2
.
∑

τ∈TI

∥∥V−1|τ×Mτ −XτMτY
T
τMτ

∥∥2
2

. N (2d+4)/(d−1) |TI | e−2br1/(d+1)

.

With Mτσ := UT
τ V

−1|τ×σUσ, the matrix

(6.2) WH2 =

{
UτMτσU

T
σ , for (τ, σ) ∈ Pfar,

V−1|τ×σ, otherwise
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is then the desired H2-matrix approximating V−1. The symmetry of V−1, i.e.
V−1 = V−T , and

∥∥AT
∥∥
2
= ‖A‖2 for A ∈ R|τ |×|σ| imply

∥∥V−1|τ×σ −WH2 |τ×σ

∥∥
2
≤
∥∥V−1|τ×σ −UτU

T
τ V

−1|τ×σ

∥∥
2

+
∥∥UτU

T
τ (V

−1|τ×σ −V−1|τ×σUσU
T
σ )
∥∥
2

≤
∥∥V−1|τ×σ −UτU

T
τ V

−1|τ×σ

∥∥
2

+
∥∥V−1|σ×τ −UσU

T
σV

−1|σ×τ

∥∥
2

. N (d+2)/(d−1)
√
|TI |e−br1/(d+1)

.

Finally, Lemma 4.1 finishes the proof. �

For a quasiuniform mesh and typical clustering strategies, there holds |TI | ≃ N
and depth(TI) ≃ logN . Therefore, the rank r of the H2-matrix needed to obtain an

accuracy ε in Theorem 6.6 is given by r ≃
∣∣∣ln ε− (d+2

d−1 + 1
2 ) logN − log logN

∣∣∣
d+1

≃
(C1 + C2 logN)

d+1
. In comparison, for the H-matrix approximation in Theo-

rem 2.7 a smaller rank of r≃
∣∣∣ln ε− d+2

d−1 logN − log logN
∣∣∣
d+1

≃(C1 + C3 logN)d+1

is sufficient. However, since the storage requirement for H2-matrices is given by
O(rN) in comparison to the storage requirement for H-matrices of O(rN logN),
we observe that in terms of storage, the H2-approximation leads to better results.

We refer to [Bör10a] for numerical examples concerning this comparison for FEM
matrices.

7. Numerical Examples

In this section, we present some numerical examples in two and three dimensions
to illustrate our theoretical estimates derived in the previous sections. Further
numerical examples for the H-matrix approximation of inverse BEM matrices and
black-box preconditioning with an H-LU decomposition can be found in [Gra01,
Beb05, Gra05, Bör10b].

With the choice η = 2 for the admissibility parameter in (2.3), the clustering is
done by the standard geometric clustering algorithm, i.e., by choosing axis parallel
bounding boxes of minimal volume and splitting these bounding boxes in half across
the largest face until they are admissible or contain less degrees of freedom than
nleaf, which we choose as nleaf = 25 for our computations. An approximation WH
to the inverse Galerkin matrix V−1 is computed by using a truncated singular value
decomposition of the exact inverse. Throughout, we use the C-library HLib [BG99].

7.1. 2D-Example. We consider the L-shaped domain Ω = (0, 1)× (0, 12 )∪ (0, 12 )×
[ 12 , 1) and the lowest-order discretization of the simple-layer potential

Vjk = 〈V χk, χj〉
from (2.2).

In Figure 1, we compare the decrease of the upper bound ‖I−VWH‖2 of the
relative error with the increase in the block-rank for a fixed number N = 16, 384 of
degrees of freedom, where the largest block of WH has a size of 2, 0482. Moreover,
Table 1 shows the storage requirement for the computed H-matrix approximation
and the percentage of memory needed compared to the full representation. As
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theoretically expected, we observe a linear growth in the rank r for the storage
requirements. Moreover, we remark that ‖WH‖2 = 1.22 · 108.
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‖I − VWH‖2

Figure 1. Exponential
convergence in block rank

Storage Compressed
r WH (MB) to (%)
2 24.5 1.2
3 32.6 1.6
5 49.0 2.4
7 65.3 3.2
9 81.6 4.0

Table 1. Storage (MB) for WH

We observe exponential convergence in the block rank, where the convergence
rate is exp(−br), which is even faster than the rate of exp(−br1/3) guaranteed by
Theorem 2.7.

7.2. 3D-Example. We consider the crankshaft generated by NETGEN [Sch97]
visualized in Figure 2.

Figure 2. Crankshaft domain

In Figure 3, we compare the decrease of ‖I−VWH‖2 with the increase in the
block-rank for a fixed number N = 27, 968 of degrees of freedom, where the largest
block of WH has a size of 3, 4962. Table 2 shows the storage requirement for the
matrix WH and the compression rates. We mention that ‖WH‖2 = 41.3.

Comparing the results with our theoretical bound from Theorem 2.7, we empir-
ically observe a rate of exp(−br1/2) instead of exp(−br1/4).
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