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Abstract: In this contribution, we highlight the potential for quantum theories to 

reignite the art and science of expert systems and knowledge 

engineering. With their fundamental grounding in uncertainty and 

unpredictability, quantum concepts are able to expand theoretical and 

practical boundaries of research and exploration. We demonstrate the 

similarities between quantum concepts and expert systems, outlining 

five domains (Scientific Discovery, Creativity and Breakthrough 

Thinking; Complex Systems; Medical Sciences and Advice; Strategic 

Business Management; and Future of Sports) we regard as largely 

unexplored in popular accounts of quantum theory; as such, these are 

low hanging fruit for the application of quantum technologies.  
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1 Introduction 

Simply defined by Siler (2005), “expert systems are computer programs, designed to make 

available some of the skills of an expert to non-experts” (p. xii). In this sense, expert systems 

involve the transferral of expert human knowledge, experience, intuition, and reasoning to 

computers which may then be used to automate, train, and/or support complex human decision-

making processes. Expert systems can result in considerable cost reductions (when compared 

to costs associated with employing human experts), increased productive output, improved 

quality, and consistency in the application of expertise, reduced downtime and reduction of 

uncertainty in decision-making systems. They also enable greater flexibility, reliability, and 

responsiveness in day-to-day problem solving activities, and help to capture scarce knowledge 

(Turban, 1988). Despite the high expectations regarding the use of expert systems across a 

variety of operational contexts, including production planning, teaching, resource utilisation, 

climate forecasting, industrial process control and engineering analyses (Shu-Hsien, 2005), 

such systems are not anymore widely used.  

Despite a wealth of complex computational models and increasing numbers of expert decision-

support systems, human experts are still highly sought after and used extensively to support 

serious, consequential decision making efforts as well as helping solve smaller, more everyday 

types of problems (Stehr, 2011). As Sriboonchitta et al. (2019) suggest, the best results are 

achieved when we ask imprecise rather than precise queries – those which experts typically ask 

– and we can leverage quantum theories to do so. Further, many opportunities exist at the 

intersection between quantum computation, quantum theory, and AI (Ying, 2010). 

This paper explores the relationship between concepts in quantum theories to those of expert 

systems, creativity, problem solving, and scientific discovery. In doing so, we seek to uncover 

potential avenues for future theoretical and applied research endeavours outside of those 

usually mentioned in popular press reports of quantum technologies. In the first section, we 

introduce seminal works in quantum theory, quantum mechanics, quantum information theory, 

quantum logic, and quantum computation. Next, we question the current relevance of human 

expertise, reasoning, and decision making in the AI and quantum era. In the following section, 

we provide five domains that – in our estimation – present fruitful opportunities for the 

application of quantum concepts in contexts typically requiring human expertise. We then 

summarise our findings.  



2 Quantum Theories 

In the classical sciences, systems are assumed to have well defined properties. If all relevant 

pre-conditions are known and can be recreated, specific outcomes are likely to occur time and 

time again. In other words, systems and their behaviour are deterministic. Quantum theory on 

the other hand, accepts the inherent unpredictability of precise outcomes and recognises that 

randomness is a fundamental concept in many physical and complex systems (Peres, 2002). 

Placing greater focus on the evidence of irregularity and randomness has ultimately contributed 

to a deeper understanding in many fields across the hard and soft sciences alike, hinting at the 

delicate balance and blurring boundaries between order and chaos in everyday life (Mirowski, 

1990). The persistence of uncertainty, dependence on initial conditions, and breakdown of 

determinism each play a central role in “rational” classical mechanics and also contribute to 

the formulation of statistical and quantum mechanics, a story well told by Prigogine (1980).  

The mathematical formalism of quantum theory can be used to estimate the probabilities of 

certain events (e.g., a stock market crash, the emission of solar flare, or the position of an atom 

in space) (Englert, 2013). Rather than precise predictions, a quantum approach provides 

insights into more imprecise queries similar to those made by experts (Sriboonchitta et al., 

2019). Born’s rule (1926) provides the link between the mathematical formalisms and observed 

(measured) phenomena (events) which transpire. The defining features of said events include 

localisation in time and space, irreversibility, and random realisation (Englert, 2013). 

2.1 Quantum Mechanics 

Classical mechanics is an approximate theory of nature with its concept of emergent, 

objectively real objects having no counterparts in the more exact theory (quantum mechanics) 

which underlies it (Banks, 2019). The major difference between classical and quantum 

mechanics relates to the claim by quantum mechanics that there is a fundamental dissimilarity 

between the observed and unobserved state of an entity or object (e.g., an atom). In quantum 

mechanics, prior to observation (measurement), an entity is not constrained to existing in any 

precise position; but rather, exists in an indeterminate region of space. This may be within an 

area of greatest likelihood, however, there is yet an underlying and fundamental uncertainty 

and unpredictability in its exact positioning (Baaquie, 2013). Heisenberg (1962) coined the 

terms potentiality and actuality to describe the indeterminate (unobserved) state and observed 

(definite) condition of a quantum entity, respectively. Each observation (measurement) 

transitions a quantum entity from its state of potentiality to one of its many possible and definite 

observable conditions. 



One could quite reasonably question how quantum indeterminacy is different at all from 

classical randomness. This distinction was first brought to light in Bohr’s (1935) response to 

the Einstein, Podolsky and Rosen’s (EPR) (1935) paradox which appeared to challenge the 

concept of quantum indeterminacy. The EPR paradox suggested that the unobserved state of 

one of two physically separated photons (in a net spin zero state) could be predicted by 

measuring the state of the other (i.e., if the z-component of one photon was measured as ‘up’, 

the z-component of the other is known to be ‘down’ even without performing any measurement 

of its actual state) and thus, it appeared to communicate information at a rate faster than the 

speed of light (Baaquie, 2013). Bohr’s (1935) response to the EPR paradox pointed out that the 

EPR view was merely an illusion and reflects only what one chooses to measure (i.e., the more 

one knows about the z-component, the less one knows about the x- and y-components). Hence, 

classical probability still failed to explain quantum indeterminacy, because a specific quantum 

state does not exist independent of any measurement. Without measurement, a quantum state 

exists in some superposition of all possible states and a probability is assigned only to the 

likelihood of a possible outcome of the measurement process itself (Baaquie, 2013) rather than 

to some physically real but random variable as in classical probability.  

Despite its complexity and often conceptually unfamiliar solutions, quantum mechanics has 

been widely successful and reliable in explaining many real-world phenomena (Englert, 2013).  

2.2 Quantum Information 

The physical nature of information, as opposed to a pure abstraction, implies that information 

abides by the laws of nature; in particular, those of quantum mechanics (Landauer, 1996, 1999). 

This view makes possible new and powerful tools of transmission and information processing 

by leveraging the principles of quantum mechanics such as linearity, entanglement, 

superposition, non-locality, interference, and indeterminacy (Galindo & Martin-Delgado, 

2001). Classical information theory is concerned with information in binary forms (i.e., a state 

of zero or one) wherein bits (classical bits or c-bits) carry information from source to 

destination over some noisy or noiseless channel (Shannon, 1948). In quantum information 

theory, quantum bits (qubits) exist – prior to measurement – as a superposition of all possible 

states of the two classical states of zero and one (Schumacher, 1995). As such, one qubit can 

theoretically contain infinite information when compared to a c-bit, a concept known as 

quantum parallelism which, as discussed later in Section 2.4, is at the foundation of the 

unprecedented power of quantum computers (Galindo & Martin-Delgado, 2001).  



2.3 Quantum Logic 

In the same way that classical computers can perform sequences of one- and two-bit operations 

(e.g., AND, NOT, and OR logic gates), quantum computers can perform sequences of one- and 

two-qubit quantum operations (e.g., XOR logic gate) (Bennett & Shor, 1998). Simply 

described, “a quantum logic gate is an input-output device whose inputs and outputs are 

discrete quantum variables” (p. 346), and any quantum logic gate with two or more inputs is 

universal in the sense that copies of said gate can be linked together to produce any desirable 

logic circuit – and hence, perform any desired transformation on quantum variables (Lloyd, 

1995). In other words, generalisable quantum gates can be ‘wired together’ to produce quantum 

logic circuits that can simulate any quantum phenomena and perform any computations 

(Deutsch, 1989) without the exponential slowdown which would, of course, be experienced by 

a classical computer (Feynman, 1982). 

2.4 Quantum Computing 

As early as the mid-1980s, Feynman (1982) suggested that certain quantum effects cannot be 

simulated efficiently on a classical computer. The power of quantum algorithms mostly derives 

from harnessing the benefits of quantum parallelism (Deutsch & Jozsa, 1992) which is itself 

enabled by superpositions and entanglement (Rieffel & Polak, 2000). Further, entanglement 

also enables such concepts as teleportation (Bennett et al., 1993), quantum encryption (Barz et 

al., 2012), quantum internet (Kimble, 2008), and dense coding (Rieffel & Polak, 2000). By 

leveraging quantum concepts, quantum computers are capable of being exponentially faster 

than classic computers (including even the most powerful of high performance classical 

computers) at certain computations with only a linear, as opposed to exponential (in the case 

of classical computers), increase in physical space required to house such computational 

hardware (Deutsch & Jozsa, 1992).  

One area of problem solving for which quantum computers can offer a unique advantage over 

classical computers is in search problems (Rieffel & Polak, 2000). In particular, Grover’s 

(1996) algorithm can utilise superposition to ask questions often posed by experts, such as: “is 

one of the earlier records containing the desired information” (Sriboonchitta et al., 2019). Other 

well-known quantum algorithms offer substantial speed-ups over their classical counterparts 

including Shor’s (1994) algorithm for efficient prime factorisation (a fundamental complexity 

to many of today’s cryptography technologies), quantum counting algorithm (Brassard et al., 

1998) for efficient counting of solutions for a given search problem, and the Harrow-Llyod 

algorithm (Harrow et al., 2009) for linear equations. Further, the ‘true’ randomness of quantum 



physics (Antonio & Lluis, 2016) could be used to implement truly random number generators 

in Monte Carlo methods of simulation (Antonio & Lluis, 2016).  

Novel and non-traditional programming techniques, such as quantum error correction codes, 

will overcome many of the outstanding issues associated with the fragility of maintaining 

quantum potentiality states and of the decoherence (collapsing) of these states following 

quantum measurements (Rieffel & Polak, 2000). 

3 Is Human Expertise Still Alive or Relevant?  

Contrary to the AI pioneers such as Herb Simon or Allen Newell, a second generation of AI 

scholars around Edward Feigenbaum and Ray Reddy were less interested in modelling 

precisely how human intelligence works, and more interested in knowledge representation and  

devising ways to help humans achieve things (McCorduck, 2019). Thanks to their work, 

knowledge representation became an important field of research. In his book The Emotion 

Machine, Minsky (2006) regards conceptualization as that which distinguishes us from other 

animals. Edward Feigenbaum was interested in creating models of thinking processes, and as 

a specific task environment, he selected the thinking process of scientists, “especially the 

processes of empirical induction by which hypotheses and theories were inferred from data” 

(Shortliffe & Rindfleisch, 2000). According to Feigenbaum, “[i]nduction is what we’re doing 

almost every moment, almost all the time” (McCorduck, 2019, p. 175). He identified the 

problem he was looking for after hearing Nobelists’ Joshua Lederberg’s talk about the problem 

of discerning the structure of a chemical compound from knowledge of its atomic constituents 

and from its mass spectrogram, using knowledge employed by skilled chemists when 

interpreting mass-spectral data (Nilsson, 2009). Feigenbaum called it one of the most 

memorable scientific talks he ever attended (Feigenbaum, 1968). Together with Lederberg he 

gathered a robust team, including the philosopher Bruce Buchanan and later Carl Djerassi – 

best known for contributing to the development of the oral contraceptive pills – for 

investigations into how scientists interpret the output of mass spectrometers (McCorduck, 

2019). The skilled chemists’ knowledge was represented as rules, and the group named their 

first program using this kind of knowledge the HEURISTIC DENDRAL; heuristics because it 

used knowledge from the chemists to control the search down process through the tree (Nilsson, 

2009). Heuristics included the specific chemical knowledge in the form of experience and 

intuition (McCorduck, 2019). For example: 

Rule 74 (Nilsson 2009, p. 199): 



 IF  The spectrum for the molecule has two peaks 
  At masses X1 and X2 such that: 
   X1 + X2 = M + 28 
    and 
   X1 – 28 is a high peak 
    and 
   At least one of X1 or X2 is high 

 THEN The molecule contains a ketone group 

Programs developed by the Dendral project in the 1970s are still used by chemists today 

(Nilsson, 2009). Feigenbaum was interested in moving away from a focus on reasoning – such 

as Allen Newell and Herb Simon’s General Problem Solver – to knowledge as an important 

source of machine and human intelligence1: “Knowledge can be refined, edited, and 

generalized to solve new problems, while the code to interpret and use the knowledge – the 

reasoning, the inference engine – remains the same. This is one reason why, in the last few 

years, AI has become noticeably smarter. The amount of knowledge on the Internet available 

to Watson, Google Brain, or language-understanding programs (or scores of start-ups) has 

grown dramatically” (McCorduck, 2019, pp. 177-178). He presented the importance of specific 

knowledge about the problem domain (i.e., the knowledge-is-power hypothesis) by calling it 

the knowledge principle (Nilsson, 2009): 

“We must hypothesize from our experience to date that the problem solving power 

exhibited in an intelligent agent’s performance is primarily a consequence of the 

specialist’s knowledge employed by the agent, and only very secondarily related to the 

generality and power of the inference method employed. Our agents must be 

knowledge-rich, even if they are methods-poor” (p. 200).  

The team discovered that the more you train the system, the better it got, and Buchanan was 

eager for Dendral to go further and make its own discoveries (McCorduck, 2019). The idea 

was to collaborate with additional scholars to build a computer program that consults with 

physicians about bacterial infections and therapy, leading to a program called MYCIN, a word 

coined by Edward Shortliffe (Nilsson, 2009). Shortliffe and Buchanan identified that 

physicians also appear to use IF-THEN reasoning: “IF the symptoms are such-and-such, THEN 

the cause is likely to be so-and-so” (Nilsson 2009, p. 230). An important part in the construction 

of expert systems is therefore interviewing experts (McCorduck, 2019; Nilsson, 2009) and 

 
1 McCorduck remembers Ed Feigenbaum’s visit to Carnegie Mellon in the 1970s, and his teasing Al and Herb 
with the line “Guys, you need to stop fooling around with toy problems” (McCorduck, 2019, p. 181).  



deriving a consulting system that interacts with the users (e.g., physicians) who supply 

information (e.g., specific patient) (Nilsson, 2009). Shortliffe also decided to introduce 

certainty factors as the IF-THEN rules were hedged with uncertainty (Nilsson, 2009). Here is 

an example (Nilsson 2009, p. 231): 

RULE036 

PREMISE:  ($AND (SAME CNTXT GRAM GRAMEG) 

    (SAME CNTXTM MORPH ROD) 

    (SAME CNTXT AIR ANEAROBIC)) 

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY 0.6) 

IF: 1)  The gram stain of the organism is gramneg, and 

 2) The morphology of the organism is rod, and 

 3)  The aerobicity of the organism is anaerobic 

THEN: There is suggestive evidence (0.6) that the identity of the organism is 
bacteroides 

Thus, the value 0.6 considers uncertainty, and thereby provides a degree of belief about the 

conclusions, incorporating some degree of ‘expert intuition’ rather than precise and certain 

knowledge. MYCIN also had the ability to explain its line of reasoning (McCorduck, 2019). 

For example: “Why did you ask whether the morphology of the organism is rod [?]… because 

I am trying to determine whether the identity of the organism is bacteroids” (Nilsson 2009, p. 

231). A core innovation of MYCIN was the way in which the reasoning process (using a rule 

“inference engine”) remained separate from the medical knowledge (the rules themselves, 

“knowledge base”). This provided flexibility in constructing new expert systems via changing 

the knowledge base but not the inference engine (Nilsson, 2009). Future programs encoded 

rules as partitioned semantic networks; rules could be linked together (inference networks); 

and inferences from rule premises to rule conclusions in the network were linked to Bayes’ rule 

probabilities by giving numbers following principles of probability theory (Nilsson 2010). 

Expert systems have been a very powerful tool for solving real-world problems (McCorduck, 

2019); thus, not surprisingly, many new companies have developed such systems (Nilsson, 

2009). The success of expert systems was due to their ability to solve narrowly- and well-

defined problems (McCorduck, 2019), yet they were deployed across many business functions 

such as manufacturing, sales, engineering, diagnostics/maintenance, and corporate knowledge 

management (Feigenbaum et al., 1989). 



Minsky’s (2006) discussion on multiple ways of representing knowledge is instructive (see pp. 

280-297). An incident can be naturally represented with a story or script. Items named in a 

story or script can refer to more complex structures in a collection of symbols (i.e., semantic 

network), and such connecting links are very versatile as each connection-link can refer to 

another type of representation. Pairs of semantic networks can also represent the effects of 

actions and can co-evolve over time (in a similar sense to storied spaces) wherein agents 

respond, adapt, and contribute to their meaning over time and in different contexts (Baskin, 

2008). Minsky uses the term Trans-Frame (p. 283) to name a pair of representations of the 

conditions before and after an action was conducted. Linking Trans-Frames allows the 

formation of a story or narrative and can also include information on common sense matters 

that provide answers to the following questions (p. 284): Who performed the action, and why? 

Where and when did the action begin and end? Was it intentional or not? What purpose did it 

intend to serve? What kinds of methods or instruments were used? What obstacles were 

overcome? What were its other side effects? Which resources did it engage? What was 

expected to happen next? Default assumptions allow rapid access to common sense knowledge 

via activation of a frame. Minsky also derived the idea of a structure that can produce records 

of what you are doing at a certain moment – a so called K-line – which is a snapshot of a mental 

state that when later activated will put you into a similar state (see also Minsky 1988): 

You want to repair a bicycle. Before you start, smear your hands with red paint. Then 

every tool you need to use will end up with red marks on it. When you’re done, just 

remember that red means ‘good for fixing bicycles.’ Next time you fix a bicycle, you 

can save time by taking out all the red-marked tools in advance. If you use different 

colors for different jobs, some tools will end up marked with several colors. That is, 

each agent can become attached to many different K-lines. Later, when there’s a job to 

do, just activate the proper K-line for that kind of job, and all the tools used in the past 

for similar jobs will automatically become available” (suggestion by Kenneth Haase 

who was a student of Minsky, see Minsky 1988, p. 82).  

Ultimately, it is a combination of these representations that could provide the most complete 

and flexible forms of knowledge representation and problem solving (Minsky, 2006). In 

learning, humans often perform metaphorical extensions of new knowledge structures based 

on pre-existing knowledge (Carroll & Thomas, 1982) by way of learning by analogy. Similarly, 

experts often draw upon case studies and examples in their approach to solving complex 

problems (Hinsley et al., 1977) and later, in explaining their methods and reasoning. With this 



sort of flexibility and tolerance for the elaboration of existing concepts comes the ability to 

take into account new information, understand novel phenomena, and adapt knowledge (and 

hence, responses) in light of changing circumstances (McCarthy, 1998). 

The downfall of expert systems and knowledge engineering lies in the difficulty (cost, time and 

effort) of developing such systems (Turban, 1988), their narrow scope of expertise and hence, 

fragility to novel problems (as opposed to more general knowledge systems which could 

contain hundreds of thousands or millions of linked concepts, facts, heuristics, relationships 

and symbolic models), their limited “naturalness” of human-machine interactions, the 

demonstration (or lack thereof) of ‘common sense’ reasoning, and their limited capacity to 

learn by analogy (Feigenbaum et al., 1989). The knowledge transfer, acquisition, or elicitation 

process itself has also presented issues for designers of expert systems as people are not always 

able to give complete or accurate reports of their mental processes (Nisbett & Wilson, 1977), 

nor are these reports purely objective descriptions of these processes (White, 1988). Thus, the 

endeavour of expert systems engineering is often seen more as art than science (Feigenbaum, 

1977):  

Art: “the principles or methods governing any craft or branch of learning.” Art: “skilled 

workmanship, execution, or agency.” These the dictionary teaches us. (Donald) Knuth 

tells us that the endeavour of computer programming is an art, in just these ways. The 

art of constructing intelligence agents is both part of and an extension of the 

programming art. It is the art of building complex computer programs that represent 

and reason with knowledge of the world. Our art therefore lives in symbiosis with the 

other worldly arts, whose practitioners – experts of their art – hold the knowledge we 

need to construct intelligent agents. In most “crafts or branches of learning” what we 

call “expertise” is the essence of the art. And for the domains of knowledge that we 

touch with our art, it is the “rules of expertise” or the rules of “good judgement” of the 

expert practitioners of that domain that we seek to transfer to our programs. (p. 3) 

4 Examples of Practical Applications 

Despite the promising nature of expert systems, many systems to date have either (1) never 

progressed beyond the prototype stage or (2) are neither widely nor routinely used in the 

purpose for which they were designed (Pollitzer & Jenkins, 1985). However, quantum 

computing allows us to rethink what we can learn from expert systems. It is no coincidence 

that quantum computing is regarded as a promising tool for making better products at lower 



costs in less time; for example, in the chemical industry, it allows modelling of molecules (e.g., 

molecules with heavy atoms), proteins, polymers, and – in particular – solids at a much higher 

level of precision and intensity. By improving our understanding of the complex molecular-

level processes involved, and by opening up new avenues of how to develop effective 

molecular designs and structures before going into the lab, quantum computing reduces time 

consuming feedback approaches such as trial-and-error experiments (Budde & Volz, 2019). 

Quantum machine learning techniques have also improved classical machine learning 

algorithms by reducing the time required to train a machine, while providing a richer 

framework for deep learning (Wilson, 2020). Such techniques can, for example, be used for 

screening molecules to accelerate the discovery process of new material, which is a challenge 

when the chemical space is very large (Xia & Kais, 2018). As Hickey (2016) points out, “[a]s 

computer hardware technology continues to improve (e.g., supercomputing, quantum 

computing) the trade-off between efficiency and thoroughness will move far toward 

thoroughness” (p. 94).  

In the next five sub-sections we introduce areas we anticipate will benefit from the applicability 

of quantum concepts. We do not suggest specific methods or step-by-step plans for doing so; 

such an inventory was never our intention. Rather, we aim to highlight areas of investigation 

which sit outside the usual and commonly referenced areas for quantum applications.  

4.1 Scientific Discovery and Breakthrough Thinking 

If there are reasons behind discoveries based on study, practice, and principles of information-

processing, the question is whether quantum computing can help make discoveries. As with 

expert systems, heuristics can be designed to simulate or facilitate such a discovery process. 

Langley et al. (1987) provide insights into how the method of heuristic selective search based 

on available knowledge of human methods of problem solving can contribute to nontrivial 

scientific discoveries. According to the authors, “[s]cience imitates life more closely than has 

been admitted. As with the rest of life, uncertainty is intrinsic to it, and every situation may be 

viewed from multiple perspectives” (p. 17). Quantum computing may help to provide these 

multiple perspectives, particularly in those cases where the seeking and searching is less 

defined or the problems are not well structured. It may also contribute to decomposition of 

complex problems into sets of problems, then recombining them while selectively applying a 

set of goals in a way that is hard to achieve via the human mind alone. The ability to test a great 

number of possible recombinations can provide the foundation for new advances. 



Technological innovation, for example, often arises as a novel combination of well-known 

building blocks (Holland, 1995). Quantum computing allows creation of various knowledge 

representations and searching selectively with different heuristics through threes of situations; 

similar to conducting a lot of experiments or simulations in a counterfactual matter. Expert 

systems can guide the knowledge required for dealing with problem situations and the steps 

needed to act in the possibility sets. It allows flexibility as task domains can narrow down the 

heuristics, making them less flexible in deriving new solutions. As we have no idea or 

guarantee about the success of a specific heuristic, testing several at the same time in “parallel” 

worlds may help to increase the chances of a (new) solution. It also allows us to test how the 

processing of different facts can lead to different quantified general insights and enable more 

explainable and comprehensible AI decisions after the fact (Byrne, 2019). In other words, it 

can test the implications of various starting points or initial conditions. Parallelism also helps 

to remind us that this is a normal part of the evolution and path-dependency of single strategies. 

For example, Richard Lenski’s experiment on E.coli began in 1988 when a single genetically 

identical clone of E.coli was used to create 12 populations that never mixed; in 2010 the 

experiment celebrated the milestone of 50,000 generations (around 70,000 now) (for a detailed 

discussion, see Wilson 2019). Every 75 days (500 generations), mixed-population samples are 

frozen and stored away2, which allows restarting the experiment from that point.  

As there are various problem spaces that represent the initial states (problem, goal etc.), a 

quantum computing approach could help to understand the implications of such spaces, and 

inform how boundary conditions fed into the system as inputs can affect the outcome of a 

system. It could help with understanding a variety of synergies (see Corning 2003, pp. 17-33) 

such as synergies of scale (adding more of the same), threshold effects (critical point is reached 

that leads to an abrupt change of state), or phase transitions, Gestalt effects (synergistic effects 

that arise from patterns among different parts, their form and structure), functional 

complementarities (different properties or capacities that join forces to give a new functional 

characteristic), emergent phenomena, augmentation or facilitation (combined effects that 

enhance a dynamic process), or convergent effects.  

However, it is less clear how intuition, creativity, or imagination can emerge from those 

processes. If – in the spirit of Plato – learning is the acquisition of knowledge and therefore a 

process of recollection, then computational tools can be extremely powerful in faster 

 
2 http://myxo.css.msu.edu/ecoli/overview.html  



acquisition and application of knowledge. Scientists, in general, come upon fruitful ideas only 

very rarely. A computational system can be trained to think analogically. It should be faster 

than humans to recognize dissimilarities side-by-side with similarities. Thus, powerful 

computer systems can derive inventive and productive new ideas, and may even provide us 

with an understanding of the process of creative thinking. Its pattern recognition abilities are 

better than those of humans, and such a process of identification and recognition can help in 

the discovery process. As invention and discoveries have something of the nature of the 

unpredictable (Yukawa, 1974), finding ways of identifying, increasing the possibility, or of 

amplifying the probability of innovations via counterfactual simulations may help creativity to 

show itself in a more structured way. Simulations are able to cope with failures, and 

experiencing repeated failures is often a source of future success through learning. In addition, 

using many counterfactuals can help deal with an abundance of information and the 

bewildering array of new stimuli that can create barriers to human creativity. Hence, a quantum 

approach can also help solve problems of information overload (Logesh et al., 2018). As a 

fixed framework is not able to cope with such an excessive amount of information, new avenues 

of creativity can emerge. Allowing for simultaneous pathways provides the tenacity to keep 

going until a ray of light is found in the darkness; enabling expansion by using different 

pathways, so that little by little the darkness is gradually dispelled. Mapping the implications 

of simultaneous pathways also considers that the discoveries are part of multilayered reality in 

our social world where history matters.  

4.2 Complex Systems 

Complex systems represent a fascinating context for the implementation of quantum 

computing, as simulation of complexity requires an enormous amount of computational power. 

Andrew Shipolov, a Professor of Strategy at INSEAD noted in a blog that quantum computing 

is “best suited for cases that involve massive data processing, but don’t require 100 percent 

precision in computations”3. Quantum computing will facilitate advancement of fields in the 

area of cybernetics, nonlinear science, and systems theory, and have produced myriad models 

of complex behaviour (see e.g., Holland, 1995, Mitchell, 2009, Page, 2010, Miller and Page 

2009 for an overview) by providing better ways of exploring challenging aspects such as 

feedback loops (Sterman, 1994), and network theory (Newman, 2010), which builds a 

theoretical and algorithmic frame applicable to many settings (Barabási, 2012). It can also 

 
3 https://knowledge.insead.edu/blog/insead-blog/the-real-business-case-for-quantum-computing-10836  



possibly help to identify and describe regularities in a system. As Axelrod and Cohen (2000) 

note, “[s]ocial systems exhibit dynamic patterns analogous to physical, biological, and 

computational systems” (p. 21). Quantum computing will provide new ways of looking at 

agent-based models, seeing society as a computational device (Epstein, 2006); endowing 

entities (e.g., individuals, objects, technologies etc.) with simple behaviour rules similar to 

expert systems, and then identifying emergent behaviour patterns in the society to which these 

agents belong (Epstein & Axtell, 1996). Quantum computing has the power to explore groups, 

organisations, and societies as if they were organisms or open complex living systems, offering 

the opportunity to examine the role of information and communication and the contextual 

forces determining interaction patterns (Axelrod & Cohen, 2000). The concept of complex 

adaptive systems (Miller & Page, 2009) can then be used to examine the role of information 

and communication, as well as the contextual forces determining interaction patterns (Axelrod 

& Cohen, 2000). Quantum computing may help us to better understand how the internal 

mechanisms of complex systems can result in structured or self-organized states. Parallelism 

through applying counterfactuals helps in understanding how individuals and systems are able 

to handle a novel world. It also offers indications of how systems adapt, and therefore how to 

identify ways of changing a system’s performance. As Holland (1995) points out, “[w]hen one 

hypothesis fails, competing rules are waiting in the wings to be tried” (p. 53). Central to a 

dynamic system is an analysis of its sensitivity (Epstein, 2006). Small changes in input (micro-

specification) can have an effect on the output (macrostructure). The fact that complex 

emergent patterns are notoriously difficult to identify (Kitto, 2008) and even more difficult to 

simulate mathematically will require the abilities of quantum computing to derive new insights. 

Crutchfield (2017) notes that increasingly powerful computers provide an entrée to 

understanding complicated and unpredictable phenomena with nonlinearly interacting systems. 

Having better tools to improve the process, storage, and transmission also makes it possible to 

more rapidly determine the state of the system (Axelrod & Cohen, 2000). 

Scalable quantum computers can also be built by networking together many simple processor 

cells (Nickerson et al., 2013). The realization of a global quantum network could allow 

improvements in the accuracy of global timekeeping, improved navigation and Earth sensing, 

and more precise telescopes (Simon, 2017). Insights from computational mechanics integrates 

ideas from dynamical systems, computational theory, and the theory of statistical inference 

(Mitchell, 2009) to guide what can be achieved with quantum computing. Chaotic 

measurement theory, for example, has successfully exploited the intimate relation between 



information, computation, and forecasting within the framework of statistical and 

computational mechanics (Crutchfield & Young, 1989). A key goal (one that is both 

challenging and ambitious) of the field of computational mechanics is to one day lay out the 

foundation of a fully automated artificial science where theories are automatically built from 

raw data, similar to the endeavours of early expert system researchers.  

Complex systems such as economies, cities etc. are organic – that is, always discovering, 

creating, and in process (Arthur, 2009) – thus, knowledge, information, creativity, and insights 

are key resources in a constantly changing world where possibilities and problems are created 

as ongoing ecological interactions call for additional responses. In this environment, entities 

are not always stable and events not always repeatable. Understanding change in such a setting 

requires comprehension of the dynamic communication and feedback channels within the 

system, as well as the architecture and design of such systems (Torgler, 2019). Insights from 

expert systems can be valuable, and complex systems such as smart cities need to integrate 

elements noted by Rob Kitchin: episteme/scientific knowledge, tech/practical instrumental 

knowledge with phronesis (which is the knowledge developed from practice and deliberation), 

and metis (the knowledge derived from experience) (Schechtner  2017, p. 75). For example, 

insights from quantum mechanics have improved the speed and accuracy of urban trip planning 

and travel recommendation systems (Logesh et al., 2018), quantum cryptography is poised to 

enable more secure Internet-of-Things (IoT) in smart cities  (Routray et al., 2017), and even 

improve moving target tracking algorithms deployed in video surveillance, human-computer 

interaction, and human behaviour analysis (Zhigang et al., 2020). 

4.3 Medical Sciences and Advice 

The replacement of human physicians with AI medical agents is a common theme in science 

fiction, and rightly so: as health care systems are continually pressed for resources, costs 

associated with the provision of health care service continue to increase and do not appear to 

be slowing down. The overall goal of incorporating concepts, tools and techniques inspired and 

developed by AI researchers is to assist health care professionals by improving their 

effectiveness, productivity, and consistency (Agah, 2013); hence, enabling more sustainable 

health care systems now and into the future. Naturally, for developers of expert systems (a 

member of the ‘hard’ AI class), the medical domain was an attractive field of practical 

application and several developed systems achieved measurable successes: MYCIN 

(Shortliffe, 1974), INTERNIST (Myers & Pople, 1977), PUFF (Kunz et al., 1978), and VM 



(Fagan, 1978), to name a few. The major breakthrough of these expert systems, particularly of 

MYCIN, was their representation of uncertainty in medical decision-making (Pollitzer & 

Jenkins, 1985) and their ability to somewhat mimic the processes used by medical professionals 

in dealing with this uncertainty. Concepts such as fuzzy logic, similar in some ways to quantum 

logic, yet less general in scope (Schmitt et al., 2009), have also proven effective in expert 

systems applications to overcome the incomplete and vague information often provided by 

patients (Prihatini & Putra, 2012).  

By taking a quantum approach, a revision of medical expert systems may yield more robust 

and lasting benefits to the medical community. When used in combination, quantum 

superposition and interference could be used to drive such quantum expert systems towards the 

most probable diagnosis. Moreover, treatment plans may be based on a large array of medical 

knowledge, perhaps gathered automatically and continually updated according to findings and 

insights from prominent and peer-reviewed medical research journals and databases, and with 

feedback from actual performance outcomes and metrics resulting from their use in real world 

environments. By leveraging another major strength of AI – the identification of patterns and 

trends present in large, multi-dimensional datasets – diagnoses and treatment plans could be 

derived from complex medical datasets in a much more consistent, accurate and timely manner 

compared with any possible human counterpart (Naylor, 2018). 

Quantum concepts have also been used to study the evolution of epidemics, extending the 

conventional Susceptible-Infected (SI) and Susceptible-Infected-Susceptible (SIS) models 

(León & Pozo, 2007). Under this approach, an individual (prior to measurement/testing) exists 

in some superposition of the two classical states of susceptible and infected, and the quantum 

model shows a reasonable degree of correlation with actual data collected. One could sensibly 

extend the use of quantum algorithms to infectious disease surveillance systems wherein 

experts manage outbreak identification and confirmation by validating (or invalidating) an 

alarm and if required, initiating an alert and establishing appropriate countermeasures (Texier 

et al., 2017). Fuzzy methods have again proven effective in their description of data from 

disease surveillance (Zhang et al., 2016), suggesting that perhaps incorporating quantum 

concepts will yield additional benefits.  

4.4 Strategic Business Management 

Decision making in business implies actions based on imperfect information, arising from 

many dimensions such as social range, genesis (e.g., routine, unanticipated, etc.), scope, 



differences in the process of decision-makings, consequences, and context (Smelser and Reed 

2012). Needless to say, we are currently facing possibly the biggest social and economic crisis 

that ever hit our planet. However, even before COVID-19, the compounding interactions of 

rapid technological change, growing economic interdependence, and mounting political 

instability had rendered the future increasingly murky. Researchers developed elaborate 

acronyms such as VUCA to describe our volatile, uncertain, complex, and ambiguous world. 

Unpredictability was already omnipresent – and then the pandemic hit. The crux is that now, 

in disruptive times, interpolation of historical data no longer allows predicting the future. Many 

more current context factors need to be incorporated into forecasting models to meet the 

complex and rapidly changing environmental conditions. As our world could change even more 

radically in the coming decades than in the past hundred years, quantitative forecasts are 

becoming increasingly complex and demanding. In just a few decades, a new world will have 

emerged – our great-grandchildren will not be able to even imagine the world as we know it 

today (Schmidt & Stoneham, 2020). Using quantum computers could help provide better 

predictive models and therefore a better database for strategic discussions, thereby improving 

a company’s corporate intelligence. We all want to better understand the new age we are 

entering, and we need an antenna for what is coming and where we might go. The future is 

coming fast and will not wait for us. We are on the edge of a dramatically different world 

brought about by technology that will push the boundaries of what is possible, building a 

different future. To reap the rewards of progress in quantum computing, we need to find ways 

to race with the emerging technology.  

The desire to predict the future is part of human nature, and we find many examples of this 

throughout history. Forecasting is the process of making predictions about the future based on 

historical and current data – most often using trend, indicator, and impact forecasts. 

Nevertheless, predicting the future is a complex task. Quantitative forecasting models are 

usually applied to short or medium-term future scenarios and are used to predict future data 

depending on data from the past. They are suitable when sufficient historical data are available 

and when some of the patterns in the data are likely to continue (Schmidt, 2020). Managers 

could use quantum computers to analyse the enormous amount of data they collect about their 

business ecosystem. Because of their qubits and exponentially larger process memory, 

quantum computers can simultaneously explore a massive number of future paths, giving them 

the potential to be so much faster than today’s computers. This may generate a better 

understanding when studying the strengths and limitations of different organizations. As 



Drucker (2007) has pointed out, “[j]ust as there are a great number of different structures for 

biological organizations, so there are a number of organizations for the social organism that is 

the modern institution. Instead of searching for the right organization, management needs to 

learn to look for, to develop, to test” (pp. 16-17).  

However, quantum computers do not deliver one clear answer. Instead, they provide a 

narrowed range of possible answers; as such, quantum computers sound less precise than 

classical computers that offer a single answer. When calculations are limited in scope, quantum 

computers are indeed less precise, which is one reason they will not replace today’s systems. 

Instead, quantum computers will be used for different kinds of future scenarios – incredibly 

complex ones – in which eliminating an enormous range of possibilities will save an enormous 

amount of time (Ménard et al., 2020). Moreover, the information provided can move the 

inquiry beyond a narrowly focused operating organization towards exploring opportunities 

such as whether or not diversification would be helpful. Information systems can then be 

stronger in evaluating not only inside information but also outside information.  

4.5 The Future of Sports 

New technologies of Big Data, AI, and quantum computing have penetrated the sports 

environment (Torgler, 2020). Technology is becoming a key player both on and off the field in 

sports arenas, and is currently implemented to improve the performance of athletes, sports 

consumption, and sports management (Schmidt, 2020). Sports business leaders require an 

understanding of the role of technology, how technology affects their business today, and how 

it will affect it in the future (Schmidt, 2020). New opportunities through new technologies and 

data can challenge and disrupt the sports environment, as evident with the growing importance 

of data analytics. The analytical method of winning (made famous to a broad audience by 

Michael Lewis’ book Moneyball) drew substantial attention despite its broad criticism. 

Oakland Athletics tried to find new and better ways of valuing baseball players, often 

discovering value in players who had been discarded or overlooked. Other clubs such as the 

Boston Red Sox also successfully implemented the same methods, winning the World Series 

in 2004, 2007, and 2013. However, after several disappointing seasons, in 2016 they announced 

their move away from the data-based approach and a return to relying upon the judgement of 

baseball experts (Lewis, 2016). This may indicate (as suggested in this contribution) that a 

combination of expert knowledge and technology might not be a bad avenue in sports. Expert 

knowledge can guide the way information is collected; for example, under Daryl Morey, the 



Houston Rockets started to collect not just the number of rebounds per player but also the 

number of genuine opportunities for rebounds (Lewis, 2016). Morey also looked at the 

predictions made by his staff, realising that they needed scouts to, for example, rate a player’s 

ability to do things they knew were important (e.g., shooting, finishing, getting to the rim, 

offensive rebounding etc.): “The trick wasn’t just to build a better model. It was to listen both 

to it and to the scouts at the same time. ‘You have to figure out what the model is good and bad 

at, and what humans are good and bad at,’ said Morey” (Lewis, 2016, p. 38); for example, 

models were bad at identifying when a player was not trying hard enough. Expert systems have 

been used to identify sports talent (Papić et al., 2009) and have also been used in the area of 

sports biomechanics (Bartlett, 2006). Bartlett concludes by stressing that “[a]utomatic marker-

tracking systems allow more, and more accurate, human movement data to be collected. This 

could lead to the use of fuzzy Expert Systems for diagnosis of faults in sports techniques, a 

substantial development of the rudimentary Expert Systems currently embedded in some video 

analysis packages” (p. 478).  

Digital footprints can improve athletes’ performance, long-term health status, and stress 

resistance; can even prolong their sports career (Passfield & Hopker, 2017), and can feed into 

how tactics are chosen (Torgler 2020). Instant feedback through, for example, the use of these 

wearable technologies (Torgler 2019) may transform how matches are organized (Memmert & 

Rein, 2018), but they require substantial computation power, particularly in highly interactive 

environments such as team sports. Artificial neural networks (ANNs) and advanced AI 

technologies may help in the sports environment due to their capacity of dealing with complex 

input-output relations (Torgler 2020). They can be used for various purposes, for example: 

identify game strategies; identify patterns among players and teams; predict outcomes and 

risks; allow for tactical analysis; predict injuries or training loads; or identify talents (Casals & 

Finch, 2017; Chase, 2020; Kahn, 2003; McCullagh & Whitfort, 2013; Pena & Touchette, 2012; 

Rygula, 2003). Quantum computation and information systems provide an opportunity to 

handle the complexity and rich data of sports ecosystems, offering new ways of analysing 

sports-related data (Torgler 2020). For example, camera-based player tracking systems capture 

every player’s position for every NBA game at 25 frames per second (Chase, 2020). Quantum 

computing can be particularly powerful in identifying counterfactual “what if” scenarios during 

a game, therefore revolutionising real-time game strategies by quickly understanding the 

implication of “what if” situations.  



5 Conclusions 

In this contribution, we have highlighted the potential for quantum theories to reignite the art 

and science of expert systems and knowledge engineering. With their fundamental grounding 

in uncertainty and unpredictability, quantum concepts are able to expand theoretical and 

practical boundaries of research and exploration. We have demonstrated the similarities 

between quantum concepts and expert systems, outlining five domains we regard as largely 

unexplored in popular accounts of quantum theory and containing highly fruitful applications 

of quantum technologies.  

 

Disclosure Statement 

No potential conflict of interest was reported by the author(s). 

 

Notes on Contributors 

Steve J. Bickley is a PhD student at the School of Economics and Finance, Queensland 
University of Technology. His current research focuses on modelling complex human systems. 

Ho Fai Chan is a Post-Doctoral Research Fellow in the School of Economics and Finance, 
Queensland University of Technology. His research lies in the areas of Science of Science 
(SciSci) and Scientometrics. 

Sascha L. Schmidt is Professor and Director of the Center for Sports and Management (CSM) 
at WHU - Otto Beisheim School of Management, Dusseldorf. The "Future of Sport" is one of 
Sascha's key research areas. 

Benno Torgler is a Professor of Economics in the School of Economics and Finance and the 
Centre for Behavioural Economics, Society and Technology, Queensland University of 
Technology. His primary research interest lies in the area of economics, but he has also 
published in journals with a political science, social psychology, sociology, and biology focus. 

 

References 

Agah, A. (2013). Medical applications of artificial intelligence. CRC Press.  

Antonio, A., & Lluis, M. (2016). Certified randomness in quantum physics. Nature, 540(7632), 
213. https://doi.org/10.1038/nature20119  

Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. Simon and 
Schuster.  

Axelrod, R., & Cohen, M. (2000). Harnessing Complexity Organizational Implications of a 
Scientific Frontier. Free Press.  



Baaquie, B. E. (2013). The theoretical foundations of quantum mechanics. Springer Science & 
Business Media.  

Banks, T. (2019). Quantum mechanics: an introduction. 
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk
&AN=1897033  

Barabási, A.-L. (2012). The network takeover. Nature Physics, 8(1), 14-16.  

Bartlett, R. (2006). Artificial intelligence in sports biomechanics: New dawn or false hope? 
Journal of sports science & medicine, 5(4), 474.  

Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J. F., Zeilinger, A., & Walther, P. (2012). 
Demonstration of blind quantum computing. Science, 335(6066), 303-308.  

Baskin, K. (2008). Storied Spaces: The Human Equivalent of Complex Adaptive Systems. 
Emergence : Complexity and Organization, 10(2), 1-12.  

Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993). 
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen 
channels. Physical Review Letters, 70(13), 1895-1899.  

Bennett, C. H., & Shor, P. W. (1998). Quantum information theory. IEEE transactions on 
information theory, 44(6), 2724-2742.  

Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered 
complete? Physical review, 48(8), 696.  

Born, M. (1926). Quantenmechanik der stoßvorgänge. Zeitschrift für Physik, 38(11-12), 803-
827.  

Brassard, G., Hoyer, P., & Tapp, A. (1998). Quantum Counting. arXiv.org. 
https://doi.org/10.1007/BFb0055105  

Budde, F., & Volz, D. (2019). The next big thing? Quantum computing's potential impact on 
chemicals.  

Byrne, R. (2019). Counterfactuals in Explainable Artificial Intelligence (XAI): Evidence from 
Human Reasoning. IJCAI,  

Carroll, J. M., & Thomas, J. C. (1982). Metaphor and the cognitive representation of computing 
systems. IEEE Transactions on systems, Man, and Cybernetics, 12(2), 107-116.  

Casals, M., & Finch, C. F. (2017). Sports Biostatistician: a critical member of all sports science 
and medicine teams for injury prevention. Injury prevention, 23(6), 423-427.  

Chase, C. (2020). The Data Revolution: Cloud Computing, Artificial Intelligence, and Machine 
Learning in the Future of Sports. In 21st Century Sports (pp. 175-189). Springer.  

Corning, P. (2003). Nature's magic: Synergy in evolution and the fate of humankind. 
Cambridge University Press.  

Crutchfield, J. P. (2017). The origins of computational mechanics: A brief intellectual history 
and several clarifications. arXiv preprint arXiv:1710.06832.  

Crutchfield, J. P., & Young, K. (1989). Inferring statistical complexity. Physical Review 
Letters, 63(2), 105-108.  



 
Deutsch, D. (1989). Quantum Computational Networks. Proceedings of the Royal Society of 

London. Series A, Mathematical and Physical Sciences, 425(1868), 73-90.  

Deutsch, D., & Jozsa, R. (1992). Rapid solution of problems by quantum computation. 
Proceedings of the Royal Society of London. Series A: Mathematical and Physical 
Sciences, 439(1907), 553-558.  

Drucker, P. F. (2007). Management challenges for the 21st century. Routledge.  

Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of 
physical reality be considered complete? Physical Review, 47(10), 777.  

Englert, B.-G. (2013). On quantum theory. The European Physical Journal D, 67(11), 1-16. 
https://doi.org/10.1140/epjd/e2013-40486-5  

Epstein, J. M. (2006). Generative social science: Studies in agent-based computational 
modeling (Vol. 13). Princeton University Press.  

Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom 
up. Brookings Institution Press.  

Fagan, L. (1978). Ventilator management: a program to provide on-line consultative advice in 
the intensive care unit. Memo HPP-li-Xi.  

Feigenbaum, E. A. (1968). Artificial intelligence: themes in the second decade.  

Feigenbaum, E. A. (1977). The art of artificial intelligence. 1. Themes and case studies of 
knowledge engineering.  

Feigenbaum, E. A., McCorduck, P., & Nii, H. P. (1989). The Rise of the Expert Company; How 
Visionary Companies Are Using Artificial Intelligence to. Vintage Books.  

Feynman, R. P. (1982). Simulating physics with computers. International Journal of 
Theoretical Physics, 21(6/7), 467-488.  

Galindo, A., & Martin-Delgado, M. (2001). Information and Computation: Classical and 
Quantum Aspects. arXiv.org, 74(2). https://doi.org/10.1103/RevModPhys.74.347  

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.  

Harrow, A., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for solving linear systems 
of equations. arXiv.org, 103(15). https://doi.org/10.1103/PhysRevLett.103.150502  

Hickey, T. J. (2016). Twentieth-Century Philosophy of Science: A History. Thomas J. Hickey. 
https://books.google.com.au/books?id=L_y-CwAAQBAJ  

Hinsley, D. A., Hayes, J. R., & Simon, H. A. (1977). From words to equations: Meaning and 
representation in algebra word problems. Cognitive Processes in Comprehension, 329, 
89-106.  

Holland, J. H. (1995). Hidden orderhow adaptation builds complexity.  

Kahn, J. (2003). Neural network prediction of NFL football games. World Wide Web electronic 
publication, 9-15.  

Kimble, H. J. (2008). The quantum internet. Nature, 453(7198), 1023-1030.  



Kitto, K. (2008). High end complexity. International journal of general systems, 37(6), 689-
714.  

 
Kunz, J., Fallat, R., McClung, D., Osborn, J., Votteri, R., Nii, H., Aikins, J., Fagan, L., & 

Feigenbaum, E. (1978). A physiological rule-based system for interpreting pulmonary 
function test results. In Rept. HPP-78-19, Heuristic Programming Project. Computer 
Science Department, Stanford University, Stanford, California.  

Landauer, R. (1996, 1996/07/15/). The physical nature of information. Physics Letters A, 
217(4), 188-193. https://doi.org/https://doi.org/10.1016/0375-9601(96)00453-7  

Landauer, R. (1999). Information is a physical entity. Physica A, 263(1-4), 63-67. 
https://doi.org/10.1016/S0378-4371(98)00513-5  

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific discovery: 
Computational explorations of the creative processes. MIT press.  

León, A., & Pozo, J. (2007). Model based on a quantum algorithm to study the evolution of an 
epidemics. Computers in biology and medicine, 37(3), 337-341.  

Lewis, M. (2016). The undoing project: A friendship that changed the world. Penguin UK.  

Lloyd, S. (1995). Almost any quantum logic gate is universal. Physical Review Letters, 75(2), 
346.  

Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Gao, X.-Z., & Indragandhi, V. (2018). 
A hybrid quantum-induced swarm intelligence clustering for the urban trip 
recommendation in smart city. Future Generation Computer Systems, 83, 653-673.  

McCarthy, J. (1998). Elaboration tolerance. Common Sense,  

McCorduck, P. (2019). This Could be Important: My Life and Times with the Artificial 
Intelligentsia. Lulu. com.  

McCullagh, J., & Whitfort, T. (2013). An investigation into the application of Artificial Neural 
Networks to the prediction of injuries in sport. International Journal of Sport and 
Health Sciences, 7(7), 356-360.  

Memmert, D., & Rein, R. (2018). Match analysis, big data and tactics: current trends in elite 
soccer. German Journal of Sports Medicine/Deutsche Zeitschrift fur Sportmedizin, 
69(3).  

Ménard, A., Ostojic, I., Patel, M., & Volz, D. (2020). A game plan for quantum computing, 
McKinsey Quarterly, Issue.  

Miller, J. H., & Page, S. E. (2009). Complex adaptive systems: An introduction to 
computational models of social life. Princeton university press.  

Minsky, M. (2006). The emotion machine : commensense thinking, artificial intelligence, and 
the future of the human mind. Simon & Schuster.  

Mirowski, P. (1990). From Mandelbrot to Chaos in Economic Theory. Southern Economic 
Journal, 57(2), 289-307. https://doi.org/10.2307/1060611  

Mitchell, M. (2009). Complexity: A guided tour. Oxford University Press.  



Myers, J., & Pople, H. E. (1977). INTERNIST: A consultative diagnostic program in internal 
medicine. Proceedings of the Annual Symposium on Computer Application in Medical 
Care,  

 
Naylor, C. D. (2018). On the prospects for a (deep) learning health care system. Jama, 320(11), 

1099-1100.  

Newman, M. E. J. (2010). Networks an introduction. Oxford University Press.  

Nickerson, N. H., Li, Y., & Benjamin, S. C. (2013). Topological quantum computing with a 
very noisy network and local error rates approaching one percent. Nature 
Communications, 4(1), 1-5.  

Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press.  

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: verbal reports on 
mental processes. Psychological Review, 84(3), 231.  

Page, S. E. (2010). Diversity and complexity (Vol. 2). Princeton University Press.  

Papić, V., Rogulj, N., & Pleština, V. (2009). Identification of sport talents using a web-oriented 
expert system with a fuzzy module. Expert Systems with Applications, 36(5), 8830-
8838.  

Passfield, L., & Hopker, J. G. (2017). A mine of information: can sports analytics provide 
wisdom from your data? International Journal of Sports Physiology and Performance, 
12(7), 851-855.  

Pena, J. L., & Touchette, H. (2012). A network theory analysis of football strategies. arXiv 
preprint arXiv:1206.6904.  

Peres, A. (2002). Quantum Theory: Concepts and Methods (1st ed. 2002. ed.). Springer 
Netherlands. https://doi.org/10.1007/0-306-47120-5  

Pollitzer, E., & Jenkins, J. (1985). Expert knowledge, expert systems and commercial interests. 
Omega (Oxford), 13(5), 407-418. https://doi.org/10.1016/0305-0483(85)90068-4  

Prigogine, I. (1980). From being to becoming : time and complexity in the physical sciences. 
W. H. Freeman.  

Prihatini, P., & Putra, I. (2012). Fuzzy Knowledge-based System with Uncertainty for Tropical 
Infectious Disease Diagnosis. International Journal of Computer Science Issues 
(IJCSI), 9(4), 157-163.  

Rieffel, E., & Polak, W. (2000). An introduction to quantum computing for non-physicists. 
ACM Computing Surveys (CSUR), 32(3), 300-335.  

 
Routray, S. K., Jha, M. K., Sharma, L., Nyamangoudar, R., Javali, A., & Sarkar, S. (2017). 

Quantum cryptography for iot: Aperspective. 2017 International Conference on IoT and 
Application (ICIOT),  

Rygula, I. (2003). Artificial neural networks as a tool of modeling of training loads. IFAC 
Proceedings Volumes, 36(15), 531-535.  



Schechtner, K. (2017). Bridging the adoption gap for smart city technologies: an interview with 
Rob Kitchin. IEEE Pervasive Computing, 16(2), 72-75.  

 
Schmidt, S. L. (2020). How Technologies Impact Sports in the Digital Age. In 21st Century 

Sports (pp. 3-14). Springer.  

Schmidt, S. L., & Stoneham, K. (2020). Beyond 2030: What Sports Will Look like for the 
Athletes, Consumers, and Managers. In 21st Century Sports (pp. 293-301). Springer.  

Schmitt, I., Nürnberger, A., & Lehrack, S. (2009). On the relation between fuzzy and quantum 
logic. In Views on Fuzzy Sets and Systems from Different Perspectives (pp. 417-438). 
Springer.  

Schumacher. (1995). Quantum coding. Physical Review. A, Atomic, Molecular, and Optical 
Physics, 51(4), 2738. https://doi.org/10.1103/PhysRevA.51.2738  

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical 
Journal, 27(3), 379-423.  

Shortliffe, E. H. (1974). MYCIN: a rule-based computer program for advising physicians 
regarding antimicrobial therapy selection.  

Shortliffe, E. H., & Rindfleisch, T. C. (2000). Presentation of the Morris F. Collen Award to 
Joshua Lederberg, PhD. Journal of the American Medical Informatics Association, 
7(3), 326-332.  

Shu-Hsien, L. (2005). Expert system methodologies and applications—a decade review from 
1995 to 2004. Expert systems with applications, 28(1), 93-103. 
https://doi.org/10.1016/j.eswa.2004.08.003  

Siler, W. (2005). Fuzzy expert systems and fuzzy reasoning. Wiley-Interscience. 
https://doi.org/10.1002/0471698504  

Simon, C. (2017). Towards a global quantum network. Nature Photonics, 11(11), 678-680.  

Sriboonchitta, S., Nguyen, H. T., Kosheleva, O., Kreinovich, V., & Nguyen, T. N. (2019). 
Quantum approach explains the need for expert knowledge: on the example of 
econometrics. International Conference of the Thailand Econometrics Society,  

Stehr, N. (2011). Experts : the knowledge and power of expertise. Routledge.  

Sterman, J. D. (1994). Learning in and about complex systems. System dynamics review, 10(2‐
3), 291-330.  

Texier, G., Pellegrin, L., Vignal, C., Meynard, J.-B., Deparis, X., & Chaudet, H. (2017). 
Dealing with uncertainty when using a surveillance system. International journal of 
medical informatics (Shannon, Ireland), 104, 65-73. 
https://doi.org/10.1016/j.ijmedinf.2017.05.006  

Torgler, B. (2019). Opportunities and Challenges of Portable Biological, Social, and 
Behavioral Sensing Systems for the Social Sciences. In Biophysical Measurement in 
Experimental Social Science Research (pp. 197-224). Elsevier.  

Torgler, B. (2020). Big Data, Artificial Intelligence, and Quantum Computing in Sports. In 
21st Century Sports (pp. 153-173). Springer.  



Turban, E. (1988). Review of expert systems technology. IEEE Transactions on Engineering 
Management, 35(2), 71-81. https://doi.org/10.1109/17.6007  

White, I. (1988). W (h) ither expert systems?—A view from outside. AI & SOCIETY, 2(2), 
161-171.  

Wilson, D. S. (2020). This view of life: Completing the Darwinian revolution. Vintage.  

Xia, R., & Kais, S. (2018). Quantum machine learning for electronic structure calculations. 
Nature Communications, 9(1), 1-6.  

Ying, M. (2010). Quantum computation, quantum theory and AI. Artificial intelligence, 174(2), 
162-176. https://doi.org/10.1016/j.artint.2009.11.009  

Yukawa, H. (1974). Creativity and Intuition: A Physicist Looks at East and West. American 
Journal of Physics, 42(5), 431-434. https://doi.org/10.1119/1.1987732  

Zhang, T., Zhang, X., Liu, Y., Luo, Y., Zhou, T., & Li, X. (2016). The analysis of infectious 
disease surveillance data based on fuzzy time series method. International Journal of 
Infectious Diseases, 45(S1), 309-310. https://doi.org/10.1016/j.ijid.2016.02.677  

Zhigang, L., Jin, S., & Xufen, H. (2020). Smart City Moving Target Tracking Algorithm Based 
on Quantum Genetic and Particle Filter. Wireless Communications and Mobile 
Computing, 2020. https://doi.org/10.1155/2020/8865298  

 

 


