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Abstract

Recent studies on brain networks have suggested that many brain diseases, such as Alzheimer’s disease and mild
cognitive impairment (MCI), are related to a large-scale brain network, rather than individual brain regions.
However, it is challenging to find such a network from the whole brain network due to the complexity of
brain networks. In this article, the authors propose a novel method to mine the discriminative subnetworks for
classifying MCI patients from healthy controls (HC). Specifically, the authors first extract a set of frequent sub-
networks from each of the two groups (i.e., MCI and HC), respectively. Then, measure the discriminative ability
of those frequent subnetworks using the graph kernel-based classification method and select the most discrim-
inative subnetworks for subsequent classification. The results on the functional connectivity networks of 12
MCI and 25 HC show that this method can obtain competitive results compared with state-of-the-art methods
on MCI classification.
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Introduction

Alzheimer’s disease (AD), characterized by progressive
impairment of cognitive and memory functions, is one

of the most prevalent neurodegenerative brain diseases in el-
derly people. It was first described by a German psychiatrist
and neuropathologist Alois Alzheimer in 1906 and was
named after him (Berchtold and Cotman, 1998). AD is the
most common form of dementia worldwide, and it is pre-
dicted that AD will affect 1 in 85 people by 2050 (Brook-
meyer et al., 2007). The prodromal stage of AD is called
mild cognitive impairment (MCI), which is an intermediate
state of cognitive function between normal aging and demen-
tia. Existing studies have shown that MCI subjects progress
to clinical AD at an annual rate of *10–15% (Petersen et al.,
2001). Some individuals with MCI remain stable or return
normal over time, but more than half progress to dementia
within 5 years (Gauthier et al., 2006). Thus, accurate diagno-
sis of AD, especially MCI, is very important for possible
early treatment and delay of the progression of the disease.

In the past decades, researchers have proposed a lot of
methods to extract imaging biomarkers (e.g., voxelwise
and regional features) from magnetic resonance imaging
(MRI) and other imaging modalities, for early diagnosis of
AD and MCI, and significant progress has been achieved
(Cuingnet et al., 2011; Huang et al., 2000; Mosconi et al.,

2005; Zhang et al., 2011). At present, several modalities of
biomarkers have been proved to be sensitive to AD and
MCI, including (1) the brain atrophy measured in MRI
(McEvoy et al., 2009); (2) pathological amyloid depositions
measured through the cerebrospinal fluid (Mattsson et al.,
2009; Shaw et al., 2009); and (3) metabolic alterations in
the brain measured by fluorodeoxyglucose positron emission
tomography (Morris et al., 2001). Moreover, multimodal
methods are proposed to combine multiple modalities for im-
proving the AD/MCI classification performance (Zhang
et al., 2011), which achieves a classification accuracy of
93.2% for identifying AD from healthy controls (HC) and
a classification accuracy of 76.4% for identifying MCI
from HC.

Recently, besides individual brain regions, the patterns of
structural or functional connectivity of the human brain have
also received great attention in neuroimaging studies (Robin-
son et al., 2010; Sporns, 2012; Xie and He, 2011). Existing
studies show that we can obtain a better understanding of
the brain disease pathology through exploring structural
and functional interactions among brain regions (Sporns,
2012; Wang et al., 2013; Xie and He, 2011). Several attempts
have been made to map the structural connectivity of human
brain. One study derived structural connection patterns from
cross-correlations in cortical thickness or volume across in-
dividual brains (He et al., 2007). The structural connectivity
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has also been mapped based on the brain gray matter areas,
which were obtained using diffusion tensor imaging (Iturria-
Medina et al., 2007). The functional connectivity refers to
the functional association among brain regions that are pre-
defined by neurophysiological events (i.e., Hippocampus)
(Kaiser, 2011; Wang et al., 2013). Different from structural
network analysis, which helps to understand the fundamental
architecture of connections between brain regions (Chen
et al., 2008), functional network analysis directly elucidates
how this architecture supports neurophysiological dynamics
(Stephan et al., 2000).

Some recent studies have explored brain networks and
reported different network patterns between patients and
HC, which are supposed to convey pathologically relevant
information of brain diseases (Busatto et al., 2003; Filippi
and Agosta, 2011; Sperling et al., 2003; Xie and He,
2011). For instance, small-world characteristic, which is
characterized by a high degree of clustering and short path
lengths, has been found to be disrupted in the functional
brain networks of AD/MCI (Bai et al., 2012; Sanz-Arigita
et al., 2010; Stam et al., 2007). In addition, the functional
connectivity between the hippocampus and other regions of
the AD/MCI brain has been found to be decreased (Supekar
et al., 2008; Wang et al., 2007), while the functional connec-
tivity between the frontal lobe and other brain regions in
early AD/MCI brain had been reported to be increased
(Gould et al., 2006; Stern, 2006).

Network analysis provides a new way for exploring the
association between brain functional deficits and the underly-
ing structural disruption related to brain disorders. Recently,
(anatomical/functional) connectivity networks have been
constructed for analysis of AD and MCI with brain region
as node and anatomical connection or functional association
as link (Rubinov and Sporns, 2010), and lots of anatomical or
functional connectivity networks-based methods have been
proposed for prediction of AD and MCI ( Jie et al., 2013a;
Petrella et al., 2011; Wee et al., 2012b; Zhou et al., 2011).
To the best of knowledge, existing (anatomical/functional)
connectivity networks-based AD/MCI studies can be roughly
divided into two categories, that is, (1) group comparison and
(2) individual classification.

Most existing works on (anatomical/functional) connec-
tivity networks-based AD/MCI studies belong to the first cat-
egory, that is, group analysis. Graph theoretical analysis is
often used to demonstrate the differences in the topology
of brain networks between AD/MCI patients and HC and,
thus, can better understand the relationship between brain
connectivity and the disease processes (Rossini et al.,
2006; Stam et al., 2007; Supekar et al., 2008; van Wijk
et al., 2010) [for review, see the references (Liu et al.,
2008; Tijms et al., 2013)]. Some graph properties (e.g.,
small-world, centrality and efficiency) are often adopted in
group analysis methods (Sanz-Arigita et al., 2010). For ex-
ample, the small-world characteristic has been used to ana-
lyze the brain network of AD patients (Supekar et al., 2008).

In the second category, machine learning methods have
been applied to identify the patients with AD/MCI from
HC at the individual level (Richiardi et al., 2012; Wee
et al., 2011; Zhou et al., 2013). These methods usually first
extract a series of features (e.g., local clustering coefficients)
from the brain network and then use those extracted features
to train a classifier (e.g., support vector machine) (Chen

et al., 2011; Wang et al., 2006; Wee et al., 2011). More re-
cently, in one of the previous works ( Jie et al., 2013b), the
graph kernel technique was used for structural feature selec-
tion, to obtain the most discriminative brain regions based on
topological similarity between networks. It is noteworthy
that in ( Jie et al., 2013b), it is still needed to extract the fea-
tures (i.e., local clustering coefficients) as done in the exist-
ing (anatomical/functional) connectivity networks-based
classification methods (Wee et al., 2012a; Xie and He,
2011). On the other hand, existing studies have shown that
many brain diseases, such as AD and MCI, are related with
a larger scale brain network, not only on the single brain re-
gions (Sanz-Arigita et al., 2010). However, it is challenging
to find such a network from the whole connectivity network
due to the complexity of brain networks. To the best of
knowledge, few works have employed the subnetwork, espe-
cially discriminative subnetwork, for classification of brain
diseases.

In this article, the authors present a new method based on
connectivity measures for functional connectivity networks-
based MCI classification. In this study, the hypothesis is that
there exist different frequent and discriminative subnetwork
patterns between the MCI group and HC group. The main
idea of this method is to directly mine the discriminative sub-
network patterns from the functional connectivity network
and then use them for subsequent classification between
MCI patients and HC. Specifically, the authors first extract
a set of frequent subnetworks from each of the two groups
(i.e., MCI and HC), respectively. Then, measure the discrim-
inative ability of those frequent subnetworks using the graph
kernel-based classification method and select the most dis-
criminative subnetworks for subsequent classification. The
authors validate this proposed method on the functional
connectivity networks of 12 MCI and 25 HC, and the exper-
imental results show that this method outperforms the state-
of-the-art functional connectivity networks-based method in
the classification of MCI.

Contribution

The authors’ contribution in this article is threefold: First,
they propose a discriminative subnetwork mining (DSM) al-
gorithm to discover the discriminative patterns underlying
the whole brain network. Second, they apply this method
for functional connectivity networks-based MCI classifica-
tion. Last, the experimental results on MCI classification val-
idate the efficacy of the proposed method.

Materials and Methodology

Materials

In the current study, the authors used the same dataset as in
( Jie et al., 2013b). Table 1 gives the demographic and clin-
ical information of the participants. All the recruited subjects
were diagnosed by expert consensus panels. All the subjects
were scanned using a 3T scanner with the following param-
eters: repetition time (TR) = 2000 msec, echo time (TE) = 32
msec, flip angle = 77�, acquisition matrix = 64 · 64, FOV =
256 · 256 mm2, 34 slices, 150 volumes, and voxel size = 4
mm. All participants were required to keep their eyes open
and stare at a fixation cross in the middle of the screen during
scanning, which lasted for 5 min.
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Methodology

Overview of method. Figure 1 gives the flowchart of the
proposed method, which includes four main steps: (1) pre-
processing, where the functional connectivity networks are
constructed from raw functional MRI (fMRI) image data;

(2) frequent subnetwork mining, where two sets of frequent
subnetworks are mined from the functional connectivity net-
works of MCI and HC groups, respectively; (3) DSM, where
the most discriminative subnetworks are selected by evalu-
ating the respective classification ability of the frequent sub-
networks on training data; (4) classification, where the graph
kernel-based classifier is used for final classification of MCI
from HC based on the selected discriminative subnetworks.

Preprocessing. The authors followed a similar procedure
as in ( Jie et al., 2013b). Specifically, the fMRI images were
first preprocessed by applying the typical procedures of slice
timing, motion correction, and spatial normalization using
the Statistical Parametric Mapping software package (SPM8)
(www.fil.ion.ucl.ac.uk.spm). Then, the brain space of fMRI
images of each subject was parcellated into 116 regions-of-
interest (ROIs) based on the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002). It is worth not-
ing that in the current study, the authors used all the 116 ROIs

Table 1. Demographic and Clinical Information

of the Participants

Group MCI HC p-Value

No. of subjects
(male/female)

6/6 9/16 —

Age (mean – SD) 75.0 – 8.0 72.9 – 7.9 0.3598a

Years of education
(mean – SD)

18.0 – 4.1 15.8 – 2.4 0.0491a

aThe p-value was obtained by two-sample two-tailed t-test.
HC, healthy controls; MCI, mild cognitive impairment.

FIG. 1. The framework of the proposed method. AAL, automated anatomical labeling; fMRI, functional magnetic resonance
imaging; HC, healthy controls; MCI, mild cognitive impairment. Color images available online at www.liebertpub.com/brain
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from whole brain, including the cerebrum and cerebellar, in-
stead of only 90 ROIs from the cerebrum as in ( Jie et al.,
2013b). The mean fMRI time series of each subject were
then computed by averaging the GM-masked fMRI time series
of the voxels in the ROI. In many studies, the GM-masked
mean time series of each region was bandpass filtered within
the frequency interval (0.01 £ f £ 0.1 Hz) (van den Heuvel and
Pol, 2010). It is reported in (Zuo et al., 2010) that the fre-
quency band of (0.027–0.073 Hz) demonstrated a significantly
higher test–retest reliability than other frequency bands. It pro-
vides a reasonable trade-off between avoiding the physiolog-
ical noise associated with higher frequency oscillations
(Cordes et al., 2001) and the measurement error associated
with estimating very low-frequency correlations from limited
time series (Achard et al., 2008; Fornito et al., 2010). In this
study, following the previous work (Jie et al., 2013b), the fre-
quency band of (0.025–0.100 Hz) is used since the fMRI dy-
namics of neuronal activities are most salient within this
frequency interval (Wee et al., 2012b). Thus, for each subject,
a functional connectivity network was constructed with each
ROI as a node, and the Pearson correlation between ROIs as
connectivity strength. Fisher’s r-to-z transformation (Davey
et al., 2013) was applied on the elements of the functional con-
nectivity network to improve the normality of the correlation
coefficients as

z = 0:5[ ln (1þ r)� ln (1� r)] (1)

where r is the Pearson correlation coefficient and z is approx-
imately a normal distribution with standard deviation
rz = 1=

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

, where n is the number of ROIs. Moreover,
to better analyze the topological property of network, the
functional connectivity network was thresholded using a pre-
defined value.

Frequent subnetwork (subgraph) mining. In this section,
the authors introduce the frequent subgraph mining algo-
rithm to discover the most frequent subnetwork patterns for
MCI and HC, respectively. In the data mining community,
a number of methods have been proposed for frequent sub-
graph mining (Borgelt and Berthold, 2002; Huan et al.,
2003; Yan and Han, 2002). For example, FSG (Kuramochi
and Karypis, 2004) finds all frequent subgraph connected sub-
graphs by using the breadth-first search strategy to grow can-
didates, whereby pairs of identified frequent k subgraphs are
joined to generate (k + 1) subgraphs. Apriori-based graph
mining (Inokuchi et al., 2000) uses an adjacency matrix to
represent graphs, and a levelwise search to discover frequent
subgraphs. For more methods on frequent subgraph mining,
please refer to ( Jiang et al., 2013) for a recent review. In this
study, the authors adopt the well-known gSpan algorithm
(Yan and Han, 2002) for mining the frequent subnetworks
(subgraphs) from the functional connectivity networks be-
cause of its time efficiency (Krishna et al., 2011). Before giv-
ing the details of gSpan, there are some preliminaries used to
derive the gSpan algorithm (Yan and Han, 2002) for frequent
subgraph mining.

Definition 1 (Labeled Undirected Graph)
Let G = (V, E, L, l) be a labeled undirected graph, where V

is a set of nodes and E4V · V is a set of edges. e = {u,v} in-
dicates an edge between the nodes u and v. L is a set of labels,
and l is a mapping function that assigns labels to vertices in V
and edges in E.

Definition 2 (Subgraph)
For two labeled undirected graphs, Gs = (Vs, Es, Ls, ls) and

G = (V, E, L, l), Gs is a subgraph of G if Vs4V, Es4E, Ls4L,
and ls = l.

Definition 3 (Graph Isomorphism)
A graph G1(V1, E1, LV1

, LE1
, u1) is isomorphic to another

graph G2(V2, E2, LV2
, LE2

, u2), if and only a bijection f :
V1/V2 exists such that (i) 8u 2 V1, u1(u) = u2( f (u)),
(ii) 8(u, v) 2 E15( f (u), f (v)) 2 E2, (iii) 8(u, v) 2 E1,
u1(u, v) = u2( f (u), f (v)). The bijection f is an isomorphism
between G1 and G2.

Definition 4 (Subgraph Frequency Ratio)
Given a set of graphs, G, the frequency ratio of a subgraph

gs, is defined as

fq gsjGð Þ = jgs is a subgraph of g and g 2 Gj
jGj

Definition 5 (Frequent Subgraph)
Given a set of graphs, G and a support parameter s, a sub-

graph gs is a frequent subgraph if and only gs exists in at least
s � jGj of the input graph set.

Definition 6 (Frequent Subgraph Mining)
Given a set of labeled undirected graphs, G and a support

parameter s, where 0 < s £ 1, find all undirected graphs that
are subgraphs in at least s � jGj of the input graphs.

Definition 7 (Intersect-graph)
Given two graphs, G1 = (V1, E1) and G2 = (V2, E2), the

intersect-graph G¢ = (V¢, E¢) (denoted as G1XG2) is defined
as E¢ = E1XE2, all the nodes in edges set E¢ form the nodes
set V¢.

Definition 8 (depth-first search [DFS] code)
Given a DFS tree T for a graph G, an edge sequence (ei)

can be constructed based on �T , such that ei �T eiþ 1,
where i = 0, . . . , jEj � 1. (ei) is called a DFS code, denoted
as code (G,T).

DFS lexicographic order. In this subsection, the authors in-
troduce how gSpan maps each graph into a unique minimum
DFS code (Yan and Han, 2002). The authors use subscripts
to label the nodes in terms of the DFS order. The node vi

is discovered befor node vj if i < j. For the DFS tree, all the
edges in the DFS tree are called forward-edge, and the
edges that are not in the DFS tree are called backward-
edge. A linear order, �T , is built among all the edges in
graph G by the following rules (assume e1 = (i1, j1), e2 = (i2,
j2)): (i) if i1 = i2 and j1 < j2, e1 �T e2; (ii) if i1 < i2 and
j1 = j2, e1 �T e2; and (iii) if e1 �T e2 and e2 �T e3, e1 �T e3.

Then, an edge can be simply represented by a five-tuple (i,
j,l1, l(i,j), lj). In this study, li and lj are the labels of vi and vj,
respectively, and l(i,j) is the label of the edge (vi, vj).

The DFS lexicographic order is a linear order defined as
follows: a = (a0, a1, . . . , am) and b = (b0, b1, . . . , bm) are
DFS codes, then a£ b if either of the following is true
(Yan and Han, 2002):

(i) 9t, 0ptp min (m, n), ak = bk for k < t, at �e bt

(ii) ak = bk for 0pkpm, and nqm

Given a graph G, the minimum one of all the DFS lexico-
graphic order is called Minimum DFS Code of G. It is also a
canonical label of G. Figure 2 shows a DFS code tree, where
all the minimum DFS codes of frequent subgraphs can be
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discovered through DFS of the code tree. It is noteworthy
that the red nodes contain the same subgraph with different
DFS codes, but g¢ is not the minimum DFS code, so the
whole branch of g¢ can be pruned because it will not contain
any minimum DFS code.

In summary, gSpan first constructs a new lexicographic
order among graphs, and maps each graph into a unique min-
imum DFS code as its canonical label. Then, based on the
lexicographic order, gSpan utilizes the DFS strategy to
mine frequent connected subgraph patterns efficiently. In
this study, the hierarchical search space of frequent subgraph
is called a DFS code tree, and each node of the search tree
represents a DFS code (i.e., subgraph). The k + 1-th level sub-
graph is generated from the k-th level subgraph (i.e., parent)
by adding one frequent edge. Finally, all subgraphs with non-
minimal DFS code are pruned to avoid redundant candidate
generations (Yan and Han, 2002).

In the Appendix 1, there is a toy example to illustrate the
DFS lexicographic order used in frequent subgraph mining
and also list the detailed gSpan algorithm (see algorithm 3).

Discriminative subnetwork mining. In the previous sec-
tion, the authors have introduced the gSpan algorithm. It is
worth noting that gSpan is only used for mining the frequent
subgraph, which by itself does not have any discriminative
power. Accordingly, in this study, the authors perform
gSpan to extract two sets of frequent subgraphs (e.g., subnet-
works) from the MCI group and HC group, respectively. How-
ever, some of the frequent subnetworks may still have less
discriminative information for classification. To address that
problem, it is further proposed to select the most discrimina-
tive subnetworks from those frequent subnetworks using a
graph kernel-based classification method. In the following,
the authors first introduce the graph kernel technique.

Graph kernel. Roughly speaking, kernel can be seen as a
similarity measure between a pair of subjects, which maps
the data from the original space into a higher dimensional fea-
ture space, where the data are more likely to be linear separa-
ble. Given two subjects x sand x¢, the kernel can be defined as

k(x, x¢) =</(x), /(x¢)> (2)

where / is a mapping function that maps data from input space
to feature space. Besides the feature vector, kernel can also be
applied on more complex data types, for example, graph, with
the corresponding kernel called graph kernel (Vishwanathan
et al., 2010). Graph kernel can be seen as a function that
measures the topological similarity of pairs of graphs. In re-
cent years, lots of methods have been proposed to construct
graph kernel, which include walk-based (Gartner et al.,
2003), path-based (Alvarez et al., 2011), subtree-based kernels
(Shervashidze et al., 2011), and so on. Graph kernel has been
widely used for image classification (Harchaoui and Bach,
2007) and protein function prediction (Borgwardt et al., 2005).

In this study, following the previous work ( Jie et al.,
2013b), the authors adopt the Weisfeiler-Lehman subtree
kernel, which is based on the Weisfeiler-Lehman test of iso-
morphism (Shervashidze et al., 2011). Given two graphs, the
basic process of the Weisfeiler-Lehman test is as follows: if
those two graphs are unlabeled (i.e., vertices of the graph
have not been assigned labels), first label each vertex with
the number of edges that are connected to that vertex.
Then, at each iteration step, the label of each vertex is
updated based on its previous label and the labels of its
neighbors. That is, compress the sorted set of updated node
labels of each vertex into a new and shorter label. This pro-
cess iterates until the node label sets are identical, or the
number of iteration reaches its predefined maximum value.

Given two graphs G and H, let +
0

be the original set of
node labels of G and H, and +i be the set of letters that
occur as node labels at least once in G or H at the end of
the i-th iteration of the Weisfeiler-Lehman algorithm.
Assume that all +i =

�
ri1, ri2, . . . , rij+

i
j
�

are pairwise dis-
jointed. Without loss of generality, assume every +

i
is or-

dered. The Weisfeiler-Lehman subtree kernel on two
graphs G and H with h iterations is defined as follows (Sher-
vashidze et al., 2011):

kh(G, H) = </h(G), /h(H)> (3)

where

/h(G) =
�

c0(G, r01), . . . , c0

�
G, r0j+

0
j

�
, . . . ,

ch(G, rh1), . . . , ch

�
G, rhj+

h
j

��

and

/h(H) =
�

c0(H, r01), . . . , c0

�
H, r0j+

0
j

�
, . . . ,

ch(H, rh1), . . . , ch

�
H, rhj+

h
j

��
:

In this study, ci (G, rij) and ci (H, rij) are the number of
occurrences of the node label rij in G and H with the i-th it-
eration, respectively. It is noteworthy that the graph used in
this study is the undirected graph.

The DSM algorithm. The authors first choose the same num-
ber of frequent subnetworks from each group and construct
multiple pairs of subnetworks across two groups. It is notewor-
thy that each pair of frequent subnetworks represents two types
of connectivity patterns from patient and normal controls. For
each pair of frequent subnetworks, they utilized graph kernel
proposed in (Shervashidze et al., 2011) to measure the similar-
ity between the training data and the frequent subnetworks

FIG. 2. A search space: DFS code tree. DFS, depth-first
search.
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and classify the training data to the class with a high graph ker-
nel value. Figure 3 gives a toy example of how to measure the
similarity between brain networks. After that, the authors
choose those pairs of frequent subnetworks with the best clas-
sification accuracy as the most discriminative subnetworks.

Algorithm 1 summarizes the details of the proposed DSM
algorithm. In this study, D denotes the training set, including
the functional connectivity networks of all training subjects,
and MCI and HC represent the MCI and HC groups on the
training set, respectively. Let Gi denote a sample in the dataset
and yi be the corresponding label, and S1 and S2 are two sets
of frequent subnetworks mined from the MCI and HC groups,
respectively. Also, Si

1(Si
2) represents the i-th subnetwork in

S1 (S2), and Gi
1(Gi

2) is the i-th intersect graph between G

andSi
1(Si

2). Finally, DS1 and DS2 are two sets of selected dis-
criminative subnetworks of MCI and HC, respectively.

Classification. For classification of testing subject, the au-
thors also compute the graph kernel between each discrimina-
tive subnetwork and the intersect graph between the testing
subject and that discriminative subnetwork, and then perform
a graph kernel-based classification. Specifically, the authors
obtain two sets of graph kernel values, one by measuring the
topological similarity (through graph kernel) between the sub-
networks from the MCI group and corresponding intersect
graph of the testing subject, and the other by measuring the
similarity between the subnetworks from the HC group and
corresponding intersect graph of the testing subject. Then,
the authors classify the testing subject to the class with the
highest graph kernel value. Algorithm 2 gives the detailed pro-
cedure of the graph kernel-based classification. In this study,
DS1 and DS2 represent two sets of discriminative subnetworks,
which are obtained using the DSM algorithm, G represents a
graph in test subject set T, and Gi

1(Gi
2) is the i-th intersect

graph between G and Si
1(Si

2).

Algorithm 1 Discriminative Subnetwork Mining (DSM)

Input:

Training subjects D = fMCI, HCg = f(G1, y1), . . . ,
(Gi, yi), . . . , (GN , yN)g
Output:

Two sets of discriminative subnetworks DS1 and DS2

1: gSpan(MCI, S1), gSpan(HC, S2);
2: Initialize a temporary list C = [];
3: for i = 1 : n do
4: for each G 2 D do
5: Gi

1 = G \ Si
1, Gi

2 = G \ Si
2 ;

6: Compute the graph kernel using Eq. (3) on Gi
1,

Si
1 and Gi

2, Si
2, respectively;

7: Classify G to the class with larger graph kernel
value;

8: endfor
9: Compute the accuracy c on D;
10: Update list C = [C, c];
11: endfor
12: Sort S1, S2 according to the C in a descending order;
13: Select the top k subnetworks of S1 and S2 as discrim-

inative subnetworks;

Algorithm 2 Graph kernel-based Classification

Input:

Discriminative subnetwork sets DS1 and DS2, testing
subject set T
Output:

Classification accuracy acc

1: for each G 2 T do
2: for i = 1 : k do
3: Gi

1 = G \ DSi
1, Gi

2 = G \ DSi
2;

4: Compute the graph kernel on Gi
1, DSi

1 and Gi
2,

DSi
2, respectively;

5: endfor
6: Classify G to the class which has larger graph

kernel value;
7: endfor
8: Compute the accuracy acc on T

FIG. 3. Illustration on sim-
ilarity comparison between
brain networks. In this study,
the similarity between G1 and
S1 is 12, while the similarity
between G2 and S2 is 8. The
similarity is measured by
Weisfeiler-Lehman subtree
kernel after 1st iteration.
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Validation

To evaluate the performance of this method, the leave-
one-out cross-validation strategy was adopted in the experi-
ment. Specifically, at each fold, one subject was left out for
testing and the remaining subjects were used for training, and
this process was repeated for each subject. The authors use
the classification accuracy and the area under the ROC
curve (AUC) as performance measures to quantify the re-
sults. Specifically, classification accuracy measures the ef-
fectiveness of predicting the true class label. The AUC
measures the probability that when one positive and one neg-
ative sample are drawn at random, the decision function as-
signs a higher value to the positive than to the negative
sample.

The functional connectivity networks were thresholded by
using a predefined threshold T = 0.3 to validate the classifica-
tion performance of the proposed method. The authors used
the gSpan algorithm to search for frequent subnetworks in
thresholded functional connectivity networks of MCI and
HC with corresponding supports s = 9/11 and s = 22/24, re-
spectively. The number of iteration h in Weisfeiler-Lehman
subtree kernel algorithm was set as 3.

Results

Comparison on classification performance

In this section, the authors evaluate the classification per-
formance of the proposed method by measuring the classifi-
cation accuracy. For comparison, they also give the results of
other functional connectivity networks-based classification
methods, including ( Jie et al., 2013b, 2014; Wee et al.,
2012a). Specifically, the core of ( Jie et al., 2013b) is using
a graph kernel-based approach to measure the topological
similarity between functional connectivity networks, and
the method in ( Jie et al., 2014) integrates multiple properties
of connectivity (i.e., local clustering coefficients, and global
topological properties) for improving the classification per-
formance. Also, in (Wee et al., 2012a), the authors utilize a
multispectrum strategy to construct multiple functional con-
nectivity networks for each subject, and then local clustering
coefficients are extracted as features for MCI classification.
Table 2 gives the classification performances of all compared
methods. As can be seen from Table 2, the proposed method
achieves a best classification accuracy of 97.30% with an in-
crement of at least 5.4% from all other compared methods.
Actually, only one MCI subject is misclassified by this
method. Also, this method outperforms all other methods
in the AUC performance measure.

The connectivity analysis

By mining the frequent and discriminative subnetworks of
the functional connectivity networks for MCI and HC, this
method may also help gain a better insight of the topological
differences of the brain network between MCI and HC. Fig-
ure 4 shows the mined discriminative and frequent subnet-
works from the MCI and HC groups. As can be seen from
Figure 4, MCI and HC have very different connectivity pat-
terns in the mined subnetworks. Specifically, compared with
that of HC, there exist possible disruptions in the connectiv-
ity of MCI between certain regions that are consistent with
existing findings reported in previous studies (Davatzikos
et al., 2011; Grady et al., 2003; Han et al., 2011). For exam-
ple, in HC, the mined frequent and discriminative subnet-
works contain visual and auditory brain regions, with
strong connections between these brain regions, while the
connections in those brain regions are disrupted for MCI.

Discriminative regions

In this section, the authors count the number of occur-
rences of ROIs from all the mined discriminative subnet-
works, and then choose the top 14 ROIs with the highest
occurrences as the discriminative regions. Table 3 lists
these top ranked ROIs, which are visually plotted in Figure
5. As can be seen from Table 3 and Figure 5, the discrimina-
tive regions include insula, calcarine sulcus, lingual gyrus,
transverse temporal gyri, superior temporal gyrus, which
are mostly related to vision, auditory processes, function of
language, social cognition, and information processes.

Discussion

This article investigated the diagnostic power of discrim-
inative subnetworks, which were mined from functional
connectivity networks, derived from resting-state fMRI,
for the identification of individuals with MCI from HC.
The proposed method employed the frequent subgraph min-
ing and graph kernel-based classification for functional
connectivity networks-based MCI classification. The classi-
fication performance in the experimental results validated
the effectiveness of this proposed method. Moreover, the
proposed method also gains an inherent insight for better
understanding pathology of the disease. Specifically, the
authors analyze the connectivity of the selected discrimina-
tive subnetworks and find that MCI patients have a disrup-
ted connectivity between regions related to vision, auditory,
language, social cognition, and information processes,
which is consistent with other existing studies. For exam-
ple, (Wang et al., 2013) investigated the topological struc-
ture of the functional connectome in MCI patients and
found an abnormal structure, as shown by impaired func-
tional connectivity between different brain regions. On
the other hand, the regions with high occurrence in discrim-
inative subnetworks as discriminative regions are selected,
which include insula, calcarine sulcus, lingual gyrus, trans-
verse temporal gyri, and superior temporal gyrus reported
to be related with AD/MCI disease in literature (Davatzikos
et al., 2011; Grady et al., 2003; Han et al., 2011; Liu et al.,
2011).

Overall, these results show that the proposed method can
effectively identify the MCI patients from HC, and provide

Table 2. The Classification Performances

of Different Methods

Methods Accuracy (%) AUC

Wee et al. (2012a) 86.49 0.8633
Jie et al. (2014) 91.89 0.8700
Jie et al. (2013b) 91.89 0.9400
Proposed 97.30 0.9583

The bold values are the best for comparison.
AUC, area under ROC curve.
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FIG. 4. The discriminative
subnetworks of healthy con-
trols (the left column) and
mild cognitive impairment
(the right column). INS.L,
left insula; INS.R, right
insula; STG.L, left superior
temporal gyri; STG.R, right
superior temporal gyri; TPO-
sup.R, right superior temporal
pole; TPOsup.L, left superior
temporal pole; CUN.R, right
cuneus; CUN.L, left cuneus;
CAL.R, right calcarine sul-
cus; CAL.L, left calcarine
sulcus; LING.R, right lingual
gyrus; LING.L, left lingual
gyrus; CRBL45.R, right lob-
ule IV, V of cerebellar hemi-
sphere; HES.R, right
transverse temporal gyri;
HES.L, left transverse tem-
poral gyri; SFGmed.R, right
superior frontal gyrus, medial
part; SFGmed.L, left superior
frontal gyrus, medial part;
SFGdor.L, left superior fron-
tal gyrus, dorsolateral;
MFG.L, left middle frontal
gyrus, lateral part; ROL.L,
left rolandic operculum;
SMA.L, left supplementary
motor area; HIP.L, left hip-
pocampus; PHG.L, left para-
hippocampal gyrus; PHG.R,
right parahippocampal gyrus;
CRBL3.L, left Lobule III of
cerebellar hemisphere;
CRBL.R, right Lobule III of
cerebellar hemisphere. Fig-
ures were visualized using
BrainNet Viewer (www.nitrc
.org/projects/bnv/). Color
images available online at
www.liebertpub.com/brain
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empirical evidence for disrupted local network organization
in MCI at both the regional and connectional levels. Besides
MCI classification, the authors further validate the efficacy
of the proposed method for gender classification, as detailed
in Appendix 2.

The effect of threshold

In AD/MCI studies, threshold-based methods have been
widely used for exploring the topological properties of func-
tional connectivity networks (Sanz-Arigita et al., 2010;
Supekar et al., 2008). In functional network analysis, it is
noteworthy that there is no golden rule to determine the
choice of threshold. Therefore, many studies investigate
their methods over a range of thresholds (Supekar et al.,
2008; Zanin et al., 2012). In this study, for further investigat-
ing the stability of the proposed method, extra experiments
using different thresholds are performed. First, this method

is performed using all the five thresholds (i.e., 0.2, 0.3,
0.38, 0.4, and 0.45) used in the previous study ( Jie et al.,
2013b), and this method achieves classification accuracies
of 89.2%, 97.3%, 94.6%, 91.9%, and 91.9%, respectively.
In contrast, the method in ( Jie et al., 2013b) obtained an en-
semble classification accuracy of 91.9% by combining all
these thresholds together, while the classification accuracies
corresponding to individual thresholds are only 86.5%,
83.8%, 75.7%, 75.7%, and 64.9%, respectively. Moreover,
the authors investigate the stability of this method under
more delicate interval partition of thresholds, ranging from
0.2 to 0.4 with an increment of 0.02, and the corresponding
results are shown in Figure 6. As can be seen from Figure
6, the performance curve is relatively stable with respect to
different thresholds, which again validates the efficiency of
the proposed method.

The stability of the discriminative subnetworks

In this section, the authors computed the frequency of
those mined discriminative subnetworks of the HC and
MCI groups in Figure 4 in all 37 runs. The corresponding re-
sults (i.e., frequency) are (3/37, 37/37, 37/37, and 37/37) for
HC (from top to bottom in Fig. 4) and (37/37, 2/37, 37/37,
and 37/37) for MCI (from top to bottom in Fig. 4), respec-
tively. This result suggests that most of the mined discrimi-
native subnetworks of both the HC and MCI groups are
stable. Especially, six discriminative subnetworks in Figure
4 (three for HC and three for MCI) have the frequency of
1, that is, appearing in all runs, showing a very high stability.

The choice of support parameter

In these experiments, the fixed values of support parame-
ters for mining frequent subnetworks were used in each of
the MCI and HC groups. Specifically, s = 9/11 was used for
the MCI group and s = 22/24 was used for the HC group, re-
spectively. In fact, other values for the support parameters

Table 3. Top 14 Discriminative Regions

Top 14 discriminative regions

L rolandic operculum
L insula
R insula
L calcarine sulcus
R calcarine sulcus
L lingual gyrus
R lingual gyrus
L transverse temporal gyri
R transverse temporal gyri
L superior temporal gyrus
R superior temporal gyrus
R superior temporal pole
L lobule IV, V of cerebellar hemisphere
R lobule IV, V of cerebellar hemisphere

L and R denote Left and Right, respectively.

FIG. 5. Visual plot of the
top 14 discriminative regions
in Table 3. Color images
available online at www
.liebertpub.com/brain
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were also used. However, because of the small sample size
(and also the relatively large number of nodes (i.e., 116) in
networks) of the training data (i.e., 11 for the MCI group
and 24 for the HC group), smaller values of support (e.g.,
s = 8/11 for the MCI group and 21/24 for the HC group)
will lead to too many mined frequent subnetworks (usually
over thousands), which are difficult for subsequent analysis.
On the other hand, if larger values of support (e.g., s = 10/11
for the MCI group and 23/24 for the HC group) are used, the
mined frequent subnetworks will be too few (e.g., only 2 fre-
quent subnetworks were mined for a certain run), which are
insufficient for subsequent discrimination between MCI and
HC. Actually, the authors computed the corresponding clas-
sification accuracy when using s = 10/11 for the MCI group
and 23/24 for the HC group, which is 81.08%. For this rea-
son, in these experiments, the fixed values of s = 9/11 for
the MCI group and s = 22/24 for the HC group were adopted,
respectively.

Limitations

This study is limited by the following factors. First, during
the network construction, the definition of nodes and edges is
a critical step. Previous studies have demonstrated that net-
work nodes can be defined using both anatomical and/or
functional brain atlases and image voxels, but the con-
structed network exhibited significantly different topological

properties (Hayasaka and Laurienti, 2010; He and Evans,
2010; Sanabria-Diaz et al., 2010; Wang et al., 2009). In the
current study, following previous works ( Jie et al., 2013a,
2013b, 2014), the authors adopted the widely used AAL tem-
plate to parcellate the whole brain into 116 ROIs (including
the cerebrum and cerebellar), and the correlation between
ROIs is computed by the average time series of ROIs,
which may cause intrinsic information being smoothed.
One possible solution may be to use more delicate brain par-
cellation methods or using cortical landmarks (instead of av-
erage), for example, in (Zhu et al., 2013). However, this
study does not analyze the impact of different brain parcella-
tion atlases on the classification performance. Second, the
performance of the proposed method may be affected by
the unbalanced data. A classifier will normally try to adapt
itself for better prediction of the class with majority. At pres-
ent, the proposed method is not designed to handle this issue.
Another limitation of the current study is the sample size of
the material, which may reduce its generalization ability on
MCI classification. In future, further evaluation of the pro-
posed method on other brain diseases with larger size of sub-
jects will be done, for example, ADHD (fcon_1000.projects
.nitrc.org/indi/adhd200/index.html). Finally, the aim in this
study is on individual classification rather than group analy-
sis between HC and MCI, and thus, the authors did not put
more focus on the possible neurobiological interpretations
of this method.

FIG. 6. The classification
performance curve with dif-
ferent thresholds.

FIG. 7. Depth-First Search
tree and corresponding
DFS code. Original graph (a)
and its Depth-First Search
trees (b–d) and correspond-
ing DFS codes (e).
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Appendices

Appendix 1

For better understanding, a toy sample about depth-first
search (DFS) code, as shown in Figure 7. In this study, Fig-
ure 7b–d are three different kinds of DFS trees for Figure 7a
and all of them are isomorphic to each other. Figure 7e gives
the three different DFS codes for Figure 7b–d. From Figure
7, it can be derived that c � a � b according to the DFS lex-
icographic order.

Algorithm 3 gives the pseudocode of gSpan (Yan and Han,
2002). In this study, D represents the graph dataset, and S
contains the mining result.

Appendix 2

For further investigating the efficacy of the proposed
method, this method was performed for gender classifica-
tion on a larger dataset, which consists of 133 infants
with ages ranging from 0 to 2. The participants include 51
neonates (26 males, 25 females), 50 one-year-old (26
males, 24 females) and 32 two-year-old (17 males, 15 fe-
males) infants.

Data acquisition, postprocessing, and functional
connectivity network construction

The detailed descriptions of data acquisition and post-
processing can be found in (Gao et al., 2011). The authors
followed the same procedure as in ( Jie et al., 2014). In
short, all images were acquired using a 3T head-only
MR scanner. The preprocessing step of the fMRI images
included the exclusion of voxels outside the brain, time
shifting, motion correction, spatial smoothing (6-mm full
width at half maximum Gaussian kernel), linear trend re-
moval, and low-pass filtering ( < 0.08 Hz). Then, with
atlas warping, each subject was partitioned into 90 regions-
of-interests (ROIs) (Shen and Davatzikos, 2002). The
mean time course of each ROI was separately extracted
from each individual subject and used to construct a func-
tional connectivity network using the Pearson correlation
coefficient between a pair of ROIs. Fisher’s r-to-z transfor-
mation was used to improve the normality of the correlation
coefficients.

Experimental results

In this experiment, the authors adopt the same setting as
the experiment on mild cognitive impairment dataset.
Table 4 gives the classification performance of different
methods. As can be seen from Table 4, in most cases, this
method achieves a better classification performance for gen-
der classification, which again validates the advantage of the
proposed method for functional connectivity networks-based
classification.

Algorithm 3 gSpan (D, S)

1: Sort the labels in D according to the frequency;
2: Remove infrequent vertices and edges;
3: Relabel the remaining vertices and edges;
4: S1) all frequent 1-edge graphs in D;
5: Sort S1 in DFS lexicographic order;
6: S)S1;
7: for each edge, e 2 S1 do
8: Initialize s with e, set s.D by graphs which contain e;
9: if ssmin (s) then
10: Return;
11: endif
12: S)S [ s;
13: Enumerate s in each graph in D and count its

children;
14: for each c, c is s¢ child do
15: if support (c) ‡ minSup then
16: s)c;
17: endif
18: Go to step 9;
19: D)D� e;
20: if jDj � minSup then
21 Break;
22: endif
23: endfor
24: endfor
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