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ABSTRACT This paper deals with statistical inference for lifetime data in presence of imperfect
maintenance. For the maintenance model, the Sheu and Griffith model is considered. The life-
time distribution belongs to exponential distribution class. The maximum likelihood estimation
procedure of the model parameters is discussed, and confidence intervals are provided using the
asymptotic likelihood theory and bootstrap approach. Based on conjugate and discrete priors,
Bayesian estimators of the model parameters are developed under symmetric and asymmetric loss
functions. The proposed methodologies are applied to simulated data and sensitivity analysis to
different parameters and data characteristics is carried out. The effect of model misspecification
is also assessed within this class of distributions through a Monte Carlo simulation study. Finally,
two datasets are analyzed for demonstrative aims.

Keywords: Bayesian inference; Confidence interval; Exponential-based class; Imperfect repair;
Maximum likelihood estimation; Model misspecification.

1 Introduction

A repairable system is a system which, after failing to perform one or more of its functions
satisfactorily it can be restored an acceptable but necessarily new condition [1] . Analysis of the
reliability of these kinds of systems must consider the effects of successive repair actions.
In general, maintenance tasks are classified into two extreme cases: minimal repair and perfect re-
pair. Maintenance actions that restore a system such that its failure rate remains unchanged after
maintenance is called minimal repair (as bad as old). Perfect repair refers to maintenance actions,
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which restore a system to a new one (as good as new). The corresponding stochastic models for the
failure process are respectively the Non-Homogeneous Poisson Processes (NHPP) and the Renewal
Processes (RP). Chaudhuri and Sahu [2] introduced a more general maintenance which includes
these two extreme cases, called as “imperfect repair”.
Among the first studies dealing with the imperfect repair concept, we can recall the model of Brown
and Proschan [3] (BP model). In this model, two types of failures can occur: catastrophic failure
(type-II failure) and minor failure (type-I failure). The state after type-II failure is as good as new
with probability p and after a type-I failure is as bad as old with probability 1−p where p is in [0, 1].
In extension of BP model,Block et al. [4] proposed the age-dependent imperfect repair model where
p is allowed to depend on t and t is the age of the item in use at the failure time (the time since
the last perfect repair). They considered a continuous lifetime distribution. Pham and Wang [5]
summarized and discussed various methods and optimal policies for imperfect maintenance. Sheu
and Griffith [6] were concerned with modeling systems with dependent components having specific
multivariate distributions, and undergoing imperfect repair.
A very important class of models proposed by Kijima [7], discussed the concept of virtual age
models and applied it to repairable systems. There are many papers addressing this issue in the
literature, refer to Langseth and Lindqvist [8], Doyen and Gaudoin [9] and Nguyen et al. [10]. An
extension of the BP model was proposed by Sheu and Griffith [6] as a generalized model for de-
termining the optimal number of minimal repair before replacement of a system subject to shocks.
In this model, the system is replaced at first type-II failure, or at nth type-I failure. They also
supposed that shocks occur according to a Non-Homogeneous Poisson process (NHPP) and based
on an optimal replacement policy, the optimal number of n is defined. This optimal maintenance
policy depends on the parameters of the system lifetime. Most of the authors suppose that the
reliability parameters and repair effects are known.
However, in practice, these parameters are often unknown. Estimation of these parameters is es-
sential for maintenance planning and optimization. In fact, for a repairable system, the time to
failure depends on both the lifetime distribution and the impact of maintenance actions performed
on the system. Generally, for reliable systems, only a few failures occur in practice. On the other
hand, the engineers’ knowledge about the failure process could be useful to improve the estimations
of the model parameters. Thus, a Bayesian analysis of this model is an interesting alternative to
frequentist methods. Among the studies dealing with Bayesian approaches for imperfect mainte-
nance, we can name Nguyen et al. [11] and Moneim et al. [12].
Recently, Kamranfar et al. [13] have dealt with Sheu and Griffith [6] imperfect repair model (SG
model) from a statistical point of view. They have considered Weibull distribution as inter-arrival
time distribution and presented both frequentist and Bayesian approaches to estimate the model
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parameters. This paper focuses on different inferential methods for the SG model in both directions:
frequentist and Bayesian. The lifetime distribution of the system is assumed to belong to a class of
univariate distributions generated from the exponential distribution. Special distributions of this
class are Burr-XII, Gompertz, Weibull, and bathtub-shaped lifetime distributions all of which are
commonly used to model lifetime data. More details on this class are given in the next section and
also one can refer to Wang and Shi [14] and Ahmadi et al. [15]. The main contributions of this
paper are as follows.

1. The SG imperfect repair model is considered based on a general class of univariate distribu-
tions generated from the exponential distribution. No researcher has studied the SG model
for this class so far. Also among the specific members of the class, to the best of our knowl-
edge, no study has been conducted on the SG model based on Burr-XII, Gompertz, and
bathtub-shaped lifetime distributions which are widely used in reliability engineering.

2. In the frequentist approach, the maximum likelihood (ML) method is used for the parame-
ter estimation, and confidence intervals (CIs) are constructed by using the observed Fisher
information matrix, and a parametric bootstrap method.

3. The Bayesian estimators of the parameters are obtained under symmetric as well as asym-
metric loss functions.

4. The effect of model misspecification on the estimation of the mean time to prefect repair is
investigated through a detailed Monte Carlo simulation study.

5. Using the likelihood-based method, a detailed study of model selection based on Boeing air
conditioner data is presented.

The outline of the paper is as follows. Section 2 gives the problem description and associated
assumptions. In Section 3 inference problem, including ML estimators (MLEs), CIs, and likelihood
ratio test (LRT) is developed. Bayesian analysis is presented in Section 4 under symmetric and
asymmetric loss functions. Section 5 is devoted to Monte Carlo simulation study for assessing the
performance of the inferential methods. In this section, the results of a study on the effect of model
misspecification are also presented. Section 6 provides analyses of two datasets. Finally, in Section
7, the paper ends with some conclusions and perspectives for future works.

2 Model description and assumption

Many authors have considered optimal policies, which often use a long-run average cost rate or
availability evaluated from system lifetime distribution and maintenance unit costs, refer to Tsai
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et al. [16] and Sheut et al. [17] among others. This optimal maintenance policy depends on the
parameters of the system lifetime distribution. Often, it is assumed that parameters of lifetime
distribution and repair efficiency parameter (p) are known. However, it is not generally the case in
practice and statistical inference is needed to estimate model parameters and compute reliability
indicators from failure data.
Kamranfar et al. [13] considered a homogeneous case of the SG model with q = 1− p and p as the
probability of minimal repair and replacement, respectively. Based on the applying assumptions
in Kamranfar et al. [13, p. 3-4] and the SG model, we can present the following expression as the
replacement time

Y ∗ =

n∑
i=1

TiI(M ≥ i),

where, I(.) is the indicator function, M denotes the number of the shocks until the first type-II
failure since the last replacement and Ti is the duration of functioning of the system after the
(i− 1)th minimal repair.
There are many distributions that have been suggested for lifetime data modeling. Among the
existing distributions, the class of univariate distributions generated from the exponential distribu-
tion is one of the most used. The probability density function (PDF) and cumulative distribution
function (CDF) of this class can be expressed as follows

f(t;α, λ) = λψ(t;α) exp{−λΨ(t;α)}, t, α, λ > 0, (1)

F (t;α, λ) = 1− exp{−λΨ(t;α)}, (2)

respectively, where α and λ are unknown model parameters, ψ(t;α) = ∂
∂tΨ(t;α), Ψ(t;α) is increas-

ing in t with Ψ(0;α) = 0 and Ψ(∞;α) = ∞. The reliability function R(t) and the hazard function
H(t) of the model (1) at time t can be written as

R(t) = exp{−λΨ(t;α)}, H(t) = λψ(t;α).

Note that the general form for lifetime model (1) includes some well-known and useful models such
as Burr-XII distribution with Ψ(t;α) = ln(1+tα), Gompertz distribution with Ψ(t;α) = 1

α(e
αt−1),

Weibull distribution with Ψ(t;α) = tα, two parameters bathtub-shaped lifetime distribution(see
Chen [18]) with Ψ(t;α) = et

α − 1, and so on. Hereafter, the two parameters bathtub-shaped
distribution is called Chen distribution.
Let us consider a repairable system under the SG model. It is assumed that the initial lifetime of
the system follows from the continuous distribution (2). The system is replaced at the first type-II
failure or at the nth type-I failure whichever occurs first. Let x = (x1, . . . , xm); 1 ≤ m ≤ n, be the
observed failure times of the system until replacement.
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3 Frequentist inference

3.1 Maximum likelihood method of estimation

To apply the ML method, the first step is the develop the likelihood function concerning to
available data. Kamranfar et al. [13] assumed that the number of minimal repairs in the SG model
is fixed and proposed the likelihood function as

L(p, F ;x,m) =

n−1∏
j=1

(1− p)I(m>j)pI(m=j)[f (xj |xj−1)]
I(m≥j)

 [f (xn|xn−1)]
I(m=n)

= (1− p)m−1pI(m<n)
m∏
j=1

f (xj)

F̄ (xj−1)
, x1 < · · · < xm, (3)

where f(xi|xi−1) is the truncated density function of xi given xi−1, F̄ (.) = 1− F (.) is the survival
function of F, and x0 = 0. For a sample of k independent and identically distributed (i.i.d.) systems
(or k replacements), the likelihood function can be expressed as

L(p, F ; x̃,m) =
k∏

i=1

mi∏
j=1

(1− p)mi−1pI(mi<n) f (xi,j)

F̄ (xi,j−1)

= (1− p)m
(k)−kp

k∑
i=1

I(mi<n)
k∏

i=1

mi∏
j=1

f (xi,j)

F̄ (xi,j−1)
, (4)

where x̃ = (x1, . . . ,xk), xi = (xi,1, xi,2, ..., xi,mi); 1 ≤ i ≤ k, and m(k) =
∑k

i=1mi. Hereinafter, for
more simplification in notations, instead of L(p, F ; x̃,m) and ln(L(p, F ; x̃,m)) are denoted by L∗

and ℓ∗.
In the following, under the assumption that the lifetime distribution belongs to the introduced class
in Eq. (1), the maximum likelihood estimates are developped. Considering the desirable class, the
likelihood function (4) may be simplified as

L∗ = (1− p)m
(k)−kp

∑k
i=1 I(mi<n)λm

(k)

 k∏
i=1

mi∏
j=1

ψ (xi,j ;α)

 exp

{
−λ

k∑
i=1

Ψ(xi,mi ;α)

}
, (5)

which yields

ℓ∗ =
(
m(k) − k

)
ln (1− p) +

k∑
i=1

I (mi < n) ln (p)

+m(k) ln(λ) +

k∑
i=1

mi∑
j=1

lnψ (xi,j ;α)− λ

k∑
i=1

Ψ(xi,mi ;α). (6)
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There are three parameters p, λ, and α that need to be estimated. The likelihood equations for p,
λ, and α are respectively

∂ℓ∗

∂p
=
k −m(k)

1− p
+

1

p

k∑
i=1

I(mi < n) = 0, (7)

∂ℓ∗

∂λ
=
m(k)

λ
−

k∑
i=1

Ψ(xi,mi ;α) = 0, (8)

∂ℓ∗

∂α
=

k∑
i=1

mi∑
j=1

(∂/∂α)ψ (xi,j ;α)

ψ (xi,j ;α)
− λ

k∑
i=1

∂

∂α
Ψ(xi,mi ;α) = 0. (9)

From Eqs. (7)-(9) the MLEs of p and λ can be obtained as

p̂ =

∑k
i=1 I(mi < n)

m(k) − k +
∑k

i=1 I(mi < n)
, (10)

λ̂(α̂) =
m(k)∑k

i=1Ψ(xi,mi ; α̂)
, (11)

respectively, where α̂, the MLE of α, can also be obtained by solving the following equation

k∑
i=1

mi∑
j=1

(∂/∂α)ψ (xi,j ;α)

ψ (xi,j ;α)
−
m(k)

∑k
i=1(∂/∂α)Ψ (xi,mi ;α)∑k
i=1Ψ(xi,mi ;α)

= 0. (12)

Clearly, nonlinear equation (12) cannot be solved analytically and mathematical or statistical soft-
ware should be applied to get a numerical solution via iterative techniques. Here, R package nleqslv
is used to find the root of Eq. (12) by the Newton-Raphson method. It can be seen that p̂ is free
from the values of observed failure times i.e. xi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ mi. Moreover, it may be
noted that p̂ is equal to 0 if mi = n and to 1 if mi = 1 for all 1 ≤ i ≤ k.

3.2 Interval estimation

3.2.1 Asymptotic confidence intervals (ACIs)

In this subsection, we derive ACIs of the parameters p, α, and λ, by applying the property of
the asymptotic normality of the MLE θ̂ = (p̂, α̂, λ̂) of the unknown parameter θ = (p, α, λ). Let
the observed Fisher information matrix J(θ) = [Jℓ,s] = [− ∂2ℓ∗

∂θℓ∂θs
], ℓ, s = 1, 2, 3, then we achieve the
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elements of J(θ) by obtaining the second partial derivatives of function (6) as follows:

J11 =
m(k) − k

(1− p)2
+

∑k
i=1 I(mi < n)

p2
,

J22 = λ

k∑
i=1

∂2

∂α2
Ψ(xi,mi ;α)−

k∑
i=1

mi∑
j=1

(
(∂2/∂α2)ψ (xi,j ;α)

ψ (xi,j ;α)
− ((∂/∂α)ψ (xi,j ;α))

2

ψ2 (xi,j ;α)

)
,

J23 = J32 =
k∑

i=1

∂

∂α
Ψ(xi,mi ;α) ,

J33 =
m(k)

λ2
.

Due to the independence of α and λ from p, we have J12 = J21 = J13 = J31 = 0. It should be
noted that J11 = m(k)−k

1−p if mi = n and J11 =
k
p2

if mi = 1, for all 1 ≤ i ≤ k. If we denote V as the
asymptotic variance-covariance matrix for θ = (p, α, λ), then the estimate of V can be obtained as

V̂ =


V̂11 0 0

0 V̂22 V̂23

0 V̂32 V̂33

 = J−1(θ̂),

where V̂11 = 1
Ĵ11

, V̂22 = Ĵ33
Ĵ22Ĵ33−Ĵ2

23

, V̂33 = Ĵ22
Ĵ22Ĵ33−Ĵ2

23

, and V̂23 = V̂32 = Ĵ32
Ĵ2
23−Ĵ22Ĵ33

. Therefore, for
0 < γ < 1, the 100(1− γ)% ACIs for p, α, and λ are respectively given by

p̂± zγ/2

√
V̂11, α̂± zγ/2

√
V̂22, and λ̂± zγ/2

√
V̂33,

where zγ/2 is the upper γ/2th percentile point of the standard normal distribution.
In the Burr-XII distribution with Ψ(t;α) = ln(1 + tα), we have

J22 =
m(k)

α2
+ λ

k∑
i=1

xαi,mi
(lnxi,mi)

2(
1 + xαi,mi

)2 +

k∑
i=1

mi∑
j=1

xαi,j (lnxi,j)
2(

1 + xαi,j

)2 , (13)

J23 = J32 =
k∑

i=1

xαi,mi
lnxi,mi

1 + xαi,mi

. (14)

For Gompertz distribution with Ψ(t;α) = 1
α(e

αt − 1),

J22 =
λ

α3

[
k∑

i=1

(
(αxi,mi − 1)2 + 1

)
eαxi,mi − 2k

]
, (15)

J23 = J32 =
1

α2

[
k +

k∑
i=1

(αxi,mi − 1) eαxi,mi

]
. (16)
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In the case of Weibull distribution with Ψ(t;α) = tα,

J22 =
m(k)

α2
+ λ

k∑
i=1

xαi,mi
(lnxi,mi)

2 , (17)

J23 = J32 =
k∑

i=1

xαi,mi
lnxi,mi . (18)

Finally, for Chen distribution with Ψ(t;α) = et
α − 1,

J22 =
m(k)

α2
+ λ

k∑
i=1

(
xαi,mi

+ 1
)
(lnxi,mi)

2xαi,mi
e
xα
i,mi −

k∑
i=1

mi∑
j=1

(lnxi,j)
2 xαi,j , (19)

J23 = J32 =
k∑

i=1

(lnxi,mi)x
α
i,mi

e
xα
i,mi . (20)

3.2.2 Bootstrap-based confidence intervals

Since the exact distributions of p̂, α̂, λ̂ are not available, we fail to find the exact CIs for the
unknown parameters p, α, and λ. For this reason, the bootstrap method can be used an alter-
native to construct approximate CIs for p, α, and λ. There are two types of bootstrap method
for constructing CIs: non-parametric bootstrap and parametric bootstrap. The difference between
non-parametric (re-sampling with replacement) and parametric (re-sampling from the fitted model)
bootstrap methods lies in the way of generating bootstrap samples. Since the unknown parameters
p, α, and λ can be estimated by ML method and often the parametric bootstrap method is better
than the non-parametric bootstrap method (see Dekking et al. [19]). In this section, the parametric
bootstrap method used by Dekking et al. [19] and Efron [20] is considered. Here are the main steps
of using the parametric bootstrap to compute CIs for the parameters p, α, and λ as follows.

Step 1: Given the original data, calculate θ̂ = (p̂, α̂, λ̂).

Step 2: Using the MLE θ̂ as the true value of the parameter, within the same sampling framework,
generate sample (x̃∗,m∗) for given n and k.

Step 3: Based on the bootstrap sample obtained above, calculate θ̂∗ = (p̂∗, α̂∗, λ̂∗), the MLE for
θ = (p, α, λ), in the same way as described in subsection 3.1.

Step 4: Repeat Steps 2 and 3, B − 1 times. Then denote the MLEs by θ̂∗
1, θ̂

∗
2, . . . , θ̂

∗
B, where

θ̂∗
ℓ = (p̂∗ℓ , α̂

∗
ℓ , λ̂

∗
ℓ ) is the MLE of θ based on the ℓ-th bootstrap sample, 1 ≤ ℓ ≤ B.

Step 5: To construct a bootstrap-p confidence interval(BCI), arrange α̂∗
ℓ , 1 ≤ ℓ ≤ B in an ascend-

ing order to obtain the bootstrap samples as α̂∗
(1), α̂

∗
(2), . . . , α̂

∗
(B).
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Then
(
α̂∗
(⌊Bγ/2⌋), α̂

∗
(⌊B−Bγ/2⌋)

)
is a two-sided 100(1− γ)% BCI for α, where ⌊x⌋ is the largest

integer less than or equal to x. The BCIs for p and λ are obtained in an analogous manner.

To improve the precision of the percentile bootstrap CI, we can further use the following bootstrap
bias correction. For a model parameter, say α, a two-sided 100(1− γ)% parametric bias-corrected
bootstrap confidence interval (BCIa) is specified by

α̂− bα ± zγ/2
√
vα,

where bα and vα are respectively the bootstrap bias and bootstrap variance for MLE α̂ and are
defined as

bα = ¯̂α∗ − α̂, vα =
1

B − 1

B∑
ℓ=1

(α̂∗
ℓ − ¯̂α∗)2,

with ¯̂α∗ =
∑B

ℓ=1 α̂
∗
ℓ/B. The parametric BCIa for p and λ can be constructed in a similar way.

3.3 Likelihood ratio test

A very popular form of statistical test, which is used to compare two nested models, is the
likelihood ratio test (LRT). This test examines whether a reduced model provides the same fit as
a full model or not. The likelihood ratio test statistic is given by

Λ(x̃) =

sup
θ∈Θ0

L(θ; x̃)

sup
θ∈Θ

L(θ; x̃)
=
L(x̃; θ̂0)

L(x̃; θ̂)
,

where θ̂0 is the constrained MLE under hypothesis H0, and θ̂ is the (unconstrained) MLE of θ.
Let θ0 = (p0, λ0, α0), where p0 ∈ (0, 1), λ0 > 0 and α0 > 0, are known. Now we are interested in
testing hypotheses H0 : θ = θ0 vs. H1 : θ ̸= θ0. By inserting representation (6), it is readily
seen that the test statistic TLR = ln(Λ(x̃)) of the LR test is given by

TLR =
(
m(k) − k

)
ln

(
1− p0
1− p̂

)
+

k∑
i=1

I(mi < n) ln

(
p0
p̂

)
+m(k) ln

(
λ0

λ̂

)

+

k∑
i=1

mi∑
j=1

ln

(
ψ (xi,j ;α0)

ψ (xi,j ; α̂)

)
− λ0

k∑
i=1

Ψ(xi,mi ;α0) + λ̂

k∑
i=1

Ψ(xi,mi ; α̂) . (21)

For testing H0 : θ = θ0 vs. H1 : θ = θ1, wherein θ1 = (p1, α1, λ1), the test statistic TLR can be
obtained by substituting p̂, α̂, λ̂ with p1, α1, λ1 in Eq. (21).
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4 Bayesian inference

In recent decades, the Bayes viewpoint, as a powerful and valid alternative to traditional statis-
tical perspectives, has received frequent attention for statistical inference. In fact, the use of MLEs
is not necessarily suitable, when there are only a few failures for the repairable systems. Further-
more, the engineer’s knowledge about the degradation and failure process could be very helpful to
reach the more accurate estimations of the model parameters. This is especially true about the
repair efficiency parameter p, because usually in real cases, p may not be predetermined, hence,
it is reasonable to consider p as a random variable with a prior distribution. Then, a Bayesian
approach for estimating the reliability and repair efficiency parameters is an interesting alternative
to usual frequentist methods.
In this section, we obtain the Bayesian estimators of model parameters of the SG model under
symmetric as well as asymmetric loss functions. The most commonly used loss function is the
squared error which is symmetric in the sense that underestimation and overestimation are equally
penalized. However, there is no specific procedure in the estimation process to determine which
loss function should be used. Thus, we need to consider some asymmetric loss functions as well.
Therefore, we consider different loss functions to get a better understanding of Bayesian analysis.
Varian [21] introduced the linear-exponential (LINEX) loss function which is asymmetric. Another
useful loss function is the general entropy loss function. In this paper, we apply the stated loss
functions such as squared error, LINEX, and general entropy to calculate the desired Bayesian
estimators which are defined as

LS

(
δ̂, δ
)
=
(
δ̂ − δ

)2
,

LL

(
δ̂, δ
)
= ec(δ̂−δ) − c

(
δ̂ − δ

)
− 1 c ̸= 0,

LE

(
δ̂, δ
)
∝

(
δ̂

δ

)w

− w ln

(
δ̂

δ

)
− 1 w ̸= 0,

respectively, where δ̂ is an estimator of δ. The Bayesian estimator of δ concerning to the loss function
LS is the posterior mean of δ, say δ̂BS . Under the loss function LL, the Bayesian estimator of δ is
given by δ̂BL = −1

c lnE
(
e−cδ|x

)
, provided E

(
e−cδ|x

)
exists and is finite. Finally, under the loss

function LE the corresponding estimator is of the form δ̂BE = (E(δ−w|x))−
1
w , provided E(δ−w|x)

exists and is finite.

4.1 Prior information

In this subsection, the necessary assumptions about prior distributions are developed. Under
the assumption that two parameters α and λ are unknown, specifying a general conjugate joint
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prior for α and λ, is not an easy task. In this case, we develop the Bayesian set-up by considering
the idea of Soland [22] regarding the choice of prior distributions. Suppose that α has a discrete
prior and λ has a continuous conditional prior for given α. Thus, the prior distribution of α is of
the form

P (α = αℓ) = ξℓ, ℓ = 1, 2, ..., N, (22)

where 0 ≤ ξℓ ≤ 1 and
N∑
ℓ=1

ξℓ = 1. For a given αℓ, we use an exponential prior distribution for λ to

achieve a close-conjugate family, which in turn makes the computation simple. Then, we have

π(λ|αℓ) = bℓ exp{−bℓλ}, λ, bℓ > 0, (23)

where bℓs are hyper-parameters. Since the repair efficiency parameter p belongs to [0, 1], we choose
the beta distribution, denoted by B(r, s), as a prior distribution with the following probability
density function

π(p) =
Γ(r + s)

Γ(r)Γ(s)
pr−1(1− p)s−1I(0,1)(p). (24)

4.1.1 The choice of hyper-parameters

The priors specification are completed by specifying αl, ξl and hyper-parameters bℓ for 1 ≤ ℓ ≤
N. The values of αℓ and ξℓ are fairly straightforward to specify, but sometimes it is not always
possible to know the value of the hyper-parameter bℓ, in prior distribution of λ. In practice, the
value of bℓ is difficulty to know, since it is necessary to condition prior beliefs about λ on each
αℓ, 1 ≤ ℓ ≤ N . Therefore, the estimation problem for hyper-parameter bℓ is considered. For given
αℓ, the value of the hyper-parameter bℓ can be obtained based on the maximum likelihood Type-II
method (see Berger [23, p.99]).

It is worth noting that if random variable X has the PDF (1), then Y = Ψ(X;α) has an
exponential distribution with the following PDF

fY (y;λ) = λe−λy y > 0.

Therefore, given αℓ the marginal PDF and CDF of Y can be written as

fY (y) =

∫ ∞

0
π(λ|αℓ)fY (y;λ) dλ =

bℓ
bℓ + y

y > 0,

and FY (y) = 1− bℓ
(bℓ + y)2

, respectively.

Now, given α = αℓ; 1 ≤ ℓ ≤ N, let us consider yi,j = Ψ(xi,j ;αℓ); 1 ≤ i ≤ k, 1 ≤ j ≤ mi. Using (4),
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the likelihood function can be written as

L(p, FY ; ỹ,m) = (1− p)m
(k)−k p

∑k
i=1 I(mi<n)

k∏
i=1

mi∏
j=1

yi,j−1 + bℓ
(yi,j + bℓ)2

∝ bkℓ

(
k∏

i=1

1

yi,mi + bℓ

) k∏
i=1

mi∏
j=1

1

yi,j + bℓ

 , (25)

where ỹ = (y1, . . . ,yk), yi = (yi,1, yi,2, ..., yi,mi); 1 ≤ i ≤ k. By differentiating the log-likelihood
function with respect to bℓ, we immediately have the following nonlinear equation:

k

bℓ
−

k∑
i=1

1

yi,mi + bℓ
−

k∑
i=1

mi∑
j=1

1

yi,j + bℓ
= 0. (26)

As a consequence, the MLE of bℓ, say b̂ℓ, can be obtained by solving Eq. (26). It is evident that
explicit expression cannot be obtained directly by solving Eq. (26) and a numerical method such as
the Newton-Raphson method is used to compute b̂l. Note that, it can be shown that the nonlinear
Eq. (26) has a unique solution with respect to bℓ (the proof is very similar to the proof of Wang
and Shi [14, p.376] and is therefore omitted for the sake of brevity).

4.2 Posterior analysis

Attentive to the likelihood function (5) and the prior distributions (22)-(24), the joint posterior
density function of p, αℓ and λ can be written as

π(p, αℓ, λ|x̃,m) ∝ pr+
∑k

i=1 I(mi<n)−1(1− p)m
(k)+s−k−1ξℓ

× λm
(k)

exp{−λβℓ}
k∏

i=1

mi∏
j=1

ψ (xi,j ;αℓ) , (27)

where βℓ = bℓ+
∑k

i=1Ψ(xi,mi ;αℓ). It follows, from Eq. (27), that the marginal posterior distribution
of p is specified by

π (p|x̃,m) ∝ pr+
∑k

i=1 I(mi<n)−1(1− p)m
(k)+s−k−1

≡ B

(
r +

k∑
i=1

I (mi < n) ,m(k) + s− k

)
. (28)

By considering

L(αℓ, λ; x̃,m) = λm
(k)

 k∏
i=1

mi∏
j=1

ψ (xi,j ;αℓ)

 exp

{
−λ

k∑
i=1

Ψ(xi,mi ;αℓ)

}
, (29)

12



the conditional posterior of λ given αℓ can be expressed as

π (λ|αℓ, x̃,m) =
π(λ|αℓ)L(αℓ, λ; x̃,m)∫∞

0 π(λ|αℓ)L(αℓ, λ; x̃,m) dλ

=
1

Γ(m(k) + 1)
βm

(k)+1
ℓ λm

(k)
exp{−λβℓ} 1 ≤ ℓ ≤ N. (30)

In this case, the conditional posterior of λ given αℓ has a gamma distribution with the shape
parameter m(k) + 1 and the scale parameter 1/βℓ. Utilizing Eqs.(22), (23), (29), and the discrete
version of Bayes theorem, the marginal posterior mass function of αℓ can be written as

ηℓ = P (α = αℓ|x̃,m)

=

∫∞
0 P (α = αℓ)π(λ|αℓ)L(αℓ, λ; x̃,m) dλ∑N

u=1

∫∞
0 P (α = αu)π(λ|αu)L(αu, λ; x̃,m) dλ

=

(∏k
i=1

∏mi
j=1 ψ(xi,j ;αℓ)

)
β
−(m(k)+1)
ℓ ξℓbℓ∑N

u=1

(∏k
i=1

∏mi
j=1 ψ(xi,j ;αu)

)
β
−(m(k)+1)
u ξubu

, 1 ≤ ℓ ≤ N. (31)

From Eqs. (28), (30) and (31), the Bayesian estimators of p, α, and λ under the squared error loss
function, are given respectively by

p̂BS =
r +

∑k
i=1 I (mi < n)

r +
∑k

i=1 I (mi < n) +m(k) + s− k
, (32)

α̂BS =
N∑
ℓ=1

ηℓαℓ, (33)

λ̂BS =

N∑
ℓ=1

(
1 +m(k)

) ηℓ
βℓ
. (34)

Under the LINEX loss function, we get

p̂BL = −1

c
ln

[
1 +

∞∑
v=1

(
v−1∏
z=0

r + z +
∑k

i=1 I (mi < n)

r +
∑k

i=1 I (mi < n) +m(k) + s− k + z

)
(−c)v

v!

]
, (35)

α̂BL = −1

c
ln

[
N∑
ℓ=1

ηℓe
−cαℓ

]
, (36)

λ̂BL = −1

c
ln

[
N∑
ℓ=1

ηℓ

(
1 +

c

βℓ

)−(m(k)+1)
]
. (37)
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Finally, the Bayesian estimators of p, α, and λ under entropy loss function can be obtained as
follows

p̂BE =

Γ
(
r +

∑k
i=1 I (mi < n)− w

)
Γ
(
r +

∑k
i=1 I (mi < n)

)

×
Γ
(
r +

∑k
i=1 I (mi < n) +m(k) + s− k

)
Γ
(
r +

∑k
i=1 I (mi < n) +m(k) + s− k − w

)
− 1

w

, (38)

α̂BE =

[
N∑
ℓ=1

ηℓα
−w
ℓ

]− 1
w

, (39)

λ̂BE =

[
Γ
(
m(k) − w + 1

)
Γ
(
m(k) + 1

) N∑
ℓ=1

ηℓβ
w
ℓ

]− 1
w

. (40)

The Bayesian estimators regarding different members of the desirable class can be obtained by
putting various functions for Ψ and ψ in Eqs. (32)-(40). However, it can be seen that, in all cases,
the Bayesian estimator of p is free from distribution.

5 Numerical computations

In this section, a simulation study was mainly performed to illustrate the effect of the proposed
methodology. All the computations were conducted in R software (R x64 4.0.3) and the R code can
be obtained on request from the authors. They were performed at the high-performance computing
research center (HPCRC) of Amirkabir University of Technology using a machine equipped with 12
processor cores(2.3 GHZ) and 16 GB RAM. The performance of all estimates has been compared
numerically in terms of their biases, mean squared errors (MSEs), and interval estimates in terms
of average lengths (ALs) and coverage percentages (CPs) of two-sided CIs.
The simulation study was carried out based on the Weibull and Chen distributions, which are
of great interest in the application. The Weibull distribution has been extensively used in many
different fields such as reliability engineering and industrial applications. For more details see
Murthy et al. [24]. The hazard function of Weibull distribution can be increasing (α > 1), decreasing
(α < 1) or constant (α = 1), which makes it suitable for modeling many of lifetime data. The
bathtub-shape hazard function provides an appropriate conceptual model, for some electronic and
mechanical products as well as the lifetime of humans. For example complex systems usually have
a bathtub-shaped failure rate over the life cycle of the product. Thus, the Weibull distribution
does not provide a reasonable parametric fit for lifetime data modeling with a bathtub-shaped

14



Table 1: The hyper-parameter values of prior distribution of α.
Distribution α ℓ → 1 2 3 4 5 6 7 8

Weibull 2 αℓ → 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2
6 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2

Chen 0.4 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
1.2 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

ξℓ → 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

hazard function. The Chen distribution exhibits a bathtub-shaped failure rate, which makes it
flexible enough for modeling phenomena with both monotonic and non-monotonic failure rates,
which are common in reliability and biological studies. The hazard function of Chen distribution
has a bathtub-shape when α < 1 and is an increasing function when α ≥ 1.

In the simulation study, it was assumed that k = 10, n = 5, p = 0.25, 0.4 and the true values
of (α, λ) were (2, 0.4), (2, 0.8), (2, 1.5), (4, 0.4), (4, 0.8), (4, 1.5), (6, 0.4), (6, 0.8), (6, 1.5) for
the Weibull distribution. In the case of the Chen distribution, we considered the true values of
(α, λ) as (0.4, 0.7), (0.4, 1), (1, 0.7), (1,1), (1.2, 0.7), (1.2,1). To solve the nonlinear Eq. (12) and
obtain the estimates of the unknown parameters using the ML method, the nleqslv package was
applied. Although we employed the true values of alpha as starting values, it is worth mentioning
that all starting values that were generated randomly yielded similar results. Moreover, to obtain
the bootstrap CIs, we used B = 5000 bootstrap samples and follow the procedure described in
subsection 3.2.2.
In the Bayesian context, we chose the values of the hyper-parameters of prior distribution of p
to be (r, s) = (2, 3). The prior knowledge about the true values of the unknown parameter α is
given in Table 1. Using the Newton-Raphson method and Eq.(26), we found the values of the
hyper-parameter bℓ for given values of αℓ, for 1 ≤ ℓ ≤ 8. To evaluate the Bayesian estimates under
the loss functions LL and LE we took c = 1 and w = 1 respectively. With 10000 times simulation,
the biases, MSEs, 90% and 95% CPs, and ALs for the CIs of the unknown parameters p, α, and
λ were computed. And the simulation results are shown in Tables 1-8. The respective results for
biases and MSEs are reported up to 4 decimal places. For the Weibull distribution, the biases and
MSEs of the MLEs and Bayesian estimators of p, α and λ are given in Tables 2 and 3. Moreover,
the ALs and CPs for the CIs of unknown parameters are shown in Tables 4 and 5. For the Chen
distribution, we report the biases and MSEs of the MLEs and different Bayesian estimators in
Tables 6 and 7. Table 8 presents ALs and CPs for the 90% and 95% CIs of p, α, and λ, when the
Chen distribution has been used.
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Table 2: Biases and MSEs of the ML and Bayesian estimators of unknown parameters for the
Weibull distribution and p = 0.25.

Bias MSE

α λ Method p α λ p α λ

2 0.4 MLE 0.0120 0.1100 -0.0057 0.0079 0.1327 0.0253
BS 0.0320 -0.0785 0.0737 0.0068 0.0184 0.0166
BL 0.0290 -0.0953 0.0651 0.0065 0.0216 0.0148
BE 0.0090 -0.0965 0.0398 0.0058 0.0220 0.0116

0.8 MLE 0.0127 0.1118 -0.0114 0.0081 0.1312 0.0610
BS 0.0327 -0.0773 0.1061 0.0069 0.0179 0.0449
BL 0.0297 -0.0941 0.0845 0.0066 0.0211 0.0382
BE 0.0097 -0.0953 0.0595 0.0059 0.0215 0.0348

1.5 MLE 0.0128 0.1167 -0.0030 0.0080 0.1350 0.1384
BS 0.0328 -0.0761 0.1420 0.0068 0.0178 0.1185
BL 0.0298 -0.0928 0.0895 0.0065 0.0210 0.0957
BE 0.0098 -0.0940 0.0772 0.0059 0.0213 0.0987

4 0.4 MLE 0.0111 0.2192 -0.0056 0.0078 0.5418 0.0256
BS 0.0313 -0.1265 0.0555 0.0067 0.0219 0.0104
BL 0.0283 -0.1495 0.0506 0.0064 0.0282 0.0095
BE 0.0083 -0.1384 0.0345 0.0057 0.0251 0.0079

0.8 MLE 0.0115 0.2212 -0.0089 0.0080 0.5316 0.0612
BS 0.0316 -0.1258 0.0891 0.0068 0.0214 0.0355
BL 0.0286 -0.1489 0.0734 0.0065 0.0277 0.0312
BE 0.0086 -0.1378 0.0542 0.0058 0.0246 0.0288

1.5 MLE 0.0113 0.2150 0.0058 0.0080 0.5187 0.1351
BS 0.0315 -0.1263 0.1305 0.0068 0.0216 0.1057
BL 0.0285 -0.1494 0.0843 0.0065 0.0279 0.0862
BE 0.0085 -0.1383 0.0734 0.0059 0.0248 0.0886

6 0.4 MLE 0.0117 0.3445 -0.0080 0.0079 1.1751 0.0248
BS 0.0318 -0.1372 0.0457 0.0067 0.0217 0.0090
BL 0.0288 -0.1619 0.0416 0.0064 0.0291 0.0084
BE 0.0088 -0.1456 0.0282 0.0058 0.0241 0.0073

0.8 MLE 0.0111 0.3498 -0.0125 0.0078 1.2278 0.0627
BS 0.0313 -0.1372 0.0749 0.0066 0.0218 0.0323
BL 0.0283 -0.1619 0.0611 0.0063 0.0291 0.0288
BE 0.0083 -0.1456 0.0436 0.0057 0.0242 0.0269

1.5 MLE 0.0114 0.3506 -0.0047 0.0081 1.2346 0.1353
BS 0.0315 -0.1372 0.1106 0.0069 0.0218 0.0990
BL 0.0285 -0.1619 0.0670 0.0066 0.0291 0.0822
BE 0.0085 -0.1457 0.0562 0.0059 0.0242 0.0844
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Table 3: Biases and MSEs of the ML and Bayesian estimators of unknown parameters for the
Weibull distribution and p = 0.4.

Bias MSE

α λ Method p α λ p α λ

2 0.4 MLE 0.0205 0.1436 -0.0063 0.0134 0.1833 0.0282
BS 0.0136 -0.0847 0.0770 0.0082 0.0183 0.0194
BL 0.0092 -0.1028 0.0677 0.0080 0.0219 0.0172
BE -0.0093 -0.1042 0.0408 0.0082 0.0223 0.0137

0.8 MLE 0.0175 0.1471 -0.0046 0.0124 0.1873 0.0710
BS 0.0114 -0.0840 0.1151 0.0077 0.0182 0.0560
BL 0.0071 -0.1020 0.0907 0.0075 0.0218 0.0471
BE -0.0114 -0.1034 0.0628 0.0078 0.0223 0.0432

1.5 MLE 0.0170 0.1402 0.0323 0.0128 0.1854 0.1673
BS 0.0109 -0.0859 0.1599 0.0079 0.0186 0.1525
BL 0.0066 -0.1039 0.0958 0.0077 0.0223 0.1182
BE -0.0119 -0.1053 0.0817 0.0080 0.0227 0.1236

4 0.4 MLE 0.0189 0.2775 -0.0048 0.0130 0.7336 0.0285
BS 0.0124 -0.1292 0.0586 0.0080 0.0216 0.0135
BL 0.0080 -0.1528 0.0527 0.0078 0.0282 0.0123
BE -0.0105 -0.1415 0.0337 0.0080 0.0249 0.0103

0.8 MLE 0.0167 0.3044 -0.0058 0.0128 0.7682 0.0698
BS 0.0106 -0.1270 0.0967 0.0079 0.0210 0.0471
BL 0.0063 -0.1506 0.0771 0.0077 0.0275 0.0405
BE -0.0123 -0.1392 0.0538 0.0080 0.0242 0.0375

1.5 MLE 0.0175 0.2991 0.0240 0.0128 0.7434 0.1681
BS 0.0113 -0.1269 0.1397 0.0079 0.0208 0.1427
BL 0.0070 -0.1506 0.0802 0.0077 0.0273 0.1115
BE -0.0115 -0.1392 0.0666 0.0080 0.0241 0.1169

6 0.4 MLE 0.0183 0.4196 -0.0044 0.0127 1.6513 0.0279
BS 0.0119 -0.1393 0.0504 0.0079 0.0218 0.0125
BL 0.0076 -0.1643 0.0453 0.0076 0.0294 0.0115
BE -0.0109 -0.1479 0.0286 0.0079 0.0243 0.0099

0.8 MLE 0.0174 0.4252 -0.0042 0.0127 1.6523 0.0687
BS 0.0112 -0.1391 0.0830 0.0078 0.0218 0.0437
BL 0.0069 -0.1641 0.0650 0.0076 0.0293 0.0380
BE -0.0116 -0.1477 0.0429 0.0079 0.0242 0.0355

1.5 MLE 0.0178 0.4319 0.0275 0.0129 1.6677 0.1705
BS 0.0115 -0.1388 0.1313 0.0080 0.0217 0.1427
BL 0.0072 -0.1638 0.0733 0.0078 0.0292 0.1126
BE -0.0113 -0.1474 0.0598 0.0081 0.0241 0.1180
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Table 6: Biases and MSEs of the ML and Bayesian estimators of unknown parameters for the Chen
distribution and p = 0.25.

Bias MSE

α λ Method p α λ p α λ

0.4 0.7 MLE 0.0105 0.0171 -0.0036 0.0079 0.0033 0.0357
BS 0.0308 0.0047 0.0392 0.0066 0.0018 0.0339
BL 0.0278 0.0037 0.0229 0.0063 0.0018 0.0308
BE 0.0078 -0.0009 -0.0040 0.0057 0.0018 0.0303

1 MLE 0.0112 0.0190 0.0031 0.0082 0.0041 0.0582
BS 0.0313 0.0041 0.0518 0.0069 0.0019 0.0552
BL 0.0283 0.0029 0.0264 0.0066 0.0019 0.0494
BE 0.0083 -0.0023 0.0036 0.0060 0.0019 0.0499

1 0.7 MLE 0.0108 0.0450 -0.0045 0.0078 0.0213 0.0355
BS 0.0311 0.0292 0.0256 0.0066 0.0150 0.0337
BL 0.0281 0.0218 0.0093 0.0063 0.0144 0.0312
BE 0.0081 0.0145 -0.0191 0.0057 0.0142 0.0319

1 MLE 0.0112 0.0497 0.0036 0.0080 0.0259 0.0583
BS 0.0314 0.0330 0.0356 0.0068 0.0162 0.0555
BL 0.0284 0.0245 0.0100 0.0065 0.0155 0.0507
BE 0.0083 0.0162 -0.0141 0.0058 0.0153 0.0523

1.2 0.7 MLE 0.0121 0.0510 -0.0044 0.0081 0.0301 0.0355
BS 0.0321 -0.0125 0.0577 0.0068 0.0108 0.0324
BL 0.0291 -0.0205 0.0420 0.0065 0.0113 0.0289
BE 0.0091 -0.0268 0.0175 0.0059 0.0120 0.0273

1 MLE 0.0116 0.0620 -0.0008 0.0082 0.0392 0.0584
BS 0.0317 -0.0159 0.0715 0.0070 0.0113 0.0531
BL 0.0287 -0.0246 0.0468 0.0066 0.0120 0.0466
BE 0.0087 -0.0317 0.0256 0.0060 0.0129 0.0460

From the tabulated values, we can draw the following conclusions:
• For the fixed values of α and λ, the biases and MSEs increase for each method as the true value
of p increases. It is quite natural, because our tendency to change the system is greater once a
shock occurs. Thus, the large values for p result to small number of samples. Moreover, in this
case, the biases and MSEs for ML estimator of p and the MSEs for all the Bayesian estimators of
p increase. As the last conclusion in this area, the ALs increase for all unknown parameters.
• For the fixed values of p and λ, as the true value of α increases, the biases and MSEs for all
estimators of α increase. Another trend that we can see is related to increasing the AL of CIs, as
α increases. The performance of the estimators of α and λ are to some extent similar, based on
MSE; since for the fixed values of α and p, as λ increases, MSEs for all estimators of λ increase.
• It is observed that BS, BL, and BE are better than MLE in estimating all three parameters in
terms of MSEs, which makes them more attractive to use in practical problems. For parameter p,
in most times, BE is the best estimator, followed by the BL, the MLE, and finally the BS estimators
in terms of biases. We can also find that the biases of Bayesian estimators are smaller than MLE
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Table 7: Biases and MSEs of the ML and Bayesian estimators of unknown parameters for the Chen
distribution and p = 0.4.

Bias MSE

α λ Method p α λ p α λ

0.4 0.7 MLE 0.0198 0.0257 -0.0013 0.0133 0.0055 0.0432
BS 0.0130 0.0047 0.0472 0.0082 0.0020 0.0402
BL 0.0087 0.0034 0.0293 0.0079 0.0020 0.0360
BE -0.0098 -0.0024 0.0003 0.0082 0.0021 0.0352

1 MLE 0.0174 0.0288 0.0223 0.0132 0.0067 0.0762
BS 0.0112 0.0040 0.0721 0.0082 0.0021 0.0705
BL 0.0068 0.0025 0.0423 0.0079 0.0021 0.0607
BE -0.0117 -0.0040 0.0169 0.0083 0.0022 0.0608

1 0.7 MLE 0.0175 0.0634 0.0008 0.0128 0.0336 0.0425
BS 0.0113 0.0391 0.0316 0.0079 0.0173 0.0397
BL 0.0069 0.0297 0.0137 0.0077 0.0164 0.0362
BE -0.0116 0.0206 -0.0167 0.0080 0.0161 0.0367

1 MLE 0.0178 0.0767 0.0148 0.0129 0.0449 0.0745
BS 0.0115 0.0460 0.0479 0.0079 0.0191 0.0704
BL 0.0072 0.0356 0.0185 0.0077 0.0180 0.0623
BE -0.0114 0.0256 -0.0080 0.0080 0.0175 0.0638

1.2 0.7 MLE 0.0174 0.0756 -0.0008 0.0127 0.0496 0.0419
BS 0.0113 -0.0196 0.0668 0.0078 0.0118 0.0388
BL 0.0070 -0.0293 0.0494 0.0076 0.0126 0.0343
BE -0.0116 -0.0373 0.0224 0.0079 0.0137 0.0322

1 MLE 0.0168 0.0834 0.0246 0.0127 0.0606 0.0757
BS 0.0108 -0.0264 0.0924 0.0078 0.0121 0.0701
BL 0.0065 -0.0369 0.0627 0.0076 0.0131 0.0595
BE -0.0121 -0.0458 0.0384 0.0079 0.0145 0.0584

in estimating α. On the other hand, MLE is better those BS, BL, and BE in estimating λ in terms
of biases. Results for parameter α, especially in the case of Chen distribution, show that BCIa has
higher CPs than the other intervals, as well as the biggest ALs can be reached by BCIa. In this
case, the actual CPs of BCI are far below the specified nominal level.
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Figure 1: Boxplot for estimates of (p, α, λ) under different methods, for the Weibull distribution.
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Figure 2: Boxplot for estimates of (p, α, λ) under different methods, for the Chen distribution.

The summary for the 10000 simulation runs for (p, α, λ) =(0.25, 2, 1.5),(0.25, 4, 0.4), (0.25, 6, 0.8)

in the case of the Weibull model and (p, α, λ) =(0.4, 0.4, 0.7),(0.4, 1, 0.7), (0.4, 1.2, 1) in the case of
the Chen model is graphically illustrated in Figures 1 and 2. These figures are a confirmation of
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Table 9: The simulated critical and power values of TLR for the hypothesis testing (41) at signifi-
cance level 0.05.

Lifetime model (p0, α0, λ0) (p1, α1, λ1) Critical Values Power Values

n = 3 n = 5 n = 7 n = 3 n = 5 n = 7

Weibull (0.25, 2, 0.8) (0.25, 2, 0.4) 0.2205 0.9331 1.3627 0.9506 0.9793 0.9876
(0.25, 2, 0.8) (0.25, 2, 1.5) -0.7529 0.0563 0.3940 0.9023 0.9638 0.9768
(0.25, 2, 0.8) (0.4, 2, 0.8) -1.2817 -1.5285 -1.5523 0.4251 0.4561 0.4917
(0.25, 4, 1.5) (0.25, 4, 0.8) -0.2010 0.3680 0.6976 0.9136 0.9584 0.9728
(0.4, 4, 0.8) (0.4, 4, 0.4) -0.1456 0.1514 0.2736 0.9178 0.9461 0.9510
(0.25, 4, 1.5) (0.4, 4, 1.5) -1.2817 -1.5286 -1.5523 0.4263 0.4556 0.4925
(0.4, 6, 0.4) (0.4, 6, 0.8) -0.6623 -0.2952 -0.2375 0.9108 0.9444 0.9508
(0.25, 6, 0.4) (0.4, 6, 0.4) -1.2817 -1.3528 -1.5760 0.4275 0.4637 0.4742
(0.4, 6, 1.5) (0.4, 4, 1.5) -0.7338 -0.3682 -0.2528 0.7905 0.8703 0.8922
(0.25, 6, 1.5) (0.4, 2, 1.5) 7.4864 11.0460 12.8390 0.9999 1.0000 1.0000

Chen (0.25, 0.4, 1) (0.25, 0.4, 0.7) -1.2240 -1.1238 -1.1054 0.5520 0.6525 0.6886
(0.25, 0.4, 1) (0.4, 0.4, 1) -1.2817 -1.3529 -1.5523 0.4270 0.4651 0.4892
(0.25, 0.4, 0.7) (0.4, 0.4, 0.7) -1.2817 -1.5286 -1.5760 0.4284 0.4598 0.4785
(0.25, 1, 0.7) (0.25, 1.2, 0.7) -1.4492 -1.5542 -1.4127 0.3455 0.5734 0.7210
(0.4, 1, 0.7) (0.4, 1.2, 0.7) -1.3299 -1.4705 -1.4668 0.2897 0.3982 0.4548
(0.4, 1, 1) (0.4, 0.4, 1) 3.2883 4.6902 4.9980 0.9978 0.9996 0.9997
(0.4, 1, 1) (0.25, 1, 1) -1.2440 -1.3723 -1.1491 0.4346 0.5082 0.5796
(0.25, 1.2, 0.7) (0.25, 1, 0.7) -1.0418 -0.8617 -0.6100 0.5156 0.7101 0.8082
(0.25, 1.2, 0.7) (0.25, 1.2, 1) -1.4837 -1.4315 -1.3818 0.4770 0.5855 0.6414
(0.25, 1.2, 0.7) (0.4, 1.2, 0.7) -1.2817 -1.3529 -1.5523 0.4259 0.4606 0.4938

the above results about point estimation. It is observed that the medians of the boxplots are close
to the input parameters. From dispersions of the boxplots shown in Figures 1 and 2, it is found the
Bayesian estimators provide the most precise results than MLEs in the cases of α and λ. Based on
the result given in subsection 3.3, we consider the problem of testing

H0 : (p, α, λ) = (p0, α0, λ0) vs. H1 : (p, α, λ) = (p1, α1, λ1), (41)

about the vector of parameters p, α, and λ. For each of the Weibull and Chen models, we obtain
the estimated critical and power values of TLR for the hypothesis testing (41) by a Monte Carlo
simulation study. The critical and power values are given in Table 9 for k = 10, n = 3, 5, 7 and the
significance level 0.05. It is worth mentioning that, based on Neyman-Pearson lemma, TLR is the
most powerful among all tests at a significance level of 0.05 for the hypothesis testing (41). Table
9 presents when n increases the power of the test increases.
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5.1 The Severity of the effect of misspecification

The objective of this subsection focuses on the effect of model misspecification. This is an
important problem, because empirical research (see Law and Wong [25]) has demonstrated that
measurement model misspecification can bias structural parameter estimates. Especially, misspec-
ification of reliability models related to lifetime data can lead to biased estimators, which in turn
can lead to incorrect inference and models. Here, utilizing a simulation study, we show how mis-
interpretation of model parameters in the presence of model misspecification could be serious in
some cases. To examine the effect of model misspecification, we consider the mean time to perfect
repair, which is directly affected by the estimation results.
If Y ∗ denotes the time to the first perfect repair, then from Kamranfar et al. [13], the mean time
to perfect repair is given as

µ = E(Y ∗) =
n∑

m=1

E(XM |M = m)P (M = m), (42)

where

E(XM |M = m) =
λm

(m− 1)!

∫ ∞

0
xψ(x;α)[Ψ(x;α)]m−1 exp{−λΨ(x;α)} dx,

P (M = m) =

(1− p)m−1p 1 ≤ m ≤ n− 1,

(1− p)n−1 m = n.

Utilizing invariance property of the ML estimators, the MLE of µ, say µ̂, can be obtained by
substituting p̂, α̂, and λ̂ in Eq. (42). For the Burr-XII model as a special member of the class, we
have

E(XM |M = m) =
λm

(m− 1)!

∫ ∞

1

(x− 1)
1
α

x1+λ
(lnx)m−1 dx. (43)

For the Weibull model, we obtain

E(XM |M = m) =
Γ(m+ 1

α)

λ
1
α (m− 1)!

. (44)

Finally, in the case of the Chen model,

E(XM |M = m) =
λmeλ

(m− 1)!

∫ ∞

1
(x− 1)m−1(lnx)

1
α e−λx dx. (45)

In the following, the effect of model misspecification on µ is assessed through a Monte Carlo
simulation study. We consider the cases in which the data are originally from one of two models,
Weibull and Chen. For example, suppose data are originally from the Weibull, but wrongly fitted to
the Burr-XII or Chen models, then “What is the effect of model misspecification on the estimating
µ?” Here, to answer this question, we consider the following steps:

25



Step 1: Given k, n and the parameters p, α, and λ, generate data from the Weibull model.

Step 2: Based on generated data, obtain the MLE of µ, say µ̂w, using Eqs. (42) and (44).

Step 3: Wrongly fit the Burr-XII model, and calculate the MLE of µ, say µ̂b, using Eqs. (42) and
(43). Similarly, for the Chen model get the of MLE µ, say µ̂c, using Eqs. (42) and (45).

Step 4: Repeat Steps 1-3, Q-1 times. Then denote the MLEs by µ̂w1 , µ̂w2 , . . . , µ̂wQ for the Weibull,
µ̂b1, µ̂

b
2, . . . , µ̂

b
Q in the case of the Burr-XII and µ̂c1, µ̂

c
2, . . . , µ̂

c
Q for the Chen models.

Step 5: Considering true value µw (the mean time to perfect repair in the Weibull model), compute
the bias and MSE of the estimated means for all three models. For example, in the case of
the Burr-XII model the bias is given by 1

Q

∑Q
i=1(µ̂

b
i − µw).

Similarly, we also consider the case in which the data are originally generated from the Chen
model. Table 10 presents the true value of the means µb, µw, µc as well as the biases and MSEs
of the estimates of means for Q = 50000, p = 0.25, k = 10, n = 3, 5, 7 and different values of the
parameters α and λ.
The results reveal that the model misspecification is not negligible when the Weibull and Chen
models are misspecified as the Burr-XII model. We observe that biases and MSEs of the estimates
of the mean time to perfect repair are big when the Burr-XII model is wrongly fitted. The effect
of model misspecification between the Weibull and Chen models on the estimation of the mean
time to perfect repair is not critical. It is observed when the Chen model is misspecified as the
Weibull model the biases of the estimates of the mean time to perfect repair become a little larger
in comparison with corresponding biases under the true model.

6 Illustrative examples

In this section, we present the analyses of two datasets for the SG model, considering four
candidate members of the class of exponential distribution—Weibull, Chen, Gompertz and Burr-
XII, all of which are well-known lifetime models.

Example 1. We consider the real data related to the Boeing air conditioner originally discussed
by Proschan [26]. The original data contains the intervals between failures of 13 plane systems with
numbers: 7907, 7908, 7909, 7910, 7911, 7912, 7913, 7914, 7915, 7916, 8044, 8045. The system of
conditioner is embedded such a way that after roughly 2000 hours of service the plants received
a major overhaul. Proschan [26] omitted the failure interval immediately following a major over-
haul. These values are denoted by the symbol ∗∗. Presnell et al. [27] assumed that all repairs
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Table 10: Biases and MSEs of the estimates of the mean time to perfect repair for all three models.
True model (p, α, λ) n µ(True Value) µ̂(Burr-XII) µ̂(Weibull) µ̂(Chen)

Bias MSE Bias MSE Bias MSE

Weibull (0.25, 1.2, 1.5) 3 1.3786 0.0982 0.1246 -0.0046 0.0756 0.0062 0.0773
5 1.7295 0.1779 0.2441 0.0039 0.1286 0.0079 0.1307
7 1.9135 0.2719 0.3988 -0.0133 0.1762 -0.0135 0.1789

(0.25, 1.2, 1) 3 1.9327 0.3060 0.4430 -0.0051 0.1482 0.0102 0.1511
5 2.4248 0.5518 0.9528 0.0066 0.2525 0.0097 0.2566
7 2.6828 0.8428 1.8467 -0.0099 0.3518 -0.0059 0.3573

Chen (0.25, 1.2, 0.7) 3 1.2196 0.0333 0.0268 -0.0116 0.0208 -0.0040 0.0210
5 1.3522 0.0475 0.0343 -0.0128 0.0257 -0.0055 0.0256
7 1.4014 0.0617 0.0418 -0.0160 0.0290 -0.0089 0.0288

(0.25, 0.5, 1.2) 3 1.1504 0.3558 0.5611 0.0322 0.1009 -0.0048 0.0925
5 1.5527 0.4835 0.7809 0.0248 0.1626 -0.0121 0.1556
7 1.7573 0.6628 1.2203 0.0216 0.2132 -0.0173 0.2132

Table 11: Intervals between failures of the Boeing air conditioner systems.
Plane number

7907 194 15 41 29 33 18
7910 74 57 48 29 502 12 70 21 29 386 59 27 ∗∗ 153 26 326
7911 55 320 56 104 220 239 47 246 176 182 33 ∗∗ 15 104 35
7915 359 9 12 270 603 3 104 2 438
7916 50 254 5 283 35 12
7917 130 493
8044 487 18 100 7 98 5 85 91 43 230 3 130

are imperfect and considered the major overhauls and the last observed failure ages of the planes
as the times of the first perfect repair. By using a nonparametric procedure, they showed that
imperfectly repaired systems are minimally repaired and there is no evidence against the minimal
repair assumptions.
To illustrate the application of the SG model, Kamranfar et al. [13] considered plane numbers
7907, 7910, 7911, 7915, 7916, 7917, 8044, and treated the major overhauls and the last observed fail-
ures of the remaining planes as a perfect repair. The intervals between failures are presented in
Table 11. Thus, based on the SG model, in which system is replaced at the nth type-I failure
or at the first type-II failure whichever occurs first, the main parameters in this model are as
n = 12, k = 7, and m = (6, 12, 11, 9, 6, 2, 12).

To examine whether theoretical models Weibull, Chen, Gompertz, and Burr-XII are suitable
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Table 12: MLEs of α and λ and the measures K-S and AIC.
Fitted Model α̂ λ̂ K-S P-value AIC

Weibull 1.2780 0.0011 0.1963 0.9059 91.0202
Chen 0.2814 0.0102 0.1820 0.9434 91.9430
Gompertz 0.0017 0.0038 0.1796 0.9486 91.2358
Burr-XII 5.2688 0.0386 0.5486 0.0167 109.1632

to describe the air conditioner data using the SG model, or not, the Kolmogorov-Smirnov (K-S)
test is adopted. In this part, the tests investigate the first time to failure of all 7 planes in Table
11. The MLEs of unknown parameters α and λ, K-S distances, and the corresponding P-values as
well as Akaike’s information criterion (AIC) are reported in Table 12. Based on the K-S distances
and the p-values, the Weibull, Chen, and Gompertz models fit very well to the first time to failure;
while the Burr-XII cannot be addressed as a well fitted model to this real dataset. However, the
AIC index offers Weibull as the best-fitted model between the aforementioned models. Since the
systems are minimally repaired before replacement and based on the obtained results in Table 12,
the first time to failure follows Weibull, Chen or Gompertz distributions. Thus, we can fit these
models to the intervals between failures in 7 planes in Table 11.

Now, to illustrate the applicability of the discussed methods, based on all the three fitted models
and the real data in Table 11, the point and interval estimates of the unknown parameters p, α,
and λ are obtained. To compute the Bayesian estimates, it is assumed that the values of the
hyper-parameters of prior distribution of p to be (r, s) = (2, 3). Table 13 gives the prior knowledge
about the parameters α and λ, where the hyper-parameters bℓ, 1 ≤ ℓ ≤ 8 are estimated by using the
proposed method in subsection 4.1.1. The MLEs and Bayesian estimates as well as 95% approximate
and bootstrap confidence intervals of the unknown parameters p, α, and λ are listed in Table 14.
As it can be observed the estimates of parameter p for the three models are the same and it gives
us a confirmation for the obtained results in subsection 3.1.

A natural question that arises from the above results is: Which model to select? To answer
this question, we consider a likelihood-based method used for the complete samples by Marshall et
al. [28]. This method tends to select a model that gives the largest maximum likelihood value for
the aforesaid dataset. If we show log-likelihoods functions for the Weibull, Chen, and Gompertz
models respectively by ℓ∗W , ℓ∗C , and ℓ∗G; thus from the calculated results in Table 14, the maximized
log-likelihoods values are ℓ∗W (p̂, α̂, λ̂) = −358.4198, ℓ∗C(p̂, α̂, λ̂) = −360.5057, and ℓ∗G(p̂, α̂, λ̂) =

−359.0034 respectively. As it can be seen, the Weibull model, leading to the largest maximum
likelihood, seems to be the most appropriate model among these three suggested models for Boeing
air conditioner data based on the SG model.
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Table 13: The hyper-parameters values of prior distributions of α and λ.
Model l → 1 2 3 4 5 6 7 8

Weibull αl 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
bl 53.7995 96.2755 171.6359 304.9463 540.1561 954.2036 1681.5856 2957.1133

Chen αl 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
bl 0.3566 0.6752 1.4681 3.8529 12.7538 54.7334 315.3978 2658.6118

Gompertz αl 0.0005 0.0008 0.0011 0.0014 0.0017 0.0020 0.0023 0.0026
bl 61.0729 65.8819 71.0199 76.4818 82.2634 88.3629 94.7813 101.5228

ξl 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Table 14: The point and interval estimates of the unknown parameters (c = 1, w = 1).

Fitted Model parameter MLE BS BL EP ACI BCI BCIa

Weibull p 0.0893 0.1147 0.1139 0.1000 (0.0146, 0.1639) (0.0294, 0.2121) (0.0000, 0.1738)
α 1.1935 1.1959 1.1882 1.1830 (0.9168, 1.4701) (0.9636, 1.5833) (0.8422, 1.4640)
λ 0.0018 0.0026 0.0026 0.0012 (0.0000, 0.0056) (0.0001, 0.0098) (0.0000, 0.0067)

Chen p 0.0893 0.1147 0.1139 0.1000 (0.0146, 0.1639) (0.0294, 0.2143) (0.0000, 0.1743)
α 0.2397 0.2495 0.2495 0.2494 (0.2177, 0.2616) (0.2187, 0.2674) (0.2129, 0.2616)
λ 0.0359 0.0246 0.0246 0.0233 (0.0027, 0.0692) (0.0107, 0.0830) (0.0000, 0.0721)

Gompertz p 0.0893 0.1147 0.1139 0.1000 (0.0146, 0.1639) (0.0298, 0.2137) (0.0000, 0.1722)
α 0.0003 0.0006 0.0006 0.0005 (0.0000, 0.0008) (0.0000, 0.0011) (0.0000, 0.0007)
λ 0.0062 0.0050 0.0050 0.0049 (0.0033, 0.0091) (0.0035, 0.0084) (0.0039, 0.0090)

The three-parameter generalized gamma (GG) distribution is commonly used in the reliability
literature for modeling real data. It has the PDF

f(t;α, ν, θ) =
α

θΓ(ν)

(
t

θ

)αν−1

exp
{
−
(
t

θ

)α }
, t > 0, (46)

where θ > 0 is the scale parameter and α > 0, and ν > 0 are the shape parameters. Since
different values of its parameters provide different forms of the hazard function such as constant,
increasing, decreasing, and bathtub, the GG distribution is more flexible and applicable in reliability
and lifetime studies. It is noticed that the GG distribution in Eq. (46) reduces to the Weibull
distribution with Ψ(t;α) = tα, when ν = 1 and λ = (1/θ)α. For the given dataset in Table 11,
we fit the three-parameter GG distribution and statistically test whether the GG model can be
reduced to the Weibull model. The MLEs and the maximized log-likelihood determined by fitting
the GG distribution are (p̂, α̂, ν̂, θ̂) = (0.0893, 0.9020, 2.2417, 76.2998), ℓ∗GG(p̂, α̂, ν̂, θ̂) = −358.0490.

Therefore, the LR statistic is 2ℓ∗GG(p̂, α̂, ν̂, θ̂)− 2ℓ∗W (p̂, α̂, λ̂) = 0.7416. The LR test yields a p-value
of 0.3891 by a chi-squared distribution with one degree of freedom. Hence, for any usual significance
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Table 15: Failure data observed from five copies of identical repairable systems.
System ID

1 23.88 32.76 46.69 53.73 66.16
2 39.50 39.76 41.65 48.71 50.62 55.66 55.85 67.22
3 17.74 30.58 30.98 45.16 55.63 62.18
4 21.38 21.54 30.26 52.99 68.82
5 9.15 14.85 47.80 54.69 59.98 62.68

level, this analysis confirms that the extension from the Weibull distribution to the GG distribution
is not statistically significant for modeling the given dataset.

Example 2. The dataset which provided by Liu et al. [29] is considered. The failure dataset
is collected from five copies of identical repairable systems which are governed by the imperfect
maintenance of the Kijima type I model (virtual age). Liu et al. [29] supposed that the system is
discarded at the end of the third preventive maintenance (PM) cycle, which each PM is imperfect,
and the failures between any two consecutive PM are minimally repaired. We use the third PM
cycle and treat the last observed failure time as a perfect repair (as the first type-II failure). The
failure dataset is tabulated in Table 15. It shows that the main parameters in the SG model are as
n = 8, k = 5, and m = (5, 8, 6, 5, 6).
Similar to Example 1, we consider the first time to failure of all five copies to examine whether
theoretical models Weibull, Chen, Gompertz, and Burr-XII are suitable to describe the air condi-
tioner data using the SG model, or not. Table 16 lists the MLEs of α and λ from the fitted Weibull,
Chen, Gompertz and Burr-XII models and the values of K-S and AIC. The results show based on
the K-S distances and the p-values, all four models fit to the first time to failure. However, the AIC
index shows that the Weibull model yields a better fit compared with other fitted models. From
the dataset, (p̂, α̂, λ̂), the MLE of (p, α, λ), for the Weibull, Chen, Gompertz and Burr-XII models
are respectively as follows: (0.1379, 1.9718, 0.0016), (0.1379, 0.4121, 0.0222), (0.1379, 0.0322, 0.0267)
and (0.1379, 8.8986, 0.1613). Here the issue of model choice arises. Using the likelihood-based
method, the aim is to select a model which yields the largest maximum likelihood value for the the
aforesaid dataset. The log-likelihood values for the Weibull, Chen, Gompertz and Burr-XII models
are derived respectively as follows: ℓ∗W (p̂, α̂, λ̂) = −107.6981, ℓ∗C(p̂, α̂, λ̂) = −108.2408, ℓ∗G(p̂, α̂, λ̂) =

−108.2314 and ℓ∗B(p̂, α̂, λ̂) = −141.0657. As it can be noticed the value of the log-likelihood function
for the Weibull model is the largest. Hence the Weibull model can be labeled as the best model
among these four suggested models for the dataset presented in Table 15. For the sake of brevity, the
point and interval estimates of p, α and λ for the Weibull model are presented. Similar to Example
1, to compute the Bayesian estimates, it is assumed that the values of the hyper-parameters of prior
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Table 16: MLEs of α and λ and the measures K-S and AIC.
Fitted Model α̂ λ̂ K-S P-value AIC

Weibull 2.4202 0.0004 0.2179 0.9288 40.7096
Chen 0.4912 0.0069 0.2505 0.8431 41.2538
Gompertz 0.0774 0.0114 0.2537 0.8330 41.4231
Burr-XII 8.7493 0.0381 0.5218 0.0858 54.9898

Table 17: The hyper-parameters values of prior distributions of α and λ.
Model l → 1 2 3 4 5 6 7 8

Weibull αl 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
bl 53.9339 76.4457 108.2384 153.0989 216.3468 305.4486 430.8787 607.3207

ξl 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

distribution of p to be (r, s) = (2, 3). Table 17 describes the prior knowledge about the parameters
α and λ. For c = 1 and w = 1 the results of the Bayesian estimates of p, α and λ are com-
puted as (p̂BS , α̂BS , λ̂BS) = (0.17647, 1.9411, 0.0026), (p̂BL, α̂BL, λ̂BL) = (0.1744, 1.9191, 0.0026)

and (p̂BE , α̂BE , λ̂BE) = (0.1515, 1.9182, 0.0012). According to subsection 3.2, the 95% ACI, BCI
and BCIa for p are (0.0124, 0.2634), (0.0312, 0.3571) and (0.0001, 0.2927), respectively. In the case of
α these interval estimates are as (1.2683, 2.6752), (1.4719, 3.0653) and (1.0085, 2.6397), respectively
and for λ they are (0.0001, 0.0062), (0.0001, 0.0132) and (0.0001, 0.0085).

7 Discussions and conclusions

The likelihood function (3) has been obtained based on the observed data x = (x1, . . . , xm);
1 ≤ m ≤ n. When m is smaller than n, it is clear that the first m− 1 failures follow from minimal
repair and the type of the mth failure is perfect. However, when m = n, again the first n − 1

failures follow from minimal repair, but in this case, there is no information about the type of the
nth failure. In other words, based on the observed data x = (x1, x2, . . . , xn), the type of the last
failure is ignored. Now, we suppose that when the nth failure is observed, the type of failure is
known. This is described by the discrete random variable Z. Let Z = 1 if the nth failure is perfect
and Z = 0 otherwise. Then, for all m; 1 ≤ m ≤ n and x1 < · · · < xm, the likelihood function of
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the observed data can be written as

L(p, F ;x, z,m) =

n−1∏
j=1

(1− p)I(m>j)pI(m=j)[f (xj |xj−1)]
I(m≥j)


×
[
(1− p)I(z=0)pI(z=1)f (xn|xn−1)

]I(m=n)

= (1− p)m−1+I(z=0)I(m=n)pI(m<n)+I(z=1)I(m=n)
m∏
j=1

f (xj)

F̄ (xj−1)
. (47)

Due to the structure of the likelihood function (47), it is easy to see that for k systems, the ML
and Bayesian estimators of the unknown parameters α and λ are the same as the ML and Bayesian
estimators presented in subsections 3.1 and 4.2. It is clear that the ML and Bayesian estimators
of p depend on zi if mi = n; 1 ≤ i ≤ k, where zi describes the type of the nth failure in the ith
system. As an example, p̂ is equal to 0 if mi = n and zi = 0 for all 1 ≤ i ≤ k.

This paper considers the statistical inference procedures for the SG model based on a class of
univariate distributions generated from the exponential distribution. Both frequentist and Bayesian
approaches are implemented. Through a Monte Carlo simulation study, the performance of the
inferential methods are studied and the results are reported comprehensively in Section 5. The
effect of model misspecification on the estimation of the mean time to perfect repair is investigated
through a detailed Monte Carlo simulation study. This paper can be extended for more complicated
situations requiring more complex models such as the systems with more components or parallel
and series systems.
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