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A Model-Based Approach to Gene Clustering

with Missing Observation Reconstruction

in a Markov Random Field Framework

JULIETTE BLANCHET1 and MATTHIEU VIGNES2

ABSTRACT

The different measurement techniques that interrogate biological systems provide means

for monitoring the behavior of virtually all cell components at different scales and from

complementary angles. However, data generated in these experiments are difficult to in-

terpret. A first difficulty arises from high-dimensionality and inherent noise of such data.

Organizing them into meaningful groups is then highly desirable to improve our knowledge

of biological mechanisms. A more accurate picture can be obtained when accounting for

dependencies between components (e.g., genes) under study. A second difficulty arises

from the fact that biological experiments often produce missing values. When it is not

ignored, the latter issue has been solved by imputing the expression matrix prior to applying

traditional analysis methods. Although helpful, this practice can lead to unsound results. We

propose in this paper a statistical methodology that integrates individual dependencies in

a missing data framework. More explicitly, we present a clustering algorithm dealing with

incomplete data in a Hidden Markov Random Field context. This tackles the missing value

issue in a probabilistic framework and still allows us to reconstruct missing observations

a posteriori without imposing any pre-processing of the data. Experiments on synthetic data

validate the gain in using our method, and analysis of real biological data shows its potential

to extract biological knowledge.

Key words: biological interaction network, gene clustering, Markov random field, mean field-like

approximation, missing data.

1. INTRODUCTION

A VAST CONTINUOUSLY INCREASING AMOUNT of functional data is now available thanks to recent

high-throughput techniques: for example, whole-genome sequences, gene expression or localiza-

tion, and mass-spectrometry analysis. However, at present, these complex data are difficult to inter-

1INRIA Rhône-Alpes, Saint Ismier Cedex, France.
2Biomathematics and Statistics Scotland at the RRI, Bucksburn, Aberdeen, Scotland, United Kingdom.
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pret because of such features as their high-dimensionality, their inherent noise or even bias, and the

absence of standardized representation. Organizing data into meaningful structures is highly desirable

as a first step in unsupervised exploration of the large number of genes. Most biological mechanisms

involve groupings of genes, gene products, or proteins (e.g., enzymes) that act in a coordinated manner.

Many clustering algorithms have been proposed over the last decade to decipher the message contained

in DNA microarray data (Kim et al., 2007). In particular, Yeung et al. (2001) proposed a Gaussian

mixture model to tackle this issue. This latter method and many others have the drawback to con-

sider gene measurements to be independent. Hence, we proposed in a previous publication (Vignes

and Forbes, 2007) an extension of this approach to account for individual features (e.g., microarray

data) and dependencies between genes in a united framework based on Hidden Markov Random Fields

(HMRF).

All clustering methods above use a full matrix of expression data as an input. An unfortunate feature

of microarray experiments and other high-throughput technologies is that they often produce multiple

missing values (McLachlan et al., 2004). Most of the time, these missing entries appear because of various

experimental issues (Troyanskaya et al., 2001; Bo et al., 2004): dust or scratches on the slide, corrupted

images, difficulties in measuring fluorescence intensity, systematic error of the robot that drops the probes,

problem with precise gene spotting on the array.

A common practice—case deletion—is to remove genes and/or arrays from the analysis to end up with

a fully observed matrix on which classical approaches can be applied. However, this approach can lose

important information. Up to 90% of genes (rows) or experimental conditions (columns) can be affected

(Ouyang et al., 2004). It can also conceal interactions in a network. An alternative approach is to replace

the missing values by zeros or by column/row means. Such a naive filling-in strategy is a particular case of

single imputation. It is known to cause spurious estimation of summary statistics. The subsequent clustering

results can be misleading (Little and Rubin, 2002).

Several more sophisticated methods have been proposed since the pioneering work of Troyanskaya

et al. (2001). Most of them propose single imputation methods to transform the data matrix into a

full matrix as needed by subsequent classical statistical analysis (Troyanskaya et al., 2001; Oba et al.,

2003; Bo et al., 2004; Ouyang et al., 2004). More recently, promising approaches make use of multiple

imputation (Sehgal et al., 2005) or iterative alternate blended clustering and missing values estimation

(Kim et al., 2007). Hu et al. (2006) proposed improving classical estimation procedures by incorpo-

rating a large reference microarray dataset to define a general context for each gene. Nevertheless,

none of these approaches take into account relationships imposed by the biological system between

genes.

We propose to tackle both issues of clustering and missing data imputation in a statistical framework.

To our knowledge, these two issues have never been tackled simoultaneously for dependent data. The

clustering methodology has already been presented in a previous work (Blanchet and Vignes, 2007).

In this paper, its efficiency is highlighted on varied datasets. The methodology is also expanded to the

important issue of missing value reconstruction. Instead of imputing values prior to the analysis, our

integrated approach makes the best use of the statistical framework we consider. Estimation of missing

values is made a posteriori, based on the network, the observed individual data and the clustering pattern.

We are hence able both to quantitatively compare the quality of missing data estimations and to assess

the biological significance of our results in regards of approaches cited above. Given the huge amount

of such algorithms, we tested algorithms reported to work well (Brock et al., 2008) and for which

we were able to retrieve the corresponding algorithms. We emphasize that our model can be useful

in a great range of applications for clustering biological entities of interest such as genes, proteins,

and metabolites in post-genomics studies. It requires individual possibly incomplete measurements taken

on these entities related by a relevant interaction network. Hence, our method is neither organism- nor

data-specific.

The present paper is organized as follows: the statistical model is presented in Section 2 with the

Expectation-Maximization (EM)–like estimation procedure, the classification framework and the recon-

struction of missing observations. It provides a posteriori probabilities of entity (e.g., gene) classification

given the observed data. This can be seen as a confidence measure of assignment. Experiments on synthetic

data are reported in Section 3, while results on real yeast cell-cycle data combined with a network of

interacting proteins are presented in Section 4.
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2. MARKOVIAN MODEL FOR CLUSTERING AND IMPUTATION

WITH MISSING DATA

2.1. Model

In what follows, we assume that values are Missing At Random (MAR) (Little and Rubin, 2002). The fact

that a datum is missing is not related to its actual unobserved value. A particular case of MAR is when the

missingness process does not depend at all on the data, as for example when a dust on the slide produces

missing values. Data are then said to be Missing Completely At Random (MCAR) (Little and Rubin,

2002). An advantage of MAR hypothesis is that maximum likelihood can be estimated independently on

the missingness process (Little and Rubin, 2002). In real applications, the MAR assumption might not be

true as regards the phenomenon generating missing values. Just think of censorship issues due to machine

limits of detection. Data are then said to be Not Missing At Random (NMAR). Methods based on MAR

assumption can however produce satisfactory results if observed values contain enough information to

predict missing values with a likelihood approach. Simulations in Section 3 show that inferences made by

our model under MAR assumption lead to satisfactory results even on NMAR data.

We present in this section a statistical model for clustering and imputing incomplete dependent data. We

refer to the entities of interest (pixels in Section 3 and genes in Section 4) as sites, which we assume to

be in interaction. These interactions can be due to spatial proximity as for the pixel images of Section 3,

or due to biological relationships as for the genes of Section 4. We further assume that experiments

conducted on these sites create incomplete data. We denote S the set of N sites and x D fxi 2 R
Dg the

N � D matrix of observations, for which some entries are missing. For each i 2 S, we write oi � J1; DK
the indices corresponding to the observed values xid and mi the complementary indices for missing

values (oi [ mi D J1; DK). We shall denote x
oi

i D fxid ; d 2 oi g the vector of observed data at site i ,

x
mi

i D fxid ; d 2 mi g the vector of missing data at site i , xo D fx
oi

i ; i 2 Sg the set of observed data

and xm D fx
mi

i ; i 2 Sg the set of missing data. We address the issue of clustering, that is, distinguishing

meaningful groups in a dataset. In other words, each site i 2 S has to be assigned one of the K labels

zi 2 J1; KK. Dependencies between sites are maintained by an interaction network defining a neighborhood

structure. The model we consider is an HMRF, meaning that the hidden labels (or clusters) follow a Markov

Random Field distribution. This is the generalization of the one-dimensional Hidden Markov Chains (also

referred to as Hidden Markov Models [HMM]) to higher dimensions, needed to deal with a graph of

interactions. In this paper, we restrict to the widely used Potts model for which the joint Markovian

(or Gibbs) distribution of labels Z D fZi ; i 2 Sg is:

PG.z/ D W �1 exp

0

@ˇ
X

i�j

1zi Dzj

1

A (1)

where i � j denotes neighbors sites in the network (i.e., linked by an edge). Note that the distribution

PG.z/ above depends on a single parameter ˇ controlling the “smoothness” of the classification: the higher

ˇ, the more likely two neighboring sites are to be assigned to the same cluster.

We eventually assume that data are independent conditionally on classes, that is, P.xjz/ D
Q

i2S

P.xi jzi /. In this paper, class-dependent distributions are considered to be Gaussian: P.:jZi D k/ �
N .�k ; †k/.

2.2. Parameter estimation

For sake of clarity, we denote �k D .�k ; †k/ the parameters of the kth Gaussian distribution. The single

parameter of the Potts distribution is, as in Equation (1), denoted by ˇ. Without a priori knowledge, the

full set of parameters ‰ D .�1; � � � ; �K ; ˇ/ is unknown and has to be estimated.

The method we propose is a maximum likelihood-based approach. The principle is to choose the most

likely parameters ‰ for the observed data. Bayesian techniques would offer an alternative way to draw

inference from the likelihood function. Such methods are not considered here. We use the EM algorithm

(Dempster et al., 1977). At iteration .q/, a current estimate ‰.q�1/ is available and the algorithm maximizes
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the function Q defined, in a missing data framework, as:

Q.‰j‰.q�1// � EŒlogP.xo; Xm; Zj‰/jxo; ‰.q�1/� (2)

to get updated ‰.q/. It is worth stressing that expectation in Equation (2) is not only taken over unknown

labels Z (as in the classical fully observed data case), but also over missing values Xm. An EM algorithm

with incomplete data has already been studied for Independent Mixture Model (IMM) (Little and Rubin,

2002), as well as for Hidden Markov Chain Model (Celeux and Durand, 2007). To our knowledge, it has

never been studied for any HMRF model. Due to the more complex dependence structure, expectation

of Equation (2) is not explicitly tractable for an HMRF model, as both the normalizing constant W of

Equation (1) and the conditional probability P.zjx/ cannot be computed exactly. Approximations are then

required to make the algorithm tractable.

In this paper, we propose to use a mean field-like approximation of the Markovian a posteriori

distribution PG.zjx/ similar to the distribution proposed in Celeux et al. (2003) in the framework of

complete data clustering. It was shown to be more efficient than the most widely used clustering approaches

on both simulated and real data (Celeux et al., 2003; Vignes and Forbes, 2007). This suggests good

properties of convergence; local convergence of a very similar algorithm has been proven in Forbes

and Fort (2007). The algorithm developed here extends the procedure to the missing data framework.

Informally, the idea of our algorithm when considering a particular site i is to neglect the fluctuations of

the neighboring sites by setting them to fixed values Qzj ; j 2 Ni (means for example). The untractable

Markovian distribution PG.z/ is then approximated by the tractable factorized distribution
Q

i2S PG.zi j QzNi /

where QzNi denotes the set fQzj ; j 2 Ni g. Due to conditional independence, P.x; z/ is also approximated

as a factorized distribution and Equation (2) becomes tractable. Values Qzi being a priori unknown, mean

field-like approximations lead to an iterative EM-like algorithm repeating two steps. In what follows, values

for the Qzi ’s are simulated, as recommended in Celeux et al. (2003) in a complete data framework. More

precisely, starting with parameters ‰.0/, at iteration .q/,

(1) For each site i 2 S, simulate from the observed data x
oi

i and the current parameter estimate ‰.q�1/ a

configuration Qz
.q/
i , i.e., values for the Zi ’s.

(2) Apply one step of the EM algorithm on the factorized model resulting from the mean field-like

approximation to get updated estimates ‰.q/ of the parameters.

This procedure will be referred in what follows as “SFmiss algorithm” standing for Simulated Field

algorithm with missing values. This algorithm accounts for the Markovian structure of the data while

factorizing the distribution on which EM is tractable.

In the E-step, a posteriori probabilities are computed for all i 2 S and k 2 J1; KK by

Qt
.q/

ik D PG.Zi D kjx
oi

i ; Qz
.q/

Ni
/ (3)

The difference with the complete data case of Celeux et al. (2003) is that conditioning in (3) involves the

observed data x
oi

i 2 R
joi j, and not the whole vector xi 2 R

D . As in Celeux et al. (2003), the conditioning

also includes neighbors through the z
.q/

Ni
term.

In the M-step, parameters ‰ D .�1; : : : ; �K ; ˇ/ are updated. The updating of the Markovian parameter ˇ

remains unchanged as compared to the complete data case (Celeux et al., 2003). No analytical expression

is available but the optimal ˇ.q/ is unique and can easily be obtained numerically. Unlike ˇ, the updating

of the Gaussian class-dependent parameters �k D .�k ; †k/, k 2 J1; KK; differs from the complete data

case. Denote †
oi oi

k D f.†k/st ; s 2 oi ; t 2 oi g, †
oi mi

k D f.†k/st ; s 2 oi ; t 2 mi g D .†
mi oi

k /T and †
mi mi

k D

f.†k/st ; s 2 mi ; t 2 mi g. Then P.X
mi

i jx
oi

i ; �k/ is a Gaussian distribution with mean �ik and covariance

�ik defined as:

�ik D �
mi

k C †
mi oi

k .†
oi oi

k /�1.x
oi

i � �
oi

k / (4)

�ik D †
mi mi

k � †
mi oi

k .†
oi oi

k /�1†
oi mi

k :
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At iteration .q/ the component s 2 J1; DK of �k is updated as:

.�s
k/.q/ D

X

i

Qt
.q/

ik .r s
i xs

i C .1 � r s
i /�s

ik
.q//

X

i

Qt
.q/

ik

(5)

with r s
i D 1 if variable xs

i is observed, 0 otherwise. Compared with the complete data case, Equation (5)

simply replaces the missing variable xs
i by the conditional mean .�s

ik
/.q/ of the distribution P.Xmi

i jxoi

i ; �
.q/

k
/.

Similarly, the component s; t 2 J1; DK of †k is updated as:

.†st
k /.q/ D

X

i

t
.q/

ik .S st
ik/

.q/

X

i

t
.q/

ik

with for all i 2 S , k 2 J1; KK, s; t 2 J1; DK,

.S st
ik/

.q/
D r s

i r t
i .xs

i � �s
k

.q//.xt
i � �t

k

.q/
/

C r s
i .1 � r t

i /.xs
i � �s

k
.q//.�t

ik
.q/

� �t
k

.q/
/

C .1 � r s
i /r t

i .�s
ik

.q/ � �s
k

.q//.xt
i � �t

k

.q/
/

C .1 � r s
i /.1 � r t

i /f.�s
ik

.q/ � �s
k

.q//.�t
ik

.q/
� �t

k

.q/
/ C �st

ik

.q/
g

It is worth stressing that, because of the �st
ik

.q/
term in the last factor, this is not equivalent to replacing a

missing variable xs
i by the mean .�s

ik/.q/ of the conditional distribution P.X
mi

i jx
oi

i ; �
.q/

k /. This is consistent

with the remark that mean imputation technique lowers the estimated variance (Little and Rubin, 2002).

2.3. A posteriori classification and imputation

Running qmax steps of the SFmiss algorithm leads to estimates ‰.qmax/ of the model parameters and to

configurations Qz
.qmax/

i , i 2 S, for the mean field-like approximation. These quantities can then be used

to both cluster sites and impute missing data. Due to the factorization of P.zjx/ resulting from mean field-

like approximation, MAP (Maximum A Posteriori) and MPM (Maximum Posterior Marginal) classification

rules are equivalent and consist in classifying a site i 2 S in:

Ozi D arg max
k2J1;KK

P.Zi D kjxoi

i ; Qz
.qmax/
Ni

; ˇ.qmax// D arg max
k2J1;KK

Qt
.qmax/

ik
(6)

Classification rule (6) involves therefore (i) the observed data x
oi

i 2 R
joi j (and not the whole vector xi 2 R

D

as in the complete data case) and (ii) the neighbors through the additional Qz
.qmax/
Ni

D fQz
.qmax/
j ; j 2 Ni g term.

It accounts therefore explicitly for dependencies between sites. This is a clear advantage of our HMRF

model over IMM.

Missing observations can also be a posteriori reconstructed. MAP (or MPM) rule leads to impute missing

observations x
mi

i for sites i 2 S by the most likely values conditionally on observed x
oi

i and on class Ozi :

Ox
mi

i D arg max
x

mi
i

P.x
mi

i jx
oi

i ; Ozi / D �i Ozi
: (7)

Equation (7) can be seen as a mean imputation. It differs nevertheless from the classical pre-processed

mean imputation in several points:

(i) It is performed a posteriori, and not as a pre-processing. Therefore, it does not artificially bias the

parameter estimation (in particular the †k ’s) (Little and Rubin, 2002) required for classification.
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(ii) Relationships between sites are taken into account though the classification Ozi which, as seen previously

(Equation (6)), involves the neighborhood structure.

(iii) The mean is not computed over all sites, but only over sites belonging to the same cluster and therefore

sharing information (related biological functions, for example, as in Section 4).

3. ILLUSTRATION ON SYNTHETIC DATA

The purpose of this section is to illustrate the differences between our method and standard imputation

methods, and to emphasize the general aspects of the former with respect to the latter, for both classification

and imputation issues. From among several exercises we have performed, we present here some results

related to a four-class synthetic image. Data were obtained as follows. Starting from the synthetic image,

a noisy image is generated by considering that observations belonging to the kth class (for k D 1; : : : ; 4)

are realizations of a four-dimensional (D D 4) non-diagonal Gaussian distribution, with mean �k D
.k; k; k; k/T and covariance matrix †k with diagonal terms equal to 0.5 and non-diagonal terms to 0.2. We

then consider two ways of producing missing data. The first one removes, randomly, a given proportion

of data (MCAR case). The second one removes a given proportion of the highest and the lowest data (left

and right censorship, NMAR case).

The classification results obtained, respectively, by our method and by the Markovian Simulated-Field

algorithm (SF) (Celeux et al., 2003) with various prior imputations are shown in Figure 1. Imputation

techniques considered are filling in with zeros (ZERO C SF), with column means (MEAN C SF), or

using standard imputation methods such as K-Nearest Neighbors (KNN C SF) (Troyanskaya et al., 2001),

Bayesian Principal Component Analysis (BPCA C SF) (Oba et al., 2003), or Support Vector Regression

(SVR C SF) (Wang et al., 2006). The Local Least Square Impute method (Kim et al., 2005) gave poor

results on our data and are not reported here. It appears that the SFmiss algorithm performs better than

tested imputation methods, although the underlying model is the same: an HMRF model. To assess the

gain in using a Markovian model, we also compare with the IMM, with parameters estimated by the EM

algorithm with incomplete data (EMmiss) (Little and Rubin, 2002).

As compared with IMM, it appears that taking dependencies into account (through the use of Markovian

models) improves the results significantly. Furthermore, SFmiss algorithm provides a way of modeling

uncertainty over missing observation values, leading to better classifications and imputations. It can also

be noted that our algorithm performs well even when the correct underlying model is not set as an

hypothesis: the synthetic image is not a realization of a Potts model, and censored data are NMAR! The

censored data case seems to be more difficult than MCAR case, but SFmiss provides reasonably good

classifications for high percentages of missing values (up to 60%; see Fig. 1 and visualization on Fig. 2).

As mentioned in Section 2.3, in addition to providing a classification, our algorithm has the ability

to reconstruct—or impute—missing data. Figure 3 displays imputation errors for the methods mentioned

above. These errors are measured by the normalized Root Mean Squared Error (RMSE): if Ox is the imputed

data matrix, that is, an estimate of the complete data matrix x, the RMSE is defined as:

RMSE D

s

meanf.x � Ox/2g

meanfx2g
;

where x2, for example, is component-wise. Results presented in Figure 3 confirm that SFmiss offers a

substantial improvement as concerns imputation issue. Note that, as average measures of error, RMSE for

KNN, BPCA, and SVR imputation techniques are similar, although corresponding imputed component-wise

values can be quite different, leading to different classification, as reported in Figure 1.

4. EXPERIMENTS ON YEAST CELL-CYCLE DATA

4.1. Individual data

Data of Spellman et al. (1998) on Saccharomyces cerevisiae that focuses on the identification of cell-cycle

regulated genes were used. These data are expression profiles from yeast cultures synchronized by different
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FIG. 1. Experiments on image-like simulated data: percentage of misclassified pixels versus percentage of missing

data for randomly missing data (MCAR case) (left) and censored data (NMAR case) (right).

FIG. 2. Experiments on image-like simulated data: visualization of the synthetic image results (i.e., obtained clusters)

for various percent of missing data (30%, 50%, 60%, and 70%) with SFmiss in the NMAR case.

FIG. 3. Experiments on image-like simulated data: RMSE versus percentage of missing data for randomly missing

data (MCAR case) (left) and censored data (NMAR case) on the synthetic dataset (right).
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methods. The full data set consists of a 77 dimensional vector for each of the 6179 genes. The initial dataset

has 5% overall missing entries. In the following, we will focus on the cdc28 experiment initially performed

by Cho et al. (1998). Spellman et al. (1998) used this data along with their own for their analysis. Yeast were

synchronized by stopping them in late G1 phase of the cell cycle. Seventeen time points (dimensions) were

collected every 10 min, so nearly two cell cycles have occurred.

4.2. Interaction network

Available biological networks contain a significant amount of information that should not be ignored

to provide optimal statistical analysis of the machinery of the cell. Our aim is to build a graph with

a biological entity (gene) at each node. An edge will stand for a confirmed link between two entities:

interactions between genes, gene products, complexes of proteins, families, and metabolic pathways.

For network data, we use the release 7 of STRING (von Mering et al., 2007), a consistent database of

known and predicted protein-protein interactions. It gathers information from a wide variety of different

sources, including genomic context, literature knowledge, and physical interactions. The current version

contains 401,948 curated interactions for 5611 genes of Saccharomyces cerevisiæ. Note that two or more

interactions may occur between the same couple of genes, because different kinds of interactions are

considered. We selected the intersection between the set of 800 genes identified as cell-cycle regulated

in Spellman et al. (1998) and those contained in the STRING database. The resulting graph consists of

612 nodes (genes) and 3530 edges accounting for one or more interaction(s), which are given equal weight

(see Section 5 for a discussion on this aspect).

Unlike with synthetic data, the correct number of clusters is unknown. Bayes Information Criterion

(BIC) (Schwarz, 1978), a penalized likelihood that accounts for the complexity of the model, is widely

used to tackle this issue. In our HMRF setting, BIC is untractable and we used a mean-field approximation

as described in Forbes and Peyrard (2003). We allowed the number of clusters to range from 2 to 12.

K D 9 was the selected number of clusters (data not shown).

4.3. Results and discussion

We performed imputation and nine-class clustering of the yeast data using SFmiss and several other

algorithms for comparison. This section aims at assessing the quality of the produced clusters, a difficult

task as there is no consensus criterion to rely on. We illustrate the gain in using our approach on some

specific biological features.

We first check whether the output clusters of our model are well-suited to summarize biological

knowledge compared to other algorithms. A general trend is that the SFmiss algorithm gathers interacting

genes better than other algorithms. More precisely, genes clustered together by SFmiss have more internal

connections than those clustered together by other imputation methods (although they rely on SF algorithm

that takes the network into account). It reveals that the way SFmiss deals with missing observations is

certainly more appropriate. This is consistent with the spatial parameter ˇ of our model: ˇ is estimated to

0.41, which means that the neighborhood plays a significant role.

The clusters reliability can be quantified using Gene Ontology (GO) (Gene Ontology Consortium,

2000) terms representativeness focusing on the biological process under study: yeast cell cycle. The more

GO terms present in the data set are shared by genes in the same cluster, the more sensitive the method

is. The more the nine clusters isolate different parts of GO, the more specific the method is. For each

GO category, a test is performed to determine whether the category is over-represented in each cluster.

Under-representation can be tested as well but its analysis is not presented here for brevity reasons. The

p-values in Table 1 are computed with the FDR correction of Benjamini and Hochberg (1995), which is

widely used and has proven its efficiency. Very low p-value indicates that the tested GO term is over-

represented in the analyzed cluster, and therefore that the algorithm successfully grouped genes sharing

this biological feature. For clarity, we only compare in Table 1 our SFmiss algorithm to IMM with missing

data (EMmiss) (Little and Rubin, 2002), and to HMRF model with prior KNN imputation (SF C KNN).

Other tested imputation methods (mean imputation, BPCA, SVR; : : : ) did not give better results. Apart

from few exceptions (as cluster k D 8), the p-values of Table 1 suggest that SFmiss algorithm performs

better at grouping genes with similar annotations than other algorithms, that is, is more sensitive.
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TABLE 1. YEAST CELL-CYCLE DATA
a

Cluster number

p-values of

SFmiss clusters

Best p-values among

EMmiss clusters

Best p-values among

KNN C SF clusters

k D 3 GO:0006732, coenzyme met. process

1:1 10�2 >0.1 >0.1

k D 4 GO:0005819, spindle

4:6 10�9 6.7 10�7 2.0 10�6

GO:0006790, sulf. met. process

1:1 10�4 2.4 0�4 8.7 10�4

GO:0000278, mitotic cell cycle

2:2 10�3 7.7 10�3 >0.1

GO:0030472, mit. spin. org. and biogen. in nucleus

5:2 10�3 8.8 10�3 2.0 10�2

k D 5 GO:0006974, resp. to DNA dam. stim.

1:8 10�3 3.0 10�3 8.0 10�3

GO:0000724, dbl-str. bk rep. via hom. comb.

1:9 10�2 2.7 10�2 4.6 10�2

GO:0000030, mannosyltransf. act.

1:1 10�2 1.2 10�2 2.7 10�2

k D 8 GO:0042555, MCM cplx

3:4 10�4 8.3 10�4 4.0 10�4

GO:0008026, ATP-dep. helicase act.

5:5 10�4 1.3 10�3 4:5 10�4

GO:0006268, DNA unwind. replic.

2:8 10�3 6.7 10�3 1:1 10�3

GO:0042623, ATPase act. coupl.

4:4 10�3 1.5 10�2 4.3 10�2

aSome representative GO terms analysis of clusters obtained by tested models and p-values of over-

representation. The lower the p-values, the more isolated the GO terms. For each GO term (row), the

best method is indicated by underlined bold p-values.

Another nice feature of our SFmiss algorithm is that it does not only summarize known biological

knowledge but can give directions for putative functions on components of living organisms based on the

clustering results. For a detailed example, genes ydl105w, yer111c, ykr077w, yj l196c, ylr212c, and

ynl082w are all classified in cluster 1 by SFmiss, whereas there are dispatched in various clusters by

EMmiss. But all of them are brought into play during cell cycle processes: mitotic spindle complex repair

(ylr212c) or G1/S transition of the mitotic cycle (yer111c), for example. ykr077w is annotated as a

putative transcription activator. Our method suggests that this annotation is fully coherent and that this

gene plays a key role either as a cell cycle regulator or as a regulated gene of the process.

We can also illustrate the advantage of accounting for missing values in a united fashion as compared

to prior filling-in with Troyanskaya et al. (2001) KNNimpute. Genes ybl002w, ygl093w, and ypl269w

belong to SFmiss cluster 4 and are dispatched in various clusters by KNN C SF. Their annotations are

making sense when compared with those of their cluster and confirm a possible functional description of

the cluster: chromatin assembly, required for accurate chromosome segregation localized to the nuclear

side of the spindle pole body and required for cytoplasmic microtubule orientation in yeast (polarization)

respectively.

The interpretation of clusters when compared to temporal classes of the cell cycle (G1, S, S/G2, G2/M,

and M/G1) (Spellman et al., 1998) emphasizes the specificity of the SFmiss algorithm, observed to a

lesser extent in clusters resulting from other algorithms. Cluster 0 is almost entirely included in Spellman
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FIG. 4. Yeast cell-cycle data: examples of expression profiles for three SFmiss clusters (black solid line is the mean

profile, and dashed lines indicate standard deviation from the mean). (a) SFmiss cluster 1 concerned with G1 phase

and DNA replication. (b) SFmiss cluster 4: S phase, chromosome segregation and biosynthesis (e.g., S met. proc.).

(c) SFmiss cluster 8, including M phase, polarization, and ATP activity.

et al. (1998) G2/M group, and cluster 1 is in G1 just like cluster 5. Cluster 2 include genes regulated in

late G2, M, and early G1 phases (quite broad, certainly a reason why no specific function is highlighted

in this cluster). Cluster 3 is similar but with an earlier start. Cluster 8 is focused on M-regulated genes.

Cluster 4 shows its temporal peak in S phase. Lastly, cluster 6 has many genes from early G2 to M.

These interpretations are corroborated if we investigate the expression profiles for each meaningful cluster.

Examples of such additional evidences are given in Figure 4. These profiles are very similar to those

obtained in Figures 4C, and 4D of Cho et al. (1998) for annotated genes.

Last, but not least, we would like to present another major advantage of our approach: it responds with

a much greater level of stability than other tested methods when the number of observed data decreases.

This is illustrated in Figure 5. Additional missing values were generated under MCAR. We then compared

(i) the new classification with the initial one to assess stability of the classification (Fig. 5, left panel); and

(ii) the new imputed values with the initial ones to assess stability of the imputation using RMSE (Fig. 5,

right panel). Apart from SFmiss, all algorithms show dramatical instability when the rate of added missing

value increases above 6%. Note that a 11% difference with the initial classification corresponds to one

cluster which is fully lost. This suggests that these algorithms have an unsatisfactory behavior when they

FIG. 5. Yeast cell-cycle data. (Left) Percentage of error for different algorithms versus percentage of added (to the

inherent approximately 5% in the dataset) missing value. (Right) RMSE versus percentage of added missing value.

Algorithms are the same as in Section 3; PREV C SF has prior imputation thanks to an autoregressive model with

lag 1 usually suited for time series.
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are facing datasets even with “as few as” nearly 10% of total missing data in the favorable MCAR case.

On the contrary, the SFmiss algorithm shows an interesting stability towards the rate of missing value. Its

performance impairs significantly above 25% of overall missing data which is quite acceptable as regards

real encountered situations.

5. CONCLUSION

Missing data can bring many difficulties in data analysis simply because most data analysis procedures

were not designed for them. This is particularly true in the context of post-genomic data integration. Data

absence is usually a nuisance, not the focus of inquiry. We presented a comprehensive integrated statistical

tool for modeling individual measurements that have a network-dependant structure. We overcame the

conceptual and computational challenges and demonstrated the good features of our method on both

synthetic and real biological datasets.

Our results prompt further studies. It would be interesting to analyze a dataset on a whole-genome scale.

We restricted our analysis to genes with prior knowledge for validation purpose. Another prospect would

be to take into account the missingness mechanism to improve performances on NMAR generated data. A

possibility would be to consider the missingness mechanism as a third process and to use the recent triplet

Markov field model of Blanchet and Forbes (2008) that would have to be extended to the framework of

incomplete observations. A final plan is to account for missing edges as we did for missing individual

measurements; biological interaction data are known to be incomplete or noisy. A first step would be

to consider confidence levels for interactions as their reliability vary a lot when reported by two-hybrid

screening for example. This feature is being developed in our software.

6. SUPPLEMENTARY MATERIALS

The SpaCEM3 software and datasets used in this study are available at http://spacem3.gforge.inria.fr/.
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