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ABSTRACT

Reconciliation extracts information from the topological incongruence between gene and

species trees to infer duplications and losses in the history of a gene family. The inferred

duplication-loss histories provide valuable information for a broad range of biological ap-

plications, including ortholog identification, estimating gene duplication times, and rooting

and correcting gene trees. While reconciliation for binary trees is a tractable and well

studied problem, there are no algorithms for reconciliation with non-binary species trees.

Yet a striking proportion of species trees are non-binary. For example, 64% of branch

points in the NCBI taxonomy have three or more children. When applied to non-binary

species trees, current algorithms overestimate the number of duplications because they

cannot distinguish between duplication and incomplete lineage sorting. We present the

first algorithms for reconciling binary gene trees with non-binary species trees under a

duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene

to species trees to infer the minimum number of duplications in O.jVG j � .kS C hS // time,

where jVG j is the number of nodes in the gene tree, hS is the height of the species tree

and kS is the size of its largest polytomy. We present a dynamic programming algorithm

which also minimizes the total number of losses. Although this algorithm is exponential in

the size of the largest polytomy, it performs well in practice for polytomies with outdegree

of 12 or less. We also present a heuristic which estimates the minimal number of losses

in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of

the time. Our algorithms have been implemented in NOTUNG, a robust, production quality,

tree-fitting program, which provides a graphical user interface for exploratory analysis and

also supports automated, high-throughput analysis of large data sets.

Key words: deep coalescence, gene duplication, gene loss, lineage sorting, non-binary species

trees, polytomy, reconciliation.

1. INTRODUCTION

RECONCILIATION IS THE PROCESS of constructing a mapping between a gene family tree and a

species tree in order to infer the history of gene duplications and losses during the evolution of the
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gene family. Reconciliation is widely used for evolutionary applications in medicine, developmental biology

and plant sciences. It is the most reliable approach for identifying orthologs for use in function prediction,

gene annotation, planning experiments in model organisms, and identifying drug targets (Bourgon et al.,

2004; Searls, 2003). Reconciliation is used to estimate times of duplication (Ermolaeva et al., 2003; Gu

et al., 2002; Ruvinsky and Silver, 1997; Vandepoele et al., 2004; Hahn, 2007), to test whole genome

duplication hypotheses (Vandepoele et al., 2003; Wang et al., 2005; McLysaght et al., 2002; Paterson et al.,

2004) and to identify recently duplicated genes that may be sites of adaptation (Hahn et al., 2007). By

correlating specific duplications with the emergence of novel cellular functions or morphological features,

reconciliation provides clues to the functions of newly discovered genes (Demuth et al., 2006; Wheeler et al.,

2001). Minimizing duplications and losses provides a basis for rooting an unrooted tree (Chen et al., 2000)

and for selecting alternate gene or species tree topologies (Chen et al., 2000; Durand et al., 2006a; Bourgon

et al., 2004; Nam and Masatoshi, 2005).

Reconciliation of binary trees is a well-studied problem (Guigó et al., 1996; Hallett and Lagergren,

2000; Ma et al., 2000; Mirkin et al., 1995; Page, 1994; Stege, 1999; Zhang, 1997; Eulenstein et al., 1998).

A number of software packages for this problem are available (Page and Charleston, 1997; Page, 1998;

Zmasek and Eddy, 2001b; Zmasek and Eddy, 2001a; Dufayard et al., 2005; Roth et al., 2005; Durand et al.,

2006a; Berglund-Sonnhammer et al., 2006; Sennblad et al., 2007), as are high throughput reconciliation

tools for automated processing of databases of molecular phylogenies (Perrière et al., 2000; Dufayard et al.,

2005; Roth et al., 2005; Li et al., 2006) and analysis of genome-scale data sets (Hahn et al., 2007; Blomme

et al., 2006; Demuth et al., 2006). Reconciliation is also the kernel of a related, but more complex, problem:

inferring a species tree from many gene trees (Ma et al., 2000, and work cited therein). Historically, most

work involving reconciliation has focused on duplications; however, losses are also an important factor

in gene family evolution. Work that acknowledges this importance and incorporates loss information is

emerging (Chauve et al., 2007; Chen et al., 2000; Guigó et al., 1996)

Reconciliation relies on the observation that discordance between a binary gene tree and a binary species

tree is evidence that genes diverged through processes other than speciation. These processes include

gene duplication and loss, incomplete lineage sorting, and horizontal gene transfer. Previous studies on

binary reconciliation explain tree disagreement exclusively in terms of gene duplication and loss. A few

methods that consider horizontal gene transfer have been proposed (Gorecki, 2004; Hallett and Lagergren,

2001; Hallett et al., 2004). However, to our knowledge, there are none that consider incomplete lineage

sorting in binary trees. Since the probability of incomplete lineage sorting decreases as time between

speciation events increases (Pamilo and Nei, 1988; Takahata and Nei, 1985; Maddison, 1997; Tajima,

1983; Hudson, 1990), ignoring incomplete lineage sorting as a cause of discordance is justified if the

branch lengths in the species tree are sufficiently long.

In contrast, when the species tree is non-binary, incomplete lineage sorting is a significant phenomenon

that cannot be ignored (Pollard et al., 2006). Since duplication and incomplete lineage sorting have

different consequences for the interpretation of phylogenetic studies, it is essential to distinguish between

discordances that can only be explained by duplication (required duplications) and discordances that could

be due to either duplication or incomplete lineage sorting (conditional duplications). As we demonstrate

below, standard binary reconciliation cannot make this distinction.

As the tree of life project gains momentum, it is becoming evident that reconciliation with non-

binary species trees is not a minor problem relegated to a few obscure species lineages. Rather, 64%

of branch points in the NCBI taxonomy (Wheeler et al., 2005), one of the most widely used databases of

species phylogenies, have more than two children. A number of well-documented analyses of simultaneous

divergences have been reported (Jackman et al., 1999; Poe and Chubb, 2004; Melnick et al., 1993; Hoelzer

and Melnick, 1994; Salzburger et al., 2002). Considering the large number of non-binary species trees,

reconciliation methods for non-binary trees are urgently needed.

Our contributions: To address this need, we present novel algorithms to reconcile a rooted binary

gene tree, TG D .VG ; EG/, with a rooted non-binary species tree, TS D .VS ; ES /. Under the as-

sumption of duplication-loss parsimony, our algorithms infer (1) the number of duplications and losses

that occurred, (2) the species in which those events occurred, and (3) the gene tree lineage in which

the events occurred. From these, the total number of duplication, speciation and loss events, as well

as the temporal order of those events in each lineage, can be determined. Our algorithms consider

only discordance due to duplication and incomplete lineage sorting. We further assume, like previous

authors, that the probability of incomplete lineage sorting is negligible when a node in the species tree
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is binary. Incomplete lineage sorting in binary species trees and horizontal gene transfer are reserved for

future work.

We first present a mapping from nodes in VG to sets of nodes in VS that allows us to test efficiently

whether a discordance at a given node is a conditional or required duplication. The maximum size of the

set labeling any node in TG is O.kS /, where kS is the maximum outdegree in TS . Using this mapping,

our algorithm infers all conditional and required duplications in O.jVG j � .kS C hS // time, where hS is

the height of TS . Each inferred duplication is assigned to a node in TG, indicating the species in which it

occurred and the timing of the duplication relative to other events in the gene family history.

We also present parsimony algorithms to infer the minimum number of gene losses. The timing of each

inferred loss is indicated by assigning a node representing the loss to an edge in EG . This loss node is

labeled with the species in which the loss occurred. For binary species trees, the edge to which each loss

is assigned is unambiguously determined by the reconciliation. In contrast, for a loss associated with a

polytomy in a non-binary species tree, it is not generally possible to determine the exact lineage in the gene

tree in which the loss occurred. In such cases, the loss is associated with several possible edges in EG,

corresponding to alternate hypotheses regarding when the loss occurred. Parsimony provides a principled

basis for reducing this uncertainty: the number of alternate hypotheses may be reduced by assigning losses

to edges in EG such that the total number of losses is minimized.

Two considerations influence the total number of losses associated with a particular assignment of losses

to edges. First, the position of the loss relative to duplications in TG influences the total number of losses.

Assigning a loss to an edge above a duplication in TG implies that the loss occurred before the duplication.

In this case, only one loss is inferred. Assigning the loss below that duplication implies that the duplication

occurred first. In this case, two losses must be inferred, one for each duplicated copy. Second, under certain

circumstances, losses in sibling species can be explained by a single loss in their common ancestor. We

can reduce the number of losses by selecting assignments that maximize the opportunities to combine

losses that share a parent. As we show later in the paper, these considerations are not independent of one

another. While assigning a loss below a duplication usually increases the total number of losses, in some

cases the duplicated losses can be combined with other losses that occurred after the duplication, resulting

in fewer total losses.

We present an exact algorithm that infers a history with the fewest losses, while taking both of the

above considerations into account. Despite the exponential complexity of this algorithm (O.jVG jkS22kS /),

in empirical tests our exact algorithm reconciled 1174 trees derived from the TreeFam (Li et al., 2006)

database in about two and a half minutes. We also present a heuristic that runs in polynomial time

.O.jVG j � .kS C hS ///. This heuristic reconciled the same 1174 trees in 48 seconds. This heuristic places

losses as close to the root as possible to avoid duplicating losses. Once all losses have been assigned to

edges, losses are combined where possible. In a comparison of the two methods on these 1174 trees, the

heuristic found the optimal solution in more than 99% of the cases studied. Out of the seven trees in which

the heuristic did not find the optimal solution, in the worst case, the number of losses was overestimated

by four losses out of a total of 249.

Our algorithms have been implemented in NOTUNG, a software package that takes trees in the widely

used Newick format as input, permitting interoperability with a wide range of phylogeny reconstruction and

drawing packages. In addition to reconciling binary gene trees with non-binary species trees, NOTUNG can

reconcile both binary and non-binary gene trees with binary species trees (Durand et al., 2006b). NOTUNG

can also apply duplication-loss parsimony to reduce uncertainty in a gene tree with weakly supported

edges, to root a gene tree, and to resolve polytomies in a gene tree (Chen et al., 2000; Durand et al.,

2006a). Our software is implemented in Java and runs on Windows, Unix and Mac OS X. It is freely

available at www.cs.cmu.edu/�durand/Notung.

Roadmap: In the next section, we introduce notation and review the standard algorithm for reconcilia-

tion of binary trees. In Section 3, we review the relevant models for non-binary gene and species trees in the

molecular evolution literature and give formal definitions for required and conditional duplications based

on this foundation. Next we present our non-binary reconciliation algorithms. Duplications are discussed

in Section 4. In Section 5, we discuss losses and present an exact algorithm and a heuristic for inferring

the minimum number of losses, as well as conditional and required duplications. We discuss related work

by other authors in Section 6. In Section 7, we demonstrate the utility of our methods with analyses of

real data sets using our software. In the conclusion, we discuss probabilistic approaches to reconciliation

and describe directions for future work.
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FIG. 1. LCA reconciliation. (a) A binary species tree. (b) A hypothetical binary gene tree with genes sampled from

species in (a). (c) The gene tree (b) reconciled with species tree (a). (d) The gene tree (b) embedded in the species

tree (a). The black squares indicate duplications, and dotted lines indicate losses.

2. NOTATION AND BINARY RECONCILIATION

In this section, we introduce notation and review the standard reconciliation algorithm for binary trees.

The trees shown in Figure 1 will be used throughout this section to exemplify notation. In tree figures, the

label g_s denotes a gene that is sampled from species s.

Let Ti D .Vi ; Ei/ be a rooted tree, where Vi is the set of nodes in Ti , and Ei is the set of edges.

L.Ti / is the leaf set of Ti and L.v/ refers to the leaf set of a subtree rooted at v 2 Vi . The root node

of Ti is denoted as root.Ti /. C.v/ and p.v/ refer to the children and parent of v, respectively. If v is

binary, r.v/ and l.v/ denote the right and left children of v. For example, in Figure 1, p.y/ D x, and

C.y/ D fg1_A; g1_Bg, where l.y/ D g1_A and r.y/ D g1_B . A non-binary node in a tree is referred to

as a polytomy. A monophyletic group is a set of nodes consisting of a node and all of its descendants; for

example, in Figure 1a, f; C; Dg forms a monophyletic group. The expression u �i v indicates that for

u 2 Vi , either u is v, or u lies on the path from v to root.Ti /. In Figure 1c, root.TG/ D x and y �G g1_A.

We follow the computer science convention, in which the root is at the top of the tree, the leaves are at

the bottom, and p.g/ is above g.

Reconciliation infers gene duplications and losses by fitting a gene tree to a species tree (Goodman

et al., 1979; Page and Holmes, 1998; Ronquist, 2002). To perform this comparison for binary trees, a

mapping between the gene tree and species tree is required. Let TG be a binary gene tree and TS be a

binary species tree such that the genes in L.TG/ were sampled from the species in L.TS /. A mapping

M.�/ is constructed from each node g 2 VG to a target node s 2 VS . If g is a leaf node, M.g/ is the

species from which sequence g was sampled. If g is an internal node, M.g/ is the least common ancestor

(LCA) of the target nodes of its children:

M.g/ D LCA.M.l.g//; M.r.g///: (1)

In our example, M.g1_A/ D A, since it is a leaf; M.x/ D LCA.M.y/; M.z// D LCA.˛; / D ˛.

From this mapping both gene duplications and gene losses can be inferred. We refer to this algorithm

for calculating duplications and losses as LCA reconciliation in order to distinguish it from the new

reconciliation algorithms proposed for non-binary species trees in the next section.

By convention, duplications are assigned to nodes in VG and losses to edges in EG . Assigning a

duplication to node g 2 VG not only specifies its location in TG , but also its location in TS , via the

mapping M.�/. An inferred duplication at g implies that the duplication occurred between p.M.g// and

M.g/. The two resulting copies were present in species M.g/, and for at least one child c of M.g/ (if

M.g/ … L.TS /), each copy persisted1 in at least one leaf (not necessarily the same leaf) of the subtree of

1Duplication followed by loss of all descendants of one copy would not leave this pattern, but parsimony

reconciliation models only consider cases where there is some remaining evidence of duplication.
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TS rooted at c. If M.g/ 2 L.TS /, then both copies persisted in M.g/. For losses, the species, s, in which

the loss occurred must be inferred explicitly. Assigning a loss in s to edge .p.g/; g/ indicates that g was

present in both M.p.g// and M.g/, and was lost on the path from s0 to s, where s0 is a species on the

path from M.g/ to M.p.g// (i.e., M.g/ <S s0 �S M.p.g//).

Gene Duplications: A duplication is inferred at node g if and only if the children of g map to the

same lineage in TS ; that is, there is some leaf s 2 L.TS / such that both l.M.g// and r.M.g// are on the

path from s to root.TS /. This condition is true iff

M.g/ D M.l.g// _ M.g/ D M.r.g//: (2)

Every node in TG that is not designated a duplication node is a speciation node.

When the gene tree is binary, Equation (2) is sufficient to determine whether l.g/ and r.g/ map to the

same lineage in TS . Note, however, that Equation (2) only explicitly tests whether two copies were present

in M.g/, but not whether each gene copy persisted in at least one leaf of a subtree descending from M.g/.

The assumption of complete lineage sorting guarantees that the latter must also be true. However, as we

demonstrate in Section 3, under incomplete lineage sorting, Equation (2) is not sufficient to determine

whether two or more children map to the same lineage in TS .

As an example of inferring gene duplication, we consider Figure 1. Figure 1d shows a duplication at

node x 2 TG, prior to the species divergence at ˛. A descendant of l.x/ persisted in species B , while a

descendant of r.x/ persisted in species C and D; thus, both copies are represented in at least one leaf of

the subtree rooted at ˇ. The gene tree embedded in the species tree in Figure 1d shows both copies of

the gene on the edge .˛; ˇ/. Although only one copy of the family survived in each species, discordance

between the species tree in Figure 1a and the gene tree in Figure 1b provides sufficient evidence to infer

a duplication at x. Because both x and one of its children (y) map to ˛, Equation (2) correctly identifies

the duplication x.

Gene Losses: Losses can also be reconstructed from the mapping, M.�/. For each e D .p.g/; g/, the

comparison of M.p.g// and M.g/ determines the losses assigned to e. If p.g/ is a speciation node, and

no loss occurred, then M.p.g// must be the parent of M.g/ in the species tree. If p.g/ is a duplication

node and no losses occurred, then p.g/ and g map to the same node in TS . If either one of these conditions

fail, then one or more losses must be inferred. Both situations arise in the example in Figure 1. Since x is a

duplication node, M.z/ ¤ M.x/ indicates losses in A and B on the edge from x to z. Node p.g1_B/ D y

is a speciation node, but M.y/ D ˛ is not the parent of M.g1_B/ D B in TS , indicating the absence of

g1 from species C and D. Note that these two losses can be explained more parsimoniously by the loss

of a single ancestral gene in the ancestral species,  .

In general, given a 1-1 mapping between a set of contemporary species in which a gene copy is

absent (relevant to a single edge in EG) and the leaves of a subtree rooted at s 2 VS , it is more

parsimonious to infer a single loss in s. Under this assumption, when p.g/ is a speciation node, we

infer depth.M.g// � depth.M.p.g/// � 1 losses on edge e, one for each ancestral species on the path

from M.g/ to M.p.g// in TS . If p.g/ is a duplication, the number of inferred losses is depth.M.g// �

depth.M.p.g///.

The species associated with the losses inferred on e D .p.g/; g/ are determined by walking up the

species tree from M.g/ to M.p.g//. For each ancestral node s 2 VS between M.g/ and M.p.g//, a

loss is inferred in l.s/ or r.s/, whichever is not represented on the path from g to p.g/ in the gene

tree. If p.g/ is a duplication node, an additional loss is inferred. For example, consider the losses on

edge .x; z/ in Figure 1c. Node x is a duplication node and M.x/ D ˛, but M.z/ D  , indicating that

depth./ � depth.˛/ D 2 losses occurred between x and z.

The reconciliation methods presented here fulfill the requirements for reconciliation algorithms specified

in Section 1. Each duplication is assigned to a node g 2 VG , indicating the timing of the duplication relative

to speciation and duplication events in the same gene tree lineage. The mapping M.g/ indicates the species

lineage in which the duplication occurred. Similarly, each loss is associated with a node s 2 VS and an

edge .g; p.g// 2 EG , indicating that the loss occurred between p.s/ and s in the species tree and between

p.g/ and g in the gene tree. The total number of events is determined by summing over the set of all

nodes and edges for duplications and losses, respectively.
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3. MODELS FOR NON-BINARY SPECIES TREES

LCA reconciliation is based on the assumption that disagreement between a gene tree and a species tree

indicates that one or more gene duplications or losses must have occurred. In this section, we show that

when the species tree is non-binary, this assumption is no longer warranted. First we review current theory

concerning polytomies in gene and species trees.

A polytomy may represent the simultaneous divergence of all its children (a hard polytomy) (Mad-

dison, 1989). It may also indicate that the true binary branching pattern is unknown (a soft polytomy)

(Maddison, 1989). A soft polytomy indicates that sufficient data is not available, or there is not enough

signal in the data to determine the true branching order. This may occur when a sequence of binary

divisions proceeds in close succession and the time between these events is insufficient to accumulate

informative variation.

In gene trees, polytomies are always soft. Since each lineage in a gene tree represents exactly one gene,

the result of any divergence is exactly two descendant sequences. Thus, the true branching pattern in a

gene family is always binary (Hudson, 1990), and a polytomy can only represent uncertainty in the true,

underlying history. In the current work, we assume that the true binary gene tree is known and focus

exclusively on algorithms for binary gene trees.

In contrast, polytomies in a species tree can be either hard or soft. A species tree represents the evolution

of a population of organisms. In this context, simultaneous divergence of three or more lineages does occur.

For example, simultaneous divergence can result from the isolation of subpopulations within a widespread

species by sudden meteorological or geological events, or from rapid expansion of the population into open

territory, resulting in reproductive isolation. Examples of well-documented, simultaneous divergences in

nature include Anolis lizards (Jackman et al., 1999), modern birds in the order Neoaves (Poe and Chubb,

2004), macaque monkeys (Melnick et al., 1993; Hoelzer and Melnick, 1994), auklets (Walsh et al., 1999),

and African cichlid fishes (Salzburger et al., 2002).

A binary gene tree can be consistent with a hard polytomy in the species tree (Lyons-Weiler and

Milinkovitch, 1997; Maddison, 1997), as illustrated in Figure 2. Since a node in the species tree represents a

population with genetic diversity, there can be multiple alleles at the locus of interest. Discordance between

gene and species trees that results from allelic variation is referred to as incomplete lineage sorting. The

bifurcation at time t1 shows the formation of two alleles through mutation. A second bifurcation occurs at

t2 and results in three different alleles at this locus. Note that this binary branching pattern represents allelic

variation at a single locus, not the formation of independent loci through duplication. The true divergence

between any two genetic lineages corresponds to the point at which the differences in alleles arose, not the

time of speciation. Divergence that occurs much earlier than the time of speciation is referred to as a deep

coalescence event. Given a hard polytomy with k leaves, all binary branching patterns with k leaves are

FIG. 2. Evolution of a single genetic locus in the context of a population. Each row represents a generation of

individuals in the population at a specific point in time.
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FIG. 3. Gene trees evolving within the same species polytomy can have different binary topologies.

equally likely (Pamilo and Nei, 1988). Figure 3 shows all three binary branching patterns that are possible

in a polytomy with three children.

In our model, disagreement between a binary gene tree and a non-binary species tree is evidence that

divergence in the gene tree resulted from gene duplication or incomplete lineage sorting. When the species

tree is non-binary, three cases must be considered. Where there is no incongruence, gene tree divergence is

attributed to speciation. Second, some divergences can only be explained by gene duplication. Obviously, a

duplication must have occurred in any gene family that has two or more members in the same species. But

even when no contemporary species contains more than one family member, there are cases where topologi-

cal disagreement can only be explained by a duplication. Third, in some cases, it is not possible to determine

whether the disagreement is due to incomplete lineage sorting or duplication (Slowinski and Page, 1999).

These issues are illustrated in Figure 4. Disagreement between the gene tree in Figure 4b and the

species tree in Figure 4a can be explained by two scenarios, depicted in Figures 4c and d. In Figure 4c,

the discordance at x is explained by a duplication, followed by losses in B and ˇ. In Figure 4d, the

divergence at x is explained by allelic variation in the ancestral population at ˛, followed by retention of

different alleles in different lineages in TS . Based on the information available in Figure 4, it is impossible

to determine with certainty whether node x represents incomplete lineage sorting or gene duplication. In

contrast, the incongruence at node y between the species tree in Figure 4a and the gene tree in Figure 4b can

only be explained by a duplication. This can be seen in Figure 4d, which shows the gene tree embedded in

the species tree. Two copies of the gene are present in the lineage from ˛ to ˇ, indicating that a duplication

must have occurred at their most recent common ancestor, y.

FIG. 4. (a) A species tree with a polytomy at ˛. (b) A hypothetical gene tree sampled from the species in (a). (c) The

gene tree from (b), which has been reconciled using the LCA algorithm. (d) The hypothetical gene tree embedded

in species tree. (e) The gene tree labeled with required duplications and losses. Black squares indicate (required)

duplications. Losses are represented by dotted lines.
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Since disagreements in the branching pattern of a binary gene tree and a non-binary species tree may

be evidence of a duplication or incomplete lineage sorting, we need a formal basis to distinguish between

required duplications—those disagreements that can only be explained by a duplication—and conditional

duplications—those disagreements that can be explained by either a duplication or a deep coalescence

event. LCA reconciliation can recognize nodes that did not arise through speciation but cannot distinguish

between required and conditional duplications. In Figure 4, all three internal nodes map to species ˛.

According to Equation (2), since M.x/ D M.y/ D M.z/ D ˛, duplications are inferred at both x and y.

Thus, LCA reconciliation recognizes disagreement at x and y, but cannot determine that x is a conditional

duplication and y a required duplication. An additional test for distinguishing required and conditional

duplications is needed.

Recall that all binary trees with k leaves are equally compatible with a species polytomy with k

children. Therefore, we can treat a polytomy s as a set of hypotheses, or binary resolutions of s. For

each polytomy s 2 VS , let H.s/ be the set of all possible binary trees, rooted at s, whose leaves are

the children of s. Formally, given the k-tomy s 2 VS , let H.s/ D fTi jL.Ti / D C.s/g, where Ti is a

binary tree such that the leaves of Ti are the children of s. For example, if node s is the trichotomy

˛ in Figure 4a, then H.˛/ D f.A; .B; ˇ//; .B; .A; ˇ//; .ˇ; .A; B//g. In addition, let H�.TS / be the set

of all possible binary trees obtained by replacing each polytomy sj 2 VS with each tree Tij 2 H.sj /.

In other words, H�.TS / is the set of all possible binary resolutions of TS . For Figure 4a, H�.TS / D

f.A; .B; .C; D///; .B; .A; .C; D///; ..C; D/; .A; B//g. Note that for a given T 0 2 H�.TS /, every node

s 2 TS corresponds to a node in T 0; however, T 0 will also contain nodes that do not correspond to

any node in TS . The cardinality of H�.TS / is
Q

8sj 2TS
jH.sj /j, which is equivalent to

Q
j nj , where

nj D
.2kj �3/Š

2
kj �2

.kj �2/Š
and kj D jC.sj /j (Li, 1997). If TS is binary, then H�.TS / D fTSg.

We now use H�.TS / to characterize formally the properties of the gene and species tree that determine

when a duplication is required. When reconciling TG with every T 0 2 H�.s/, if g 2 VG is a duplication in

every reconciliation, then a duplication must have occurred at g. If at least one, but not all reconciliations

indicate a duplication at g, then a deep coalescence event may have occurred. Formally:

Definition 3.1. 8 T 0 2 H�.TS /, reconcile TG with T 0. Given g 2 VG n root.TG /,

� p.g/ is a required duplication if 8 T 0 2 H�.TS /, M.g/ D M.p.g//.
� p.g/ is a conditional duplication if 9 T 0 2 H�.TS / s.t. M.g/ D M.p.g// and p.g/ is not a required

duplication.

Notice that for the trees in Figure 4, every T 0 would infer a duplication node at node y; however, this

is not the case for node x. For these trees, M.y/ D M.z/ for every T 0 2 H�.TS /. Therefore, under

Definition 3.1, node y is a required duplication. On the other hand, node x is a conditional duplication

since there is a binary resolution in H�.TS /, namely .A; .B; .C; D///, that does not infer a duplication.

Recall, however, that under LCA reconciliation, a duplication event is inferred at both nodes x and y,

since M.x/ D M.y/ D M.z/.

4. IDENTIFYING DUPLICATIONS

Reconciliation with a non-binary species tree requires determining whether a given node is a required du-

plication, a conditional duplication, or a speciation. Formally, the problem of reconciliation with non-binary

species trees is defined as follows:

Duplication Inference for Non-Binary Species Trees

Input: A rooted, arbitrary species tree, TS , a rooted, binary gene tree, TG , and a mapping from L.TS /

to L.TG /.

Output: The minimum number of duplications required to reconcile of TG and TS . The most parsimonious

duplication histories, where a duplication history is a reconciled gene tree in which every node is

designated as a required duplication, a conditional duplication, or a speciation.
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Definition 3.1 provides a formal basis for classifying nodes, but cannot be the basis of an efficient algorithm,

since H�.TS / grows superexponentially with the size of polytomies in TS . LCA reconciliation is not a

suitable solution, since it identifies both conditional and required duplications, but cannot distinguish

between them.

To see why this is true, recall that the presence of descendants of both children of g in the same lineage

of TS is evidence of duplication at g. To infer a duplication at g in the binary case, it is sufficient to

determine that g and a child of g were both present in M.g/, because (in the absence of loss) complete

lineage sorting implies that both lineages descending from g must be inherited by both species lineages

descending from M.g/. However, when incomplete lineage sorting is possible, this is no longer true. The

coexistence of g and one of its children in the same ancestral species (i.e., Equation (2)) is not a sufficient

condition to determine whether they coexisted in the same lineage. For example, in Figure 4d, the left

child of x is only present in the lineage leading to A and the right child of x is only present in the lineages

leading to B and ˇ. No subtree descending from a child of M.x/ contains descendants of both l.x/ and

r.x/, indicating that x is not a duplication node. In contrast, y is a required duplication since both of

its children are present on the edge from ˛ to ˇ. Equation (2) would correctly recognize the required

duplication at y, but incorrectly infer a required duplication at x as well, since M.x/ D M.r.x//.

As the above example shows, Equation (2) is not sufficient to infer required duplications when the species

tree is non-binary. In particular, the mapping M.�/ is not sufficiently informative to distinguish between

conditional duplications and required duplications. In order to infer required duplications, information is

needed about the descendants of M.g/ in which the descendants of g were present.

Here we propose a new mapping and show how it can be used to make this distinction. We construct a

mapping from each node g in TG to a set of species in TS . A straightforward approach would be to label

each node, g, in the gene tree with all nodes (both leaves and internal nodes) in the species tree in which

the gene was present. Using this mapping, a required duplication is inferred at g if the intersection of the

sets of its children is non-empty. The size of the sets labeling the nodes in the gene tree grows with the

height of the tree and can contain as many as O.jVS j/ elements. However, it is sufficient to store only the

children of M.p.g// in which descendants of g must have been present, as follows:

Definition 4.1. Define ON W VG nroot.TG/!V C
S to be

ON .g/ D fM.g/g; if M.p.g// 2 L.TS /

fhjh 2 C.M.p.g/// ^ 9 v 2 L.g/ 3 h �S M.v/g; otherwise.

where V C
S is the powerset of VS , excluding the empty set.

Note that ON is defined on every node in TG except the root. The size of this mapping at any given node is

bounded by the size of the largest polytomy in TS , yet this mapping is sufficiently informative to identify

required and conditional duplications, as we prove in Theorem 4.1.

Theorem 4.1. A node g is a required duplication iff ON .r.g// \ ON .l.g// ¤ ;.

Proof. There exists at least one x such that x 2 ON .l.g// \ ON .r.g//. Therefore, for all T 0 2 H�.TS /,

x �S M.l.g// and x �S M.r.g//. This requires that either M.l.g// D M.r.g// or one is a descendant

of the other. Thus, g meets the duplication criterion for binary gene and binary species trees for every

T 0 2 H�.TS /, and therefore is a required duplication.

It is necessary to show that whenever ON .r.g// \ ON .l.g// D ;, there exists at least one element of

H�.TS / that does not imply a duplication at g. Any T 0 2 H�.TS / that has all members of ON .l.g// in the

left subtree of M.g/ and all members of ON .r.g// in the right subtree of M.g/ will meet this criterion. At

least one such tree must exist since ON .r.g// and ON .l.g// do not intersect.

Figure 5 shows the mapping ON .�/ for the gene tree in Figure 4d. This mapping correctly infers a

required duplication at y since ON .l.y// \ ON .r.y// D fB; ˇg \ fˇg D fˇg ¤ ;. It also correctly identifies

a conditional duplication at node x, since ON .l.x// \ ON .r.x// D fAg \ f B; ˇg D ;.
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FIG. 5. The gene tree from Figure 4e labeled with the ON .�/ mapping. Losses are not represented in this figure.

The algorithm for inferring required and conditional duplications using ON .�/ is given in Algorithm 1.
ON .g/ is calculated with a postorder traversal of TG . To ensure that the set ON .�/ is composed only of

children of M.p.g//, Algorithm 1 executes a climbing step that replaces the set of nodes in ON .g/ with

the child of M.p.g// which is ancestral to them. The climb procedure prevents j ON j from growing larger

than kS . Algorithm 1 infers a required duplication at g if the intersection of the sets ON .l.g// and ON .r.g//

is non-empty. A conditional duplication is inferred if the node is not a required duplication, but is a

duplication under LCA reconciliation.

Algorithm 1.

reconcile( g )

1 if ( g.isLeaf() )

2 M.g/ D species of g

3 ON .g/ D fM.g/g
4 return

5 // INTERNAL NODE CASE

6 // descend first

7 reconcile(l.g/); reconcile(r.g/)

8 M.g/ D LCA.M.l.g//; M.r.g///

9 // Update ON.�/ for children by climbing

10 ON .l.g// D climb.l.g/; g/; ON .r.g// D climb.r.g/; g/

11 ON .g/ D ON .l.g// [ ON .r.g//

12 if ( ON .l.g// \ ON .r.g// ¤ ; )

13 g is Required Duplication

14 else if ( M.g/ DD M.l.g// or M.g/ DD M.r.g// )

15 g is Conditional Duplication

climb( c, g )

16 select x from ON .c/ at random

17 if ( x DD M.g/ or p.x/ DD M.g/ )

18 return x

19 while ( p.x/ ¤ M.g/ )

20 // climb

21 x D p.x/

22 return {x}

As shown in Theorem 4.2, Algorithm 1 produces the same results as LCA reconciliation when the

species tree is binary.
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Theorem 4.2 (Equivalence with LCA Reconciliation for Binary Species Trees). Let TG be a binary

gene tree reconciled with a binary species tree. ON .r.g// \ ON .l.g// ¤ ; iff M.r.g// D M.g/ and/or

M.l.g// D M.g/.

Proof. This follows directly from Theorem 4.1.

Suppose that there exists h 2 C.g/, such that M.h/ D M.g/, but ON .r.g// \ ON .l.g// D ;. Either
ON.l.g// and ON .r.g// are both equal to {M.g/g or ON .l.g// and ON .r.g// both contain children of M.g/.

In the former case, ON .l.g// and ON .r.g// are not disjoint, leading to a contradiction. In the latter case, since

M.g/ has only two children and the sets are disjoint, one set must contain the right child and the other the

left child of M.g/. Thus, there is no h 2 C.g/, such that M.h/ D M.g/, leading to a contradiction.

The computational complexity of this algorithm is considered in Section 5.1, where we present an

algorithm that infers losses in addition to conditional and required duplications in a single traversal of

the tree.

5. INFERRING GENE LOSSES

The goal of loss inference under the parsimony criterion is to identify the loss history that requires the

minimum number of losses needed to explain the data. A loss history is a set of gene losses, in which

each loss is assigned to an edge in the gene tree and a node in the species tree. For a given binary

gene tree and binary species tree, there is exactly one most parsimonious loss history. Each loss can be

unambiguously assigned to exactly one edge in TG , and associated with one node in TS . Moreover, it is

possible to determine the set of losses assigned to an edge .g; p.g// by comparing M.g/ and M.p.g//,

without considering losses on any other edge of the gene tree. The total number of losses in the most

parsimonious history can be determined by inferring losses on each edge independently and summing over

all edges.

In contrast, when TS is non-binary, a reconciliation may have more than one equally parsimonious loss

history. Under specific circumstances, described in detail in the next section, a species polytomy will result

in ambiguous losses, losses that may be assigned to one of several edges in the gene tree. The reconciliation

does not provide enough information to fully resolve the temporal order of these losses relative to other

events in the same gene tree lineage.

The problem of ambiguous losses is illustrated by the following example: Figure 6a shows a species

tree, TS , with a single polytomy, ˇ, and a gene tree, TG , representing the evolution of a family of genes,

g, drawn from the species in L.TS /. There is no member of this gene family in species B , indicating the

loss of a gene in B . Comparison of TG and TS identifies three edges in TG from which this gene (denoted

lost_B/ could have diverged, but is not sufficient to determine which edge is preferred. The divergence

of lost_B may have occurred before the separation of g_C from the ancestor of g_D and g_E (Fig. 6b)

or after that separation (Fig. 6c). Alternatively, lost_B may be most closely related to g_C (Fig. 6d).

In gene families in which two or more losses occurred, interactions between losses that can be assigned

to the same edge of the gene tree must be considered. Although it is not possible to determine exactly when

an ambiguous loss occurred, it is possible to identify the set of permissible edges for a given loss. The set

of permissible edges is a (not necessarily proper) subset of a set of contiguous edges, called a Polytomy

Connected Component (PCC), which is defined formally in Section 5.2. Each ambiguous loss is associated

with exactly one PCC. A gene tree may have several PCCs; these are always disjoint. Interactions between

ambiguous losses assigned to the same PCC influence the total number of losses. Two factors contribute

to the interactions between losses: Losses that occurred in sibling species and that are assigned to the

same edge in TG may be replaced by a single loss in a common ancestor, decreasing the total loss count.

In addition, interaction of ambiguous losses with duplications in the gene tree affects the total number of

losses inferred.

The first factor arises because a single loss in an ancestral species is more parsimonious than simul-

taneous, independent losses in the contemporary species descended from that ancestor. In an algorithmic

context, we refer to the process of inferring such ancestral losses as combining losses. In the binary case,

a single ancestral loss may be inferred if the same member of a gene family is absent from all leaves
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FIG. 6. Loss ambiguity. (a) Hypothetical species and gene tree. TS has a polytomy at ˇ and a gene has been lost in

species B in TG . (b), (c), and (d) The different hypotheses of when the lost occurred are shown as both an embedded

tree and a separate gene tree.

of some subtree of TS . When the species tree is non-binary, losses that correspond to leaves of subtrees

whose roots are the children of a polytomy may be combined. Formally, given a set, L, of losses assigned

to the same edge, if there is a one-to-one mapping between L and the leaves of a subtree t in some

T 0 2 H�.TS /, a single loss in root.t/ can be inferred. It is not necessary to enumerate all trees in H�.TS /

to determine whether a given set of losses corresponds to a single, ancestral loss TS . If there exists a set

of subtrees in TS such that there is a one-to-one mapping between L and the leaves of the subtrees, and

the roots of the subtrees are all children of the same polytomy, then the losses in L may be combined.

Note that a reconciled gene tree may include losses in ancestral species that are not found in TS . In

this case, the loss is labeled with the set of children of the polytomy that are descendants of root.t/

in T 0.

The particular edge within the permissible set to which a loss is assigned determines whether or not it

can be combined with other losses and, hence, the total number of losses inferred. For example, the gene

family in Figure 7c is not represented in species B . The set of permissible edges for lost_B is shown in

bold. A second loss occurred in species D. The set of permissible edges for lost_D is not shown, but it

overlaps with the set of edges for lost_B . In particular, both losses can be assigned to the edge .w; x/.

In that case, a single ancestral loss can be inferred in their common ancestor, as seen in Figure 7d. This

is permissible because there exists a tree in H�.TS / in which B , D, and their common ancestor form a

monophyletic subtree. Notice that, although lost_B and lost_F can both be assigned to the edge .x; g4_E/,

they do not correspond to the leaves of any subtree in H�.TS /, and cannot be combined.

The second factor influencing total loss count is loss duplication. If the set of permissible edges for a

given ambiguous loss contains a duplication node, the position of the loss with respect to this duplication

will influence the total number of losses. Assignment of the loss to an edge below the duplication implies

that the gene was duplicated before the loss occurred, requiring that two losses be inferred, one in each

subtree below the duplication. If the loss is assigned on an edge above the duplication, only a single loss

is inferred. While assigning losses to edges above duplications usually results in fewer losses, the number

of losses will decrease when a loss is assigned below a duplication if both copies can then be combined

with other losses. For example, in Figure 7c, lost_B may be assigned to edges both above and below

the duplication at w. If lost_B is assigned to edges below w, two losses in B are inferred, one on edge
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FIG. 7. (a) A species tree with a polytomy, ˇ. (b) A hypothetical gene tree that has been reconciled with the species

tree in (a). This gene tree is annotated with the mappings M.�/, ON .�/ and N.�/. Losses are not represented in this tree.

(c) The gene tree (b) annotated with the loss placement inferred by Algorithm 2. (d) The gene tree (b) annotated with

one possible optimal placement of polytomy losses inferred by Algorithm 3.

.w; l.w// D .w; x/ and one on .w; r.w/ D .w; y//. As seen in Figure 7d, this results in two ancestral

losses: lost_D; B and lost_C; B .

Due to the interactions between multiple ambiguous losses and duplications in the same PCC, and in

contrast to reconciliation with binary species trees, the total number of losses in the most parsimonious

history cannot be determined by considering each edge independently. Inferring the minimum number of

losses requires obtaining the set of lowest cost assignments from the set of all possible edge assignments

for each PCC. The problem of inferring the set of most parsimonious loss histories for a given binary gene

tree and binary or non-binary species tree is stated formally as follows:

Non-Binary Loss Inference

Input: A rooted, arbitrary species tree, TS , a rooted, binary gene tree, TG , and a mapping from L.TG / to

L.TS /.

Output: The minimum number of losses required to reconcile TG and TS . The set of all most parsimonious

loss histories, where a loss history is an assignment of each loss to an edge in TG and a species node

in some tree in H�.TS /.

Given these considerations, we present two algorithms for inferring losses, described in Sections 5.1

and 5.2. For a given gene tree, TG , and species tree, TS , we report the total number of losses in TG and

assign individual losses to edges in TG. One is an exact method, which considers all possible assignments

of losses to edges in TG and selects the assignment that minimizes the number of inferred losses. This

method runs in O.jVG jkS22kS /, and can return each additional optimal loss history in O.jVS j/. The second

strategy is a heuristic, and returns a single loss history. The heuristic runs in O.jVG j � .kS C hS //, and

although not guaranteed to return an optimal history, does very well in practice, as described in Section 7.
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The heuristic is a simpler procedure, and is used as a framework for the exact algorithm, so we present

it first.

5.1. Heuristic for inferring loss histories

The heuristic uses a greedy strategy that makes loss assignment decisions at each edge, without

considering interactions with losses inferred on other edges. The strategy is to minimize duplicated losses

by assigning each ambiguous loss to the permissible edge closest to the root. This guarantees that the

loss will not be unnecessarily assigned below a duplication node, leading to the inference of two losses,

instead of one. We do not attempt to optimize combined losses; however, after all losses are assigned,

losses that satisfy the appropriate criteria are combined. This strategy will occasionally return a suboptimal

loss history because it will fail to identify situations where assigning a loss below a duplication will allow

the resulting copies to be combined with other losses, thus decreasing rather than increasing the total loss

count. However, in practice, this happens rarely. For example, the heuristic will fail to find the optimal

loss history for the gene tree in Figure 7b. Instead, it will return the reconciliation shown in Figure 7c,

where lost_B is assigned to .u; w/. If lost_B were assigned below the duplication to .w; x/ and .w; y/,

a lower cost tree could be obtained, shown in in Figure 7d.

The heuristic traverses the tree in post order. At each edge, it (1) determines whether one or more losses

should be assigned to that edge and (2) identifies the species in which the losses occurred. The first step is

achieved by the application of three tests, described below. The greedy strategy, which assigns ambiguous

losses as close to the root as permissible, is a natural outcome of the post order traversal. The permissible

edge closest to the root is reached first, allowing the heuristic to assign the loss to the desired edge without

explicitly determining the set of permissible edges for each loss.

The species in which the losses occurred are inferred in the second step, by comparing sets of species

nodes assigned to each node g 2 VG . This is similar to duplication inference for non-binary species trees,

but in the case of losses, the set comparisons are more complex. Three different sets of nodes are considered

for every edge e D .g; p.g//:

� C.M.g//: The set of all children of M.g/.
� ON .g/: The set of children of M.p.g// that contain a descendant of g
� N.g/: The set of children of M.g/ that contain a descendant of g.

The first two sets we have encountered in the previous section. The third, N , is defined as follows:

Definition 5.1. Define N W VG ! V C
S to be

N.g/ D fM.g/g; if M.g/ 2 L.TS /

fhj.h 2 C.M.g// ^ 9 v 2 L.g/ 3 h �S M.v//g; otherwise.

Note that unlike ON .g/, N.g/ is defined for root.TG /. See Figure 7b for an example of ON .g/ and N.g/.

Each of the following tests corresponds to one of the three situations that can incur a loss. The heuristic

applies these tests to each edge, e D .g; p.g//, in EG and assigns the inferred losses to e. Note that these

tests are also used in the exact algorithm described in Section 5.2, although in the exact algorithm a further

optimization step is applied following the initial identification of losses.

Test 1: If M.g/ ¤ M.p.g// and p.M.g// ¤ M.p.g//, traverse the path from M.g/ to M.p.g// in

TS , inferring a loss diverging from each intermediate species along this path (lines 29–31 in

Algorithm 2).

This test is applied to all edges in TG, whether associated with a binary node or polytomy in

TS . If a node and its parent map to different nodes in TS , we expect those nodes to correspond

to child and parent nodes in the species tree. Otherwise, genes in the intervening species must

have been lost. The procedure to infer these skipped losses is carried out in the climb procedure

and is analogous to that used in LCA reconciliation, described in Section 2. An example of this

test is given in Figure 7c. The test is invoked on edge .x; g4_E/, because M.x/ ¤ M.g4_E/

and M.x/ D ˇ is not the parent of species E . The climb procedure will recognize that a gene is

missing between E and ˇ and will infer a loss in species F .
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Test 2: If p.g/ is a required duplication, then losses are inferred in the species in N.p.g// n ON .g/ at e

(lines 18–21 in Algorithm 2).

This test is applied to all edges where p.g/ is a required duplication, whether associated

with a binary node or polytomy in TS . Note that if M.p.g// is binary and M.p.g// D M.g/,

then N.p.g// D ON .g/ and no losses are inferred. Thus, this test reduces to that used in LCA

reconciliation for binary nodes in TS . When M.p.g// is polytomy, losses may occur even when

M.p.g// D M.g/, in contrast to binary reconciliation. Both the edges (w, x) and (w, y) in

Figure 7c meet the criteria in this test. For example, w is a required duplication, and comparing

N.w/ with ON .x/ indicates that a loss occurred in D.

Test 3: If M.g/ is a polytomy and M.p.g// ¤ M.g/, then losses are inferred in the species in C.M.g//n

N.g/ at e (lines 22–24 in Algorithm 2).

This test is only applied when p.g/ is a speciation node and M.g/ is a polytomy. It verifies that

each child of M.g/ contains a descendant of g. If not, one or more losses must be inferred. This

test is applied to .u; w/ in Figure 7c, since M.w/ is a polytomy and M.w/ ¤ M.u/. A loss is

inferred in C.M.w// n N.w/ D fB; C; D; g n fC; D; g D B . Note that although this loss could

be assigned to any of the dotted edges in Figure 8, the greedy strategy assigns the loss to edge

.u; w/ the first time it is encountered.

The heuristic procedure to infer losses, described in Algorithm 2, calculates N.�/ and ON .�/ and applies

each of the three tests in a single postorder traversal of TG. There is only one optimal solution under the

assumptions of this heuristic. All losses can be inferred in a single pass. Duplications are also inferred

during this postorder traversal, as described in Section 4.

Algorithm 2.

reconcile( g )

1 if ( g.isLeaf() )

2 M.g/ D species of g

3 N.g/ D fM.g/g
4 return

5 // INTERNAL NODE CASE

6 // descend first

7 reconcile(l.g/); reconcile(r.g/)

8 M.g/ D LCA.M.l.g//; M.r.g///

9 calculateRequiredDuplication( g )

10 if ( g ¤ Required Duplication )

11 if ( M.g/ DD M.l.g// jj M.g/ DD M.r.g// )

12 g is Conditional Duplication

calculateRequiredDuplication( g )

13 ON .l.g// D climb.l.g/; g/

14 ON .r.g// D climb.r.g/; g/

15 N.g/ D ON .l.g// [ ON .r.g//

16 if ( ON .l.g// \ ON .r.g// ¤ ; )

17 g is Required Duplication

18 // duplication losses for left child

19 Losses(l.g/) += N.g/ n ON .l.g//

20 // duplication losses for right child

21 Losses(r.g/) += N.g/ n ON .r.g//

(continued)



996 VERNOT ET AL.

Algorithm 2. (Continued)

climb( c, g )

22 // general polytomy losses

23 if ( M.c/ 62 L.TS / && M.c/ ¤ M.g/ )

24 Losses(c) += C.M.c// n N.c/

25 select x from N.c/ at random

26 if ( x DD M.g/ jj p.x/ DD M.g/ )

27 return N.c/

28 while ( p.x/ ¤ M.g/ )

29 // skipped losses

30 if ( p.x/ ¤ M.c/ )

31 Losses(c) += Siblings(x)

32 // climb

33 x D p.x/

34 return {x}

Theorem 5.1. Algorithm 2 computes required and conditional duplications, as well as heuristic losses,

in O.jVG j � .kS ChS //, where kS is the outdegree of the largest polytomy in TS , and hS is the height of TS .

Proof. At every internal node g 2 VG , N.g/ is initialized with ON .l.g// [ ON .r.g//. j ON .�/j is bounded

by kS . Using a suitable data structure, this step can be achieved in O.log.kS // time per node. The climb

routine is applied to every node in TG . For any given path from � 2 L.TG/ to � D root.TG/, we will

climb in total from M.�/ to M.�/. Thus, the total cost of calls to climb is O.jVG j � hS /.

Using fast Least Common Ancestor queries, M.�/ can be calculated in O.jVG j/ time for the entire tree

(Bender and Farach-Colton, 2000). Once M.�/ has been calculated, testing for conditional duplications

takes constant time per node. Testing for required duplication requires calculation of the intersection of
ON (l.g/) and ON (r.g/). This operation takes O.kS / per node. Combining these costs, the total running time

is O.jVG j � .kS C hS //.

5.2. Inferring optimal loss histories

In this section, we present an algorithm that considers all possible loss assignments to obtain the

minimum number of combined losses. Unlike the greedy heuristic in Algorithm 2, this algorithm finds all

FIG. 8. The Polytomy Connected Component in Figure 7.
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optimal assignments, but with increased computational complexity: the running time is exponential in kS .

However, the implementation is fast in practice because kS is typically small (see Section 6). Moreover,

the performance is enhanced by memoization, as explained below.

Before describing the algorithm, we introduce the basic approach to minimizing combined losses using

the example in Figure 7. Three losses in Figure 7c, lost_B , lost_C and lost_D, are ambiguous losses that

can be assigned to more than one edge in TG . Recall that lost_B can be moved below the duplication at

w, resulting in two copies of lost_B , one in each child subtree of w. While this would normally increase

the number of losses, one copy of lost_B can be combined with lost_C , while the other can be combined

with lost_D. This new assignment reduces the number of inferred losses from four to three, as shown in

Figure 7d.

A PCC is a set of contiguous edges in TG , with the property that all internal nodes map to the same

polytomy in TS . Each ambiguous loss is associated with exactly one PCC and can be assigned to a (not

necessarily proper) subset of its edges. In particular, if a loss can be assigned to some edge e, it can also

be assigned to any edge below e in the PCC. Formally, we define a PCC as follows:

Definition 5.2. A node rc 2 VG is the component root of a distinct PCC if M.rc / is a polytomy and

.rc D root.TG/ _ M.rc/ ¤ M.p.rc ///. Let X be the set of nodes that contains rc and all g 2 VG such

that g <G rc and M.p.g// D M.rc /. Y is the set of edges f.x; .p.x//jx 2 X n root.TG /g. X and Y are

the sets of nodes and edges in this PCC, respectively.

The gene tree in Figure7b has a single PCC, shown in Figure 8. Edges in the PCC are drawn with dotted

lines. The nodes in the PCC are circled. The component root of this PCC, which corresponds to the

polytomy ˇ in the species tree in Figure 7a, is w. Note that for every node v 2 X , all nodes on the path

from v to the rc map to the associated polytomy. In our example, nodes M.w/ D M.x/ D M.y/ D ˇ.

The entire reconciliation procedure involves two passes through the tree. In the first pass, a modified

version of Algorithm 2 (not shown) traverses the tree in postorder, calculating ON .�/ and N.�/, inferring

duplications, and inferring losses associated with binary nodes by invoking tests 1 and 2, described in

Section 5.1. Test 1 is applied to any edge e D .g; p.g// where p.g/ is a required duplication and

M.p.g// is binary. Test 2 is applied to every edge in TG . In the second pass, Algorithm 3 infers optimal

assignments of ambiguous losses for each PCC, using a dynamic programming strategy. Algorithm 3 visits

each node g 2 VG and determines whether g is the component root of a new PCC (line 3). If so, it calls

ProcessComponent, which traverses the PCC in postorder to find optimal assignments of ambiguous losses

to edges in that PCC. For each node, g, in the PCC, ProcessComponent calculates the minimum cost of

any assignment of losses to the edge .p.g/; g/ or to edges in the subtree rooted at g. Tables � and ‡

store the cost and assignment information for g, respectively. In addition, the total number of optimal loss

histories in the subtree rooted at g is determined and stored in the variable H. After these cost tables have

been calculated, AddCombinedLosses uses a preorder traversal of the PCC to generate an optimal loss

assignment from the values stored in � and ‡ .

The core of the algorithm is the calculation of � and ‡ for each internal node g. ProcessComponent

considers all possible ways of assigning losses from the set L D C.M.rc // n QN .g/ to g, where rc is the

root of the current component and QN .g/ is N.g/ if g D rc but is ON .g/ otherwise. It calls CalculateCost(g,

fin) for each element, fin, of the power set of L. The parameter fin is a set of losses, represented as a

set of species, that must be be assigned at or below g. CalculateCost considers two cases: a special case

that is invoked if g is a required duplication, which handles loss duplication, and a second case if g is a

conditional duplication or a speciation. In both cases, the cost of fin at g is the minimum cost of assigning

a subset of losses in fin to the edge above g, plus the cost of losing the rest of fin below g. The set

of species fout � fin represents losses that occur below g; the set of remaining species, fin n fout, are

assigned to .p.g/; g/. For a given g and fin, CalculateCost determines the optimal assignment over all

possible subsets fout. The cost is calculated for each value of fout and fin, and the lowest cost for each

g and fin is stored. Note that it is not necessary to explicitly test each possible value of fout for a given

g and fin. By enumerating the smallest values of fin first at line 21, we can store intermediate minimum

costs and assignments in �mem and ‡mem. By using these memoized values, we only have to explicitly

test . jfinj
jfinj�1

/ D jfinj � 1 values of fout (on lines 31 and 32, and 65 and 66) for each value of g and fin.
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CalculateCost also stores the assignment of losses to edges associated with that cost. ‡.g; fin/ records,

in a tuple, the species which must be lost in the subtrees rooted at the left and right children of g. Each

optimal loss assignment is stored in a list in ‡ . These values are used in AddCombinedLosses to select an

optimal loss placement. After calculating � and ‡ , an optimal loss assignment is selected using a preorder

traversal of the PCC. Although the pseudocode in Algorithm 3 only selects a single, arbitrary placement,

all possible placements can be generated by selecting each permutation of optimal placements from ‡ for

all nodes in the PCC. This part of the algorithm is mostly bookkeeping and is omitted for brevity.

The running time to return one solution is O.jVG jkS 22kS /. The exponential term is due to the enumeration

of the power set of L in ProcessComponent followed by the nested enumeration of an additional power

set in CalculateCost. This enumeration is carried out potentially for each vertex in VG and the size of each

of the two power sets is O.2kS /. For each node we also iterate over the elements of the set fin to compute

each fout. The size of these sets is bounded by O.kS /. Thus, the total cost of calculating the tables �

and ‡ is O.jVG jkS22kS /. Each additional optimal loss history can be generated in O.jVS j/. The running

time to calculate � and ‡ is improved by memoization in CalculateCost by an order of 2kS =kS , from

O.jVG j23kS /.

Algorithm 3.

CombinedLosses( g )

1 if ( g.isLeaf() )

2 return

3 if ( M.g/.isPolytomy() and

( g D root.TG / or M.g/ ¤ M.p.g// ) )

4 // compute costs for a PCC

5 Global component_root D g

6 // compute costs

7 ProcessComponent( g )

8 // add losses using costs

9 AddCombinedLosses( g, C.M.g// n N.g/ )

10 else

11 // continue searching for PCCs

12 CombinedLosses( l.g/ )

13 CombinedLosses( r.g/ )

QN .g/

14 if ( g D component_root ) return N.g/

15 else return ON .g/

ProcessComponent( g )

16 if ( g D component_root or M.g/ D M.p.g// )

17 ProcessComponent( l.g/ )

18 ProcessComponent( r.g/ )

19 else

20 component_leaf D t rue

21 foreach f 2 Pow.C.M.component_root// n QN.g//

22 if ( component_leaf and f D ; )

23 �.g; f / D 0

24 else if ( component_leaf )

25 �.g; f / D 1

26 else

27 �.g; f / = CalculateCost(g, f )

(continued)
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Algorithm 3. (Continued)

CalculateCost( g, fin )

28 k� D 1

29 km D 1

30 if ( g is a Required Duplication )

31 foreach s 2 fin

32 fout D fin n s

33 k D �mem.g; fout/

34 if ( k < km )

35 km D k

36 k� D k C 1

37 ‡.g; fin/ D empty_l ist./

38 Hmem.g; fin/ D 0

39 H.g; fin/ D 0

40 if ( k D km )

41 ‡mem.g; fin/:addAl l. ‡mem.g; fout/ /

42 Hmem.g; fin/ D Hmem.g; fin/ C Hmem.g; fout/

43 H.g; fin/ D Hmem.g; fin/

44 ‡.g; fin/ D ‡mem.g; fin/

45 k D
P

c2C.g/. �. c; .fin [ QN .g// n QN.c/ / /

46 fleft D .fin [ QN.g// n QN .l.g//

47 fright D .fin [ QN .g// n QN .r.g//

48 // no losses here, passing on all of fin

49 if ( k < k� )

50 k� D k

51 ‡.g; fin/ D empty_l ist./

52 H.g; fin/ D 0

53 if ( k D k� )

54 ‡.g; fin/:add. fleft; fright /

55 H.g; fin/ D H.g; fin/ C

H.l.g/; fleft/ � H.r.g/; fright/

56 if ( k < km )

57 km D k

58 ‡mem.g; fin/ D empty_l ist./

59 Hmem.g; fin/ D 0

60 if ( k D km )

61 ‡mem.g; fin/:add. fleft; fright /

62 Hmem.g; fin/ D Hmem.g; fin/ C

Hmem.l.g/; fleft/ � Hmem.r.g/; fright/

63 �mem.g; fin/ D km

64 else

65 foreach s 2 fin

66 fout D fin n s

67 k D �mem.g; fout/

68 if ( k < km )

69 km D k

70 k� D k C 1

71 ‡.g; fin/ D empty_l ist./

72 Hmem.g; fin/ D 0

73 H.g; fin/ D 0

(continued)
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Algorithm 3. (Continued)

74 if ( k D km )

75 ‡mem.g; fin/:addAl l. ‡mem.g; fout/ /

76 Hmem.g; fin/ D Hmem.g; fin/ C Hmem.g; fout/

77 H.g; fin/ D Hmem.g; fin/

78 ‡.g; fin/ D ‡mem.g; fin/

79 foreach fleft 2 Pow.fin/

80 k D �. l.g/; fleft /

C �. r.g/; fin n fleft /

81 if ( k < k� )

82 k� D k

83 ‡.g; fin/ D empty_l ist./

84 H.g; fin/ D 0

85 if ( k D k� )

86 ‡.g; fin/:add. fleft; fin n fleft /

87 H.g; fin/ D H.g; fin/ C

H.l.g/; fleft/ � H.r.g/; fin n fleft/

88 if ( k < km )

89 km D k

90 ‡mem.g; fin/ D empty_l ist./

91 Hmem.g; fin/ D 0

92 if ( k D km )

93 ‡mem.g; fin/:add. fleft; fin n fleft /

94 Hmem.g; fin/ D Hmem.g; fin/ C

Hmem.l.g/; fleft/ � Hmem.r.g/; fin n fleft/

95 �mem.g; fin/ D km

96 return k�

AddCombinedLosses( g, fin )

97 // lose genes at the edge above g

98 if ( g D component_root or M.g/ D M.p.g// )

99 fleft D ‡l.g; fin/:pickOne./

100 fright D ‡r.g; fin/:pickOne./

101 Losses(g) += fin n .fleft [ fright/

102 AddCombinedLosses( l.g/, fleft )

103 AddCombinedLosses( r.g/, fright )

104 else

105 Losses(g) += fin n ON .g/

6. RELATED WORK

Variants of LCA reconciliation have previously been proposed by numerous authors, and several software

packages for analyzing gene duplication histories, when both trees are binary, have been developed (Page

and Charleston, 1997; Page, 1998; Zmasek and Eddy, 2001a, 2001b; Dufayard et al., 2005; Roth et al., 2005;

Durand et al., 2006a). Recently, more generalized versions of LCA reconciliation, which also calculate

horizontal gene transfers, have also been presented (Gorecki, 2004; Hallett and Lagergren, 2001; Hallett

et al., 2004). A related problem, inferring the optimal species tree from multiple conflicting gene trees,

has been studied extensively (Bansal et al., 2007; Guigó et al., 1996; Hallett and Lagergren, 2000; Ma

et al., 2000; Mirkin et al., 1995; Page, 1994; Stege, 1999; Zhang, 1997) for various optimization criteria

(Eulenstein et al., 1998) and has been shown to be NP-hard (Ma et al., 2000).
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In this work, we have presented algorithms to reconcile binary gene trees with non-binary species trees.

These algorithms determine whether a given node in the gene tree is a required duplication, a conditional

duplication, or a speciation, and reconstruct all most parsimonious loss histories. To our knowledge, these

results include the first algorithms for reconciliation with non-binary species trees that infer explicit event

histories, as well as the first exact algorithm for determining the minimum number of losses when the

species tree is non-binary.

In work on a similar theme, Berglund-Sonnhammer et al. (2006) proposed an algorithm to infer a rooted,

binary gene tree given a rooted, possibly non-binary, species tree and an unrooted, possibly non-binary,

gene tree as input. This method selects a rooted, binary resolution of the input gene tree by minimizing

first duplications and then losses. This parsimony criterion is encoded in open form expressions for the

minimum number of duplications and losses; however, no algorithm is given for calculating these quantities.

In addition, the expression for losses does not determine the species in which these losses occurred or the

possible assignment of these losses to edges in the gene tree. Rather, it provides an estimated number of

losses and is not guaranteed to find the optimal loss assignments. A similarity between that work and the

work presented here is that both methods use set-based mappings between the gene and species trees. In

this work, we proposed two such mappings, N and ON , of size bounded above by kS . The “M -mapping”

proposed in Berglund-Sonnhammer et al. (2006) is equivalent to our N , but there is no equivalent to ON

in the other work. Instead, they use a set Z that is bounded by VS and resembles the inefficient solution

proposed and rejected in Section 4.

Another related problem is the reconciliation of a non-binary gene tree with a binary species tree. Like

non-binary species trees, non-binary gene trees are a common occurrence. For many data sets, the signal

to noise ratio is not sufficient to fully resolve the binary branching order. As with non-binary species

trees, the standard LCA algorithm will also lead to strange behavior when the gene tree is non-binary. In

previous work (Durand et al., 2006b), we proposed a polynomial time algorithm to reconcile a non-binary

gene tree with a binary species tree, as well as resolve the polytomies in the gene tree. These algorithms

are also implemented in NOTUNG. As in Section 3, we treat polytomies in a gene tree as a set of binary

hypotheses. Polytomies are then resolved by extracting from this set of hypotheses, the set of binary gene

trees which result in the minimum number of duplications and losses. We derive this solution with a

dynamic programming algorithm that reconstructs this minimum cost set without comparing every binary

resolution of the gene tree with the species tree. Alternative approaches to solving this problem have

also been presented by Berglund-Sonnhammer et al. (2006) and Chang and Eulenstein (2006), but to our

knowledge have not been implemented. The combined problem of reconciling non-binary gene trees with

non-binary species trees remains open.

7. EMPIRICAL RESULTS

The algorithms described here have been implemented in a new version of our software tool, NOTUNG,

which is publicly available on our website. Using this software, we tested our algorithms on several data

sets.

First, we compared our new reconciliation algorithms to LCA reconciliation for gene families in three

species groups with known polytomies: Anolis (Jackman et al., 1999), Neoaves (Walsh et al., 1999),

and Auklets (Poe and Chubb, 2004). Species trees were transcribed directly from the source articles. We

constructed gene trees for two gene families in Neoaves (cytochrome-b and globin), three families in Auklets

(cytochrome-b, cytochrome oxidase 1 and NADH-6), and one family in Anolis (NADH-2). Sequences were

downloaded from NCBI (Wheeler et al., 2005) and multiple sequence alignments were constructed with

T-Coffee (Notredame et al., 2000). Phylogeny reconstruction was performed using the PHYLIP package

from Felsenstein (version 3.6.1) and bootstrapped using the included SEQBOOT program. Branches with

weak bootstrap support (<60%) in the globin tree from Neoaves were rearranged using models presented

in Durand et al. (2006b).

Table 1 shows the number of leaves (l ) in each tree, the size of the maximum polytomy (kS ) in each

species tree, the number of duplications obtained by LCA reconciliation (B), the number of required

duplications predicted by our algorithm (R), and the optimal number of losses. For each of these gene

families, the exact and heuristic loss algorithms reported the same number of losses. Only one gene family,
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TABLE 1. COMPARISON OF DUPLICATIONS INFERRED

BY NOTUNG AND LCA RECONCILIATION

Tree Dupl.s

Gene family l kS B R Losses

Neoaves (Poe and Chubb, 2004) 12 10 — — —

Cytochrome B 9 — 4 0 0

Globin 17 — 7 4 7

Auklets (Walsh et al., 1999) 5 4 — — —

cox1 5 — 1 0 0

Cytochrome B 5 — 2 0 0

NADH-6 5 — 2 0 0

Anolis (Jackman et al., 1999) 50 6 — — —

NADH-2 50 — 13 7 17

the globins, had more than one optimal loss assignment. As predicted, LCA reconciliation substantially

overestimates required duplications.

Second, we tested the accuracy of our heuristic algorithm for inferring losses by comparing it with

our exact algorithm. We ran NOTUNG on all full trees in TreeFam 3.0 (Li et al., 2006) with a species

tree obtained from the NCBI taxonomy (Wheeler et al., 2005). Of the 1174 gene trees in this dataset,

973 correspond to a non-binary species tree. For these 973 trees, the heuristic reported the same number of

losses as the exact algorithm on all but seven trees (i.e., 99.3% of trees tested). Table 2 shows the number

of losses inferred by the heuristic and the exact algorithm for those seven trees. As these results show,

even when the heuristic does not obtain an optimal solution, the deviation from the minimum is slight. In

the worst case, it overestimated the number of losses by four in a tree with 249 losses.

Finally, we considered the running time of the loss algorithms using the same Treefam dataset. The

computational complexity of Algorithm 3 is exponential in kS , while the heuristic in Algorithm 2 is

O.jVG j � .kS C hS //. The time required to reconcile all 1174 gene trees was 004800 for the heuristic and

202500 for the exact algorithm on a 3.2-ghz OptiPlex GX620 computer. The running time of the memoized

implementation of the exact algorithm suggests that it is acceptable for species trees with kS � 15, the

maximum kS for any tree in the Treefam dataset. (Previous tests on running time for the exact algorithm,

without memoization, showed that memoization resulted in a speed-up by a factor of �20 for this dataset.)

A single tree in this dataset corresponds to kS D 15; the remaining 1173 trees correspond to kS � 12.

The time required to reconcile these 1173 trees using the exact algorithm is comparable to the time for

the heuristic (005000 versus 004800). For data sets too large for exact analysis, our accuracy tests show that

the heuristic can be relied on for near-optimal results.

TABLE 2. COMPARISON OF LOSSES INFERRED

BY THE HEURISTIC AND THE EXACT ALGORITHM

Number of losses

TreeFam ID Heuristic Exact Offset Percent incorrect

TF106001 253 249 4 1.58

TF105558 64 63 1 1.56

TF105131 281 277 4 1.42

TF105356 71 70 1 1.41

TF105186 83 82 1 1.20

TF105188 393 391 2 0.509

TF105049 608 606 2 0.329
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8. DISCUSSION

In this work, we have presented novel algorithms for the reconciliation of binary gene trees with non-

binary species trees. These solutions are founded on current theories of molecular evolution, especially

coalescent theory (Pamilo and Nei, 1988; Takahata and Nei, 1985; Maddison, 1997; Tajima, 1983; Hudson,

1990). Our algorithms are both space and time efficient, and have practical applications. They have been

implemented in a new version of our software tool, NOTUNG, which provides a graphical user interface

for the in-depth study of gene families, as well high throughput capabilities. To our knowledge, these are

the first algorithms for reconciling binary gene trees with non-binary species trees to obtain the history

of duplications and losses in a gene family. We also present the first exact algorithm for determining the

minimum number of losses when the species tree is non-binary.

Our algorithms are of immediate use to researchers using phylogenetic analysis in a broad range of

biological endeavors and are promising for further algorithmic development. For example, the loss models

developed in Section 5 could also be exploited in algorithms to reconstruct a species tree from a set of gene

trees using loss parsimony, as proposed by Chauve et al. (2007). Our definitions of required and conditional

duplications and the set-based mappings N and ON provide a potential foundation for probabilistic models

of non-binary reconciliation. Such methods require a correspondence between ancestral genes and ancestral

species. N and ON provide this information.

Several problems remain for future work. Probabilistic models would complement the parsimony frame-

work presented here. Bayesian approaches (Arvestad et al., 2003, 2004; DeBie et al., 2006), which assume

homogeneous rates, are appropriate for data sets in which duplication and loss are neutral, stochastic

processes. Parsimony is better suited to data sets in which duplication and loss are rare due to selective

pressure. A probabilistic framework provides a natural setting for incorporating sequence data directly

into the reconciliation process, but has the disadvantage that it is both computation and data intensive. A

complete phylogenetic toolkit should include both approaches.

We considered two cases in this work: binary species trees with complete lineage sorting (i.e., one binary

gene tree has probability one and all others probability zero) and non-binary species trees that give rise to all

binary gene trees with equal probability. In fact, these represent extremes on a continuum. A more general

approach would include polytomy models that deviate from a uniform distribution, as well as models

that relax the assumption of complete lineage sorting in binary trees (Pollard et al., 2006; Lyons-Weiler

and Milinkovitch, 1997; Poe and Chubb, 2004; McCracken and Sorenson, 2005; Hoelzer and Melnick,

1994). This can occur if the time between divergences is short enough so that allelic diversity has not been

eliminated by genetic drift. In fact, the shorter the branch lengths and the larger the effective population

size, the more closely a series of rapid binary divergences will approximate a hard polytomy (Pamilo

and Nei, 1988; Takahata and Nei, 1985; Maddison, 1997; Tajima, 1983; Hudson, 1990). In addition,

non-binary tree models that include horizontal gene transfer as well as gene duplication and loss are

needed.

Finally, reconciliation of non-binary gene trees with non-binary species trees should also be investigated.

The similarity of this problem to the problem of reconstructing a species tree from many gene trees suggests

that it may be NP-complete, but the hardness of the problem remains open and algorithms (or approximation

algorithms) are needed. The complexity of loss inference must also be investigated. The exact algorithm

presented in Section 5.2 considers all possible loss assignments and requires exponential running time.

However, whether an exponential time solution is actually required is an open question.

With the availability of sequences from many closely related genomes, it is increasingly apparent that

the histories of individual genes differ and that discordance between gene and species trees is common.

Software tools that are sufficiently flexible to handle this situation are needed (Pollard et al., 2006). The

work presented here offers this flexibility.
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