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ABSTRACT

Functional gene clustering is a statistical approach for identifying the temporal patterns of
gene expression measured at a series of time points. By integrating wavelet transformations,
a power dimension-reduction technique, noisy gene expression data is smoothed and clus-
tered allowing for new patterns of functional gene expression profiles to be identified. We
implement the idea of wavelet dimension reduction into the mixture model for gene clus-
tering, aimed to de-noise the data by transforming an inherently high-dimensional biological
problem to its tractable low-dimensional representation. As a first attempt of its kind, we
capitalize on the simplest Haar wavelet shrinkage technique to break an original signal
down into its spectrum by taking its averages and differences and, subsequently, detect gene
expression patterns that differ in the smooth coefficients extracted from noisy time series
gene expression data. The method is shown to be effective on simulated data and and on
recent time course gene expression data. Supplementary Material is available at www
.liebertonline.com.
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1. INTRODUCTION

Although high-throughput technologies, such as DNA microarrays and proteomics platforms,

have provided researchers with a set of unprecedented tools to ask and address various fundamental

questions in developmental biology and biomedicine, the use of these technologies that generate enormous

amounts of gene or protein data from biological entities relies critically on statistical analysis and modeling of

the data.

The past decade has witnessed an astonishing development of statistical methods for cataloguing the

patterns of gene expression and using these distinct patterns to assessing developmental functions and

mechanisms of a biological phenomena (Eisen et al., 1998; Ramoni et al., 2002; Ghosh and Chinnaiyan,

2002; McLachlan et al., 2002; Zapala and Schork, 2006). More recently, there has been a considerable body

1Department of Dentistry, Seoul National University, Seoul, Republic of Korea.
2Department of Mathematical Sciences, DePaul University, Chicago, Illinois.
3Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee.
4Department of Biostatistics, Pennsylvania State University, Hershey, Pennsylvania.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 17, Number 8, 2010

# Mary Ann Liebert, Inc.

Pp. 1067–1080

DOI: 10.1089/cmb.2009.0270

1067



of literature about the derivations of statistical methods for clustering time-dependent gene expression (Qian

et al., 2001; Holter et al., 2001; Zhao et al., 2001; Park et al., 2003; Bar-Joseph et al., 2003; Luan and Li, 2003;

Ernst et al., 2005; Storey et al., 2005; Ma et al., 2006; Ng et al., 2006; Inoue et al., 2007; Kim et al., 2008;

Wang et al., 2009).

The central idea of functional gene clustering is to mathematically model the mean vectors for each gene

pattern within the mixture model context incorporating the structure of covariance of the gene expressions

measured at discrete time points. Such mathematical modeling has two major advantages. First, instead of

estimating every mean at each time point and every element in the covariance matrix, functional clustering

only needs to estimate a reduced number of mathematical parameters that model the mean-covariance

structures. This provides greater power to detect significantly differentiated patterns during a time course.

Second, gene expression profiles related to many biological processes have a certain pattern, which can be

described robustly by mathematical functions. By estimating the parameters that determine mathematical

functions, the genetic differentiation over time course can be estimated and tested. The results from these

biologically justified models are, therefore, more closer to biological reality.

Despite its statistical and biological relevances, functional clustering has two significant limitations

that may prevent its broad and deep uses in some particular situations. First, it does not allow the

number of repeated measurements (defined as the dimensionality of observation) to unlimitedly increase

for robust parameter estimation. While increased dimensionality possesses richer information, structural

modeling of high-dimensional variances and correlations will be computationally expensive. With in-

creasing dimension, the computation of inverse covariance matrix will tend to be unstable. Second, in

practice, the sparsity of a data set increases exponentially with its dimensionality. Functional gene

clustering based on a multivariate normal density function will be affected for high-dimensional data as

measurement error will become increasingly problematic in parameter estimation of the classical

mixture models.

An efficient treatment of high-dimensional microarray data is through dimensionality reduction, i.e., the

transformation that brings data from a high- to low-order dimension. It has been shown that models with

low dimension are not only computationally efficient, but also more robust than high dimensional models.

Wavelet transforms that preserve signal pattern and yield better or comparative classification accuracy

provide a powerful tool for dimensionality reduction (Donoho, 1995; Donoho and Johnstone, 1994).

In this article, we derive a wavelet-based de-noising method for functional clustering of time-dependent

microarray gene expression data. By reducing the dimensionality of data, this method improves the ac-

curacy and power of gene cluster detection in many situations.

2. METHODS

2.1. Wavelet Transform

According to wavelet transform methodology, an original signal is divided into two sequences each with

a length equal to a half of the original signal length (Mallat et al., 1989; Vidakovic, 1999; Jensen and la

Cour-Harbo, 2001). The first sequence, denoted as the smooth coefficients (or approximation coefficients),

corresponds to an approximation process of the original signal, whereas the second sequence, denoted as

the detail coefficients, corresponds to the detail information (subtleties) that is complementary to the

approximation process. We use c�r and d�r to denote the smooth and detail coefficients, respectively,

where superscript �r indicates the resolution level at which the initial sequence is split into smooth and

detail coefficients. Since detail coefficients are contaminated severely by random errors, shrinking them to

zero will be helpful for reducing the overall noise level of the signal (Donoho, 1995; Donoho and John-

stone, 1994).

As the simplest wavelet transform, discrete Haar transform calculates detail coefficients by subtracting

successive values in the sequence (Walker, 1999). The data of expression profile for gene i measured at T

time points can be expressed as

yi¼fyi(1), yi(2), . . . , yi(T � 1), yi(T)g: (1)

The smooth and detail coefficients of the original signal after the first-resolution Haar wavelet transform are

arrayed by
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where t is the new sequence index used after applying the Haar wavelet transform. It can be seen that

variation in detail coefficients at resolution 1 only reflects local fluctuations between the nearest neighbors

in the sequence. Similarly, smooth coefficients at resolution 2 are obtained by summing pairs of resolution

1 smooth coefficients. At each resolution, the number of smooth and detail coefficients obtained drops by
1/ 2. The process can be repeated, each time reducing the dimension of the smooth and detail coefficients

(Walker, 1999).

The pattern of the smooth coefficients in the wavelet space resembles the signal pattern in the time space.

In Figure 1, c�0 represents a sample of repeated measurements of a pattern at 24 time points. The smooth

coefficients of the first and second Haar wavelet transformation are plotted as c�1 and c�2, respectively.

The pattern of c�1 and c�2 coefficients conform to the signal pattern although they are in two different

resolution levels. Because of the similarity, it is reasonable to model the original pattern based on low-

dimensional smooth coefficients.

2.2. Thresholding

In wavelet transform, we need to find an approximation of the original signal which is smooth and can

also adequately represent the input signal. Such an approximation can be detected by two thresholding

approaches—the hard threshold filter (Hh) and the soft threshold filter (Hs). The hard threshold filter, also

known as the ‘‘keep or kill’’ method (Aboufadel and Schlicker, 1999), removes coefficients below a

threshold value determined by the estimated noise variance. The soft threshold shrinks large coefficients

towards zero but also completely removes the smaller coefficients (Ghael et al., 1997). Since the de-noised

signal is irreversibly different than the noisy signal, thresholding induces a loss of information.

FIG. 1. The original periodic profile of a gene (c0), subject to Haar wavelet transform at the first (c�1) and second

resolutions (c�2). The transformed data preserve most information of the original signal, although the lower-order

resolution tends to be close to the original signal than does the higher-order resolution.
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The two thresholding approaches will produce different results. To make the resulting signal smoother, the

soft threshold filter should be used, whereas, to make computation fasters, the hard threshold filter may be

used. In practice, it is difficult to choose a threshold value because a small threshold value may not be able to

remove a noise while a large threshold value introduces a bias. Many approaches have been available to

determine an optimal threshold value. One universal method is to assign a threshold value given by

kT ¼ r̂r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log T

p
, (3)

where r̂r is the estimator of standard deviation of the noise, and T is the length of the input vector (Donoho

and Johnstone, 1994). The hard thresholding rule is defined as

d(y, kT )¼ y, if jyj4 kT

0, ifjyj5 kT

�
(4)

As pointed out in Donoho and Johnstone (1994) and Johnstone and Silverman (1997), for a sequence of

normal distributed random variables z(t) ~ N(0, r2(t)) (t¼ 1, . . . , T), we have

P( max
t

��� z(t)

r(t)

���4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log T

p
)! 0 as T !1: (5)

Hence, if a detail coefficient is truly zero, then with a high probability it is estimated as zero in terms of the

hard thresholding rule. The expected number of z(t)
r(t)

��� ��� greater than the threshold tends to zero. For most

applications, the hard thresholding rule only keeps those detail coefficients that are significantly greater

than zero. Here, the hard thresholding rule is used to either keep or kill the whole level of detail coeffi-

cients.

The following procedure is proposed to perform data dimensionality reduction through wavelet trans-

forms:

(1) Select proper orthogonal wavelet filters;

(2) Calculate empirical variances for the detail coefficients;

(3) Apply the hard thresholding rule to the detail coefficients;

(4) Truncate the whole level of the detail coefficients if they are all set to zero by (3), and keep the whole

level of the detail coefficients otherwise;

(5) Repeat procedures (1) to (4) for user-prescribed j times.

Different wavelet filters vary in filter length. A longer filter length wavelet tends to ‘‘average’’ over more

signal points. The purpose of hard thresholding is to reduce the dimensionality of the data by truncating

certain levels of detail coefficients. The variance estimator r2
� r(s) for each detail coefficient d�r(t) is

suggested in Donoho and Johnstone (1994) and Johnstone and Silverman (1997), i.e.,

r2
� r(s)¼ MADfd� r

t (s), t¼ 1, . . . , Tg
0:6745

, (6)

where MAD denotes the median absolute deviation and 0.6745 is chosen to adjust for a normal distri-

bution.

2.3. Wavelet-based functional clustering

2.3.1. Likelihood. Suppose there are n genes each measured at T equally-spaced time points. Let

yi¼ (yi(1), . . . , yi(T)) be the gene expression data for gene i. If these genes are clustered into J patterns, this

means that any one of the genes (i) is assumed to arise from one (and only one) of the J possible expression

patterns. Thus, the distribution of gene expression data is expressed as the J-component mixture probability

density function, i.e.,

yi ~ f (yi; x, ui, R)¼
XJ

j¼ 1

xj fj(yi; uj(i), R), (7)

where x¼ (x1, � � � , xJ) is the mixture proportions which are non-negative and sum to unity;

ui¼ (u1(i), � � � , uJ(i)) contains the component- (or pattern) specific mean vector for gene i; and S contains

residual variances and covariances among the T time points for gene i which are common for all gene

1070 KIM ET AL.



expression patterns. For a given gene i, the probability density function of the jth gene expression pattern or

cluster, fj(yi; uj(i), S), is assumed to be multivariate normally distributed with mean vector

uj(i)¼ uj¼ (uj(1), uj(2), . . . , uj(T � 1), uj(T)) (8)

and common covariance matrix S. For simplicity of notation, we drop the understood index i from the

mean vector uj(i) as it is understood to depend on gene i.

As shown in equation (2), the original signal (1) is subject to wavelet transform at the first resolution.

Correspondingly, the smooth and detail coefficients of gene pattern-specific mean signals uj after the first-

resolution Haar wavelet transform can be arrayed as

w� 1
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2
p , . . . ,
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p ,
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p , . . . ,
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2
p g

¼ w� 1
cj

(1), . . . , w� 1
cj
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�
, w� 1

dj
(1), . . . , w� 1

dj
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w� 1
cj

(s)

�T
2
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�
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dj
(s)

�T
2
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( )
, (9)

Now, let z�r be the new variable with a reduced dimension T�r (T�r< T) transformed from the rth

resolution Haar wavelet. The likelihood function based on a mixture model containing J gene expression

patterns can be rewritten, in terms of z�r, as

L

�
X� rjz� r

�
¼
Yn

i¼ 1

XJ

j¼ 1

�
xjfj

�
z� r

i ; w� r
cj

, R� r

��
, (10)

where X� r¼ (fxj, w� r
cj
gJ

j¼ 1, R� r) contains unknown parameters, (x1, . . . , xJ) are the mixture propor-

tions of J different gene expression patterns, as shown in equation (7), and fj(z
� r
i ; w� r

cj
, R� r) is the

multivariate normal distribution of gene i that belongs to gene expression pattern j, in which

z� r
i ¼fc� r

i (1), . . . , c� r
i (T� r)g is a vector of smooth coefficients for gene i, w� r

cj
¼fw� r

cj
(1), . . . ,

w� r
cj

(T� r)g is a vector of expected smooth coefficients for gene expression pattern j and S�r is the

(T�r�T�r) residual covariance matrix for the smooth coefficients.

2.3.2. Modeling wavelet-based mean vectors. It is well known that the transcript levels of many

DNA microarrays in terms of the amount of mRNAs vary with a particular pattern in time course. For

example, the amount of mRNAs within the cell division cycle may change periodically (Spellman et al.,

1998; De Lichtenberg et al., 2005). The regulation of these genes in a periodic manner coincident with the

cell cycle may help maintain proper order during cell division and may also aid in conserving limited

resources. The oscillation of cell cycle-regulated genes can be mathematically described by a simple

periodic Fourier function expressed as a linear combination of cosine and sine waves. Thus, by estimating

the parameters that define the periodic curves for individual genes, we can determine the differences in the

temporal pattern of gene expression.

For periodically regulated genes, they can be approximated by Fourier series (Lasser, 1996). Fourier

series approximation can assess periodicity. So, by applying a Fourier series approximation, we can identify

the genes whose RNA levels varied periodically within the cell cycle and further find the associated

amplitudes and phases. For a given gene expression pattern, let uj(t) denote the expected gene intensity

ratio value at time point t(t¼ 1, . . . , T). Note that the ratio values are log transformed (base 2 for sim-

plicity, so that log2 (Cy5/Cy3)) to treat inductions or repressions of identical magnitude as numerically

equal but with opposite sign. The mean vector for a given gene expression pattern, uj¼ (uj(1), . . . , uj(T)),

can be modeled by a Fourier series approximation of order one. Thus, the log ratio gene expression value of

gene expression pattern j at time point t can be expressed as

uj(t)¼
1

2
aj0þ aj1 cos

2pt

sj

� �
þ bj1 sin

2pt

sj

� �� �
, (11)
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where aj0 is the gene-specific fundamental frequency, aj1 and bj1 are the pattern-specific amplitude coef-

ficients, which determine the times at which the gene achieves peak and trough expression levels, re-

spectively, and tj is the gene-specific period of the cell cycle.

In general, the gene expression value of pattern j in time course can be mathematically fitted in form

uj(t; Xuj
) by a set of curve parameters Xuj

. The mean vector transformed at the first resolution transfor-

mation is expressed as

w� 1
cj
¼
 

uj(1; Xuj
)þ uj(2; Xuj

)ffiffiffi
2
p , . . . , (12)

uj(T � 1; Xuj
)þ uj(T; Xuj

)ffiffiffi
2
p

!

Thus, by estimating Xuj
with transformed data at an appropriate transformation resolution �r, a gene

expression curve in time course can be elucidated for individual patterns. Differences of the curves (w� r
cj

)

can be compared and tested for the statistical significance of time-dependent gene expression patterns.

2.3.3. Modeling the covariance structure. It is not parsimonious to estimate all the elements in the

covariance matrix among different time points because some structure exists for time-dependent variances

and correlations. The covariance structure in the wavelet-domain can be modeled by a stationary first-order

autoregressive (AR(1)) model (Diggle et al., 2002), expressed as

r2(1)¼ � � � ¼ r2(T)¼ r2 for variance

r(t1, t2)¼ r2qjt2 � t1j for covariance,

�
(13)

where 0< r< 1 is the proportion parameter with which the correlation decays with time lag. The pa-

rameters for the covariance structure are arrayed in Ov¼ (r, s2).

2.3.4. Estimation and tests. The standard EM algorithm is derived to estimate the parameters con-

tained in the likelihood (10). Since the actual number of gene expression patterns is unknown, we will

employ the commonly used model selection methods, AIC or BIC, to estimate the optimal number of

components in the mixture model (10). After the optimal number of gene expression patterns is determined,

a variety of biologically meaningful hypotheses can be formulated and tested. The most important hy-

pothesis about overall differences in transcriptional expression profile among different patterns of micro-

array genes is formulated as

H0 : Huj
� Hu, for j¼ 1, . . . , J (14)

H1 : At least one of the equalities above does not hold:

The log-likelihood ratio (LR) test statistic is then calculated by

LR¼ � 2[ ln L( ~XXjy)� ln L(X̂Xjy)],

where the tildes and hats stand for the MLEs of the unknown parameters under the null and alternative

hypotheses, respectively. The null hypothesis means that no different patterns of temporal expression exist

among the genes studied, whereas the alternative hypothesis states that at least two different patterns can be

identified. The critical threshold for claiming distinguishable expression patterns can be determined on the

basis of simulation studies.

3. IMPLEMENTATION

3.1. Simulated data application

Time course gene expressions for 5000 genes were simulated over 40 equally spaced time points with

mean expression profiles generated from one of the eight curves pictured in Figure 2. Residual error on the

simulated series was generated from a stationary Gaussian autoregressive process with autocorrelation

parameter r¼ 0.5 and standard deviation s¼ 0.3. In the real data analysis performed below, we found the

standard error of the clustered expression profiles to be around r̂r¼ 0:15. Therefore the simulated data
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presents a smaller signal-to-noise ratio as compared to the real data analyzed below. Out of the 5000

simulated genes, 4000 were simulated from a flat signal with a constant value of one. The number of genes

simulated under the other mean expression profiles are listed in Table 1.

Without assuming the number of clusters is known (even though it is), we utilized the AIC and BIC

empirically identify the optimal number of clusters. In Figure 3, the AIC and BIC values are graphed under

three levels of Haar wavelet smoothing: no wavelet smoothing (r¼ 0), one level of smoothing (r¼ 1), and

two levels of smoothing (r¼ 2). Without wavelet smoothing, AIC and BIC suggest five clusters, with one

level of smoothing seven clusters are suggested, and eight clusters are suggested with two levels of

smoothing. When two levels of smoothing are applied, a seemingly more robust number of clusters are

selected by AIC/BIC, and the correct number of clusters (eight) were identified.

Although the AIC/BIC values without wavelet smoothing are rather erratic, it is interesting to note that

the overall minimum of AIC and BIC across the three levels of smoothing is obtained under no smoothing.

Without wavelet smoothing, however, the AIC/BIC identified only five clusters, and even when eight

clusters are carefully considered under no smoothing (refer to Appendix A in Supplementary Materials; for

online Supplementary Material, see www.liebertonline.com), not all eight clusters are correctly identified.

Looking more carefully at the eight clusters identified by two levels of smoothing, the eight estimated

mean curves are graphed in Figure 4 which are shown to closely follow the true cluster means displayed in

Figure 2. The dimension reduction induced by the Haar wavelet transformation is evident in the wavelet

means. These eight fitted clusters are individually analyzed in Figure 5.

A gene will be classified to a specific cluster if it has at least a 90% estimated probability of belonging to

that cluster. Some genes will not be classified to a specific cluster if the estimated cluster probabilities are

all less than 90% (though the sum of estimated cluster probabilities is always 100%). For each identified
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FIG. 2. True mean curves (eight in total) from which gene expression data was simulated from. Eighty percent of the

expression profiles were simulated from a constant expression of one.

Table 1. Original Number of Genes Allocated to the Eight Clusters Are Recorded

Here Along with the Number of Genes that were Correctly and Incorrectly Classified;

a Gene Is Said to be Classified to a Given Cluster if the Estimated Cluster Probability

for the Corresponding Cluster Is at Least 90%

Cluster Original Correctly classified Incorrectly classified

Flat 4000 3840 25

Linear increase 150 107 1

Smile 50 50 0

Hat 150 99 1

Off-on-off 200 163 1

Abs(sin) 100 85 3

Curved increase 150 150 0

On-off 200 198 0

Total 5000 4692 31
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cluster, the classified genes (based on the 90% threshold) are graphed in Figure 5, along with the mean

wavelet curve and the true mean curve that corresponds to the cluster. Gene expression profiles are colored

according to their original cluster allowing inappropriately clustered genes to be easily identified. The total

number of correctly and incorrectly classified are included listed in Table 1. This simulation analysis

indicates that incorporating wavelets into functional clustering can be a powerful tool for optimally

identifying nonparametric signals and clusters within time-course data.

3.2. Real data application

This methodology is applied to time time course gene expression data published in Rustici et al. (2004).

In their research, a total of 8 time-course experiments were performed with expression data collected at
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FIG. 3. AIC (black) and BIC (red) values under three levels of wavelet smoothing.
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18–22 times on 15-minute intervals. We analyzed data from one time-course experiment; the raw and

processed datasets are accessible from ArrayExpress with accession number E-MEXP-54. After selecting

genes with full time-course expression profiles, 2955 genes were used with 21 equally spaced time mea-

surements taken for each gene.

As only 21 time measurements are available for this dataset, only one level of Haar wavelet smoothing

(r¼ 1) was incorporated. The initial values of the parameters in the EM algorithm were randomly selected from

a normal distribution with mean
ffiffiffi
2
p

and variance 1. The AIC and BIC were used to identify the best number

of clusters, and they both selected thirteen clusters. The AIC and BIC values are graphed in Figure 6.

The estimated mean curves for these clusters are graphed in Figure 7. As before in the simulated data

analysis, a gene is classified to a given cluster if it has an estimated probability of belonging of at least 90%.

For each of the identified clusters, the number of genes classified to that cluster are tabulated in Table 2. For

instance, only four genes are seen to be strongly clustered in the first cluster whereas 447 genes indicate a

strong classification to the last cluster. A total of 1540 genes (52%) were not strongly classified to one of

the thirteen clusters. Each mean curve is individually graphed with the expression profiles of the genes

belonging to the cluster in in Figure 8. Several interesting clusters were identified in this dataset. By

plotting the individual mean curves with the classified genes separately, one can get a better sense of the

true nature of each of the identified clusters. Some clusters were identified with only a few genes but with

very unique profiles and other clusters indicate multiple gene with expressions in sync with a periodic

signal. For biological relevance from this clustering application, the reader is can refer to the original

application of this data in Rustici et al. (2004).
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FIG. 4. Estimated wavelet mean curves of the eight clusters as selected by AIC and BIC under two levels of

smoothing; all clusters were correctly identified.

FIG. 5. Mean curves for each of the eight clusters identified by AIC and BIC under two levels of wavelet smoothing

(r¼ 2) are individually graphed together with the time-course gene expressions for genes with greater than a 90%

probability of belonging to the cluster. Gene expression profiles are colored according to their original cluster allowing

inappropriately clustered genes to be easily identified. All of the clusters were correctly identified and true mean curves

are graphed along with wavelet-estimated mean curves.
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This dataset was also analyzed in Ning et al. (2010) utilizing a periodic Fourier series approximation in

the mixture model to cluster the gene expression profiles. In this application, the AIC and BIC criteria

selected nine distinct profiles, and these clusters are depicted in Figure 9. To quantitatively compare the 13

‘‘wavelet clusters’’ with the 9 ‘‘Fourier clusters,’’ the proportion of overlap index was used. For each

method, a gene was classified to a given cluster if it had greater than 90% posterior probability of belonging

to the cluster. Given two clusters, the number of genes that were classified to both clusters forms the

numerator of the index, and the total number of between the two clusters forms the denominator of the

index. Therefore if two clusters perfectly match, the proportion of overlap is one, and if two clusters are

disjoint, the proportion of overlap is zero. Some of the clusters matched up fairly closely, and matches and

partial matches are provided in Table 3.

The computational requirements were not enormous. The computations were performed on a single

desktop with a 4GHz (overclocked) Intel i7 quad-core processor. The R package multicore (Urbanek, 2009)

was utilized to fully utilize the multiple cores. The source code to perform the real data analysis with

corresponding dataset is available online at http://statgen.psu.edu.

4. DISCUSSION

The studies of gene expression profiles in time course can help to understand the developmental ma-

chinery of gene regulation related to a biological process. A considerable body of literature has been
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FIG. 7. The thirteen estimated mean curves are graphed together.
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FIG. 6. AIC (black) and BIC (red) values for functional clustering under one level of wavelet smoothing on the time

course gene expression data considered in Rustici et al. (2004) indicates the optimal number of clusters to be thirteen.
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available on statistical methods for characterizing different patterns of gene expression (Qian et al., 2001;

Holter et al., 2001; Zhao et al., 2001; Park et al., 2003; Bar-Joseph et al., 2003; Luan and Li, 2003; Ernst

et al., 2005; Storey et al., 2005; Ma et al., 2006; Ng et al., 2006; Inoue et al., 2007). When gene expression

is measured at a long series of time points, it is possible that response data are contaminated by noises and,

thus, the detection of patterns suffers from the so-called ‘‘curse of dimensionality.’’ As an increasingly

popular means for data compression and de-noising in the context of signal and image processing (Donoho

and Johnstone, 1994; Johnstone and Silverman, 1997), wavelet shrinkage has been used here to catalogue

gene expression dynamics. This wavelet-based model projects higher dimensional data to a manageable

lower dimensional subspace.

We have implemented the idea of wavelet dimension reduction into the mixture model for gene clus-

tering, aimed to de-noise the data by transforming an inherently high-dimensional biological problem to its

tractable low-dimensional representation. As a first attempt of its kind, we capitalize on the simplest Haar

wavelet shrinkage technique to break an original signal down into spectrum by taking its averages and

differences and, subsequently, to detect gene clusters that differ in the smooth coefficients extracting from

noisy time series gene expression data. The wavelet thresholding approach that we utilized in this man-

uscript was constructed for equally spaced longitudinal data, however its extension to non-equally spaced

data can be made possible through the development of second-generation wavelets (Pensky and Vidakovic,

2001; Jansen, 2003; Vanraes et al., 2002).

It is noted that the clusters identified with this method are meant to be exploratory. Identification of these

clusters can help frame and guide biological investigations. Once data analysis has proceeded to the end
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FIG. 8. Mean curves for each of the thirteen clusters identified are individually graphed along with individuals gene

expressions for genes with at least 90% probability of belonging to such a cluster.

Table 2. The Number of Genes Classified to Each of the Thirteen Clusters Is Presented Here

Cluster

1

Cluster

2

Cluster

3

Cluster

4

Cluster

5

Cluster

6

Cluster

7

Cluster

8

Cluster

9

Cluster

10

Cluster

11

Cluster

12

Cluster

13 Unclassified

4 12 22 53 105 7 144 10 6 301 146 158 447 1540
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point of our investigations, we are at a point where we can discuss mechanisms with biologists and

hopefully work with them to understand the physical mechanisms.

This wavelet-based model will have many implications for addressing biologically meaningful hy-

potheses at the interplay between gene actions (or interactions) and developmental pathways in various

complex biological processes or networks. Although our main application in this article is with time-course

gene expression data, the techniques we have developed are generally applicable to other time-course
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FIG. 9. Mean curves for each of the nine clusters identified in Ning et al. (2010), which were produced by embedding

a periodic Fourier series approximation into the mean expressions of the mixture components.

Table 3. This Table Compares our Clustering Results that Utilize Wavelets

with the Results Published in Ning et al. (2010)

Wavelet cluster no. Fourier cluster no. Proportion of overlap

Cluster 3 Cluster 5 .870

Cluster 6 Cluster 6 .857

Cluster 9 Cluster 3 .600

Cluster 7 Cluster 7 .467

Cluster 2 Cluster 1 .348

Cluster 13 Cluster 9 .203

Cluster 10 Cluster 9 .109

A wavelet cluster is highly matches with a fourier cluster if it has a large proportion of overlap.
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datasets including applications to financial data where high-dimensional characteristics are ubiquitous. We

hope that our method described within can provide a starting point for further exploration in the functional

clustering of high-dimensional data.

ACKNOWLEDGMENTS

This work was partially supported by NSF/NIH (joint grant DMS/NIGMS-0540745).

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Aboufadel, E., and Schlicker, S. 1999. Discovering wavelets. Wiley.

Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., et al. 2003. Continuous representations of time-series gene expression

data. J. Comput. Biol. 10, 341–356.

De Lichtenberg, U., Jensen, L.J., Fausboll, A., et al. 2005. Comparison of computational methods for the identification

of cell cycle-regulated genes. Bioinformatics 21, 1164.

Diggle, P., Heagerty, P., Liang, K.Y., et al. 2002. Analysis of Longitudinal Data. Oxford University Press, New York.

Donoho, D.L. 1995. De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41, 613–627.

Donoho, D.L., and Johnstone, J.M. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425.

Eisen, M.B., Spellman, P.T., Brown, P.O., et al. 1998. Cluster analysis and display of genome-wide expression patterns.

Proc. Natl. Acad. Sci. USA 95, 14863.

Ernst, J., Nau, G.J., and Bar-Joseph, Z. 2005. Clustering short time series gene expression data. Bioinformatics 21, 159.

Ghael, S.P., Sayeed, A.M., and Baraniuk, R.G. 1997. Improved wavelet denoising via empirical wiener filtering. Proc.

SPIE 3169, 389–399.

Ghosh, D., and Chinnaiyan, A.M. 2002. Mixture modelling of gene expression data from microarray experiments.

Bioinformatics 18, 275.

Holter, N.S., Maritan, A., Cieplak, M., et al. 2001. Dynamic modeling of gene expression data. Proc. Natl. Acad. Sci.

USA 98, 1693.

Inoue, L.Y.T., Neira, M., Nelson, C., et al. 2007. Cluster-based network model for time-course gene expression data.

Biostatistics 8, 507–525.

Jansen, M. 2003. Wavelet thresholding on non-equispaced data. Nonlinear Estimation Classification 261.

Jensen, A., and la Cour-Harbo, A. 2001. Ripples in Mathematics: The Discrete Wavelet Transform. Springer Verlag,

New York.

Johnstone, I.M., and Silverman, B.W. 1997. Wavelet threshold estimators for data with correlated noise. J. R. Statist.

Soc. Ser. B 59, 319–351.

Kim, B.R., Zhang, L., Berg, A., et al. 2008. A computational approach to the functional clustering of periodic gene

expression profiles. Genetics 180, 821–834.

Lasser, R. 1996. Introduction to Fourier Series. CRC, Boca Raton, FL.

Luan, Y., and Li, H. 2003. Clustering of time-course gene expression data using a mixed-effects model with b-splines.

Bioinformatics 19, 474.

Ma, P., Castillo-Davis, C.I., Zhong, W., et al. 2006. A data-driven clustering method for time course gene expression

data. Nucleic Acids Res. 34, 1261.

Mallat, S.G., et al. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans.

Pattern Anal. Mach. Intell. 11, 674–693.

McLachlan, G.J., Bean, R.W., and Peel, D. 2002. A mixture model-based approach to the clustering of microarray

expression data. Bioinformatics 18, 413.

Ng, S.K., McLachlan, G.J., Wang, K., et al. 2006. A mixture model with random-effects components for clustering

correlated gene-expression profiles. Bioinformatics 22, 1745.

Ning, L., McMurry, T., Berg, A., et al. 2010. Functional clustering of periodic transcriptional profiles through ar-

ma(p,q). PLoS ONE (in press).

Park, T., Yi, S.G., Lee, S., et al. 2003. Statistical tests for identifying differentially expressed genes in time-course

microarray experiments. Bioinformatics 19, 694.

Pensky, M., and Vidakovic, B. 2001. On non-equally spaced wavelet regression. Ann. Instit. Statist. Math. 53,

681–690.

WAVELET-BASED FUNCTIONAL CLUSTERING 1079



Qian, J., Stenger, B., Wilson, C.A., et al. 2001. Partslist: a web-based system for dynamically ranking protein folds

based on disparate attributes, including whole-genome expression and interaction information. Nucleic Acids Res. 29,

1750.

Ramoni, M.F., Sebastiani, P., and Kohane, I.S. 2002. Cluster analysis of gene expression dynamics. Proc. Natl. Acad.

Sci. USA 99, 9121.

Rustici, G., Mata, J., Kivinen, K., et al. 2004. Periodic gene expression program of the fission yeast cell cycle. Nat.

Genet. 36, 809–817.

Spellman, P.T., Sherlock, G., Zhang, M.Q., et al. 1998. Comprehensive identification of cell cycle-regulated genes of

the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. cell 9, 3273.

Storey, J.D., Xiao, W., Leek, J.T., et al. 2005. Significance analysis of time course microarray experiments. Proc. Natl.

Acad. Sci. USA 102, 12837.

Urbanek, S. 2009. multicore: Parallel processing of R code on machines with multiple cores or CPUs. R package

version 0.1–3. Available at: www.rforge.net/multicore/. Accessed June 1, 2010.

Vanraes, E., Jansen, M., and Bultheel, A. 2002. Stabilised wavelet transforms for non-equispaced data smoothing.

Signal Process. 82, 1979–1990.

Vidakovic, B. 1999. Statistical Modeling by Wavelets. Wiley, New York.

Walker, J.S. 1999. A Primer on Wavelets and Their Scientific Applications. CRC Press, Boca Raton, FL.

Wang, L., Chen, X., Wolfinger, R.D., et al. 2009. A unified mixed effects model for gene set analysis of time course

microarray experiments. Statist. Appl. Genet. Mol. Biol. 8, 47.

Zapala, M.A., and Schork, N.J. 2006. Multivariate regression analysis of distance matrices for testing associations

between gene expression patterns and related variables. Proc. Natl. Acad. Sci. USA 103, 19430.

Zhao, L.P., Prentice, R., and Breeden, L. 2001. Statistical modeling of large microarray data sets to identify stimulus-

response profiles. Proc. Natl. Acad. Sci. USA 98, 5631.

Address correspondence to:

Dr. Arthur Berg

Department of Biostatistics

Pennsylvania State University

500 University Drive, Mail Code CH69

Hershey, PA 17033

E-mail: berg@psu.edu

1080 KIM ET AL.


