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Abstract

After initiation of treatment, HIV viral load has multiphasic changes, which indicates that the viral 

decay rate is a time-varying process. Mixed-effects models with different time-varying decay rate 

functions have been proposed in literature. However, there are two unresolved critical issues: (i) it 

is not clear which model is more appropriate for practical use, and (ii) the model random errors are 

commonly assumed to follow a normal distribution, which may be unrealistic and can obscure 

important features of within- and among-subject variations. Because asymmetry of HIV viral load 

data is still noticeable even after transformation, it is important to use a more general distribution 

family that enables the unrealistic normal assumption to be relaxed. We developed skew-elliptical 

(SE) Bayesian mixed-effects models by considering the model random errors to have an SE 

distribution. We compared the performance among five SE models that have different time-

varying decay rate functions. For each model, we also contrasted the performance under different 

model random error assumption such as normal, Student-t, skew-normal or skew-t distribution. 

Two AIDS clinical trial data sets were used to illustrate the proposed models and methods. The 

results indicate that the model with a time-varying viral decay rate that has two exponential 

components is preferred. Among the four distribution assumptions, the skew-t and skew-normal 

models provided better fitting to the data than normal or Student-t model, suggesting that it is 

important to assume a model with a skewed distribution in order to achieve reasonable results 

when the data exhibit skewness.
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1. Introduction

Mathematical modeling is an important tool for understanding the evolution of HIV viral 

load (number HIV-1 RNA copies in plasma) and interactions between HIV and its target 

cells. Due to the availability of highly active antiretroviral therapy (HAART) and sensitive 
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methods of obtaining blood plasma HIV-1 RNA concentrations, it is possible to use viral 

load as a surrogate marker for the health status of HIV-infected individuals.

The viral load trajectory is complex and has multiple phases of change (Maldarelli et al., 

2007; Perelson et al., 1997). Data from the AIDS clinical trial, ACTG5055 (Acosta et al., 

2004) in Figure 1(a), show that: (i) within the first 2 weeks after the initial treatment, the 

viral load (transformed in natural log scale) dropped linearly and sharply, therefore, the 

change of viral load can be approximated by an exponential function; (ii) within the first 2–3 

months but after the first 2 weeks, the relationship between the viral load and time was still 

linear but the slope became flatter, which indicates a slower decay rate; (iii) between the 

third to eighth month, the viral load either decreased more slowly, remained at a constant 

low level, or started to increase up to the level measured before treatment was initiated. The 

possible reasons for viral load rebound are development of resistance to the medications, 

and other clinical issues such as lack of adherence. There is no clear cutoff among the 

phases, not every subject will have all of these phases and the length of the phases may vary 

among individuals. Therefore, the associated decay rate in the models for the viral load 

trajectories is expected to vary over time and can be individually specific.

For the first phase of HIV viral load dynamics (i.e., the first 1 to 2 weeks), we can apply a 

uniexponential equation (Ho et al., 1995; Wei et al., 1995) as,

(1)

where V (t) is total viral load at time t, V (0) is the baseline viral load at t = 0 and λ is a 

constant viral change rate which is the speed of the loss of viral load after initiation of 

antiviral treatment. Although equation (1) can precisely describe the phenomenon of a linear 

decrease of logarithm transformed viral load within approximately one to two weeks since 

treatment, we cannot apply it to the whole trajectory because the viral load is only allowed 

to decrease at a constant rate in this equation. Besides that, there are at least three unsolved 

issues.

First, in order to use entire HIV follow up data, extended from equation (1), different models 

have been proposed in the literature, it is unclear which one is more appropriate.

Second, in mixed-effects model for longitudinal data analysis, random errors and/or random-

effects are usually assumed to have a normal distribution. Although the normality 

assumption is satisfied in many situations, it may cause biased or misleading inference if the 

data include extreme values or show skewness with heavy tails, which are commonly seen in 

virological responses (Huang and Dagne, 2011; Sahu et al., 2003; Verbeke and Lesaffre, 

1996). Figure 1(b) displays the histogram of repeated viral load in natural log scale for 44 

subjects enrolled in the ACTG5055 trial. The skewness, which is still obvious even after the 

transformation, is positive and ranges from 0.8 and 2.15 at each of the follow up 

measurements. If the ratio between skewness value and standard error of skewness is greater 

than 2, the data may be regarded as having unignorable skewness (Gardner, 2001). In the 

ACTG5055 study, the ratio is 4, which indicates skewness needs to be accounted for.
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Third, computation can be a challenge. Frequentist and Bayesian are two major approaches 

used in studies of HIV dynamics. In the frequentist approach, based on the maximum 

likelihood estimation (MLE), different extensions have been proposed, such as Laplace 

approximation of the numerical integrals (Beal and Sheiner, 1982; Lindstrom and Bates, 

1990; Wu and Zhang, 2002), stochastic approximation EM (SAEM) algorithm (Kuhn and 

Lavielle, 2005; Lavielle et al., 2011), joint model via Monte Carlo EM algorithm (Liu and 

Wu, 2007; Wu, 2004) and asymptotic distribution of the maximum h-likelihood estimators 

(MHLE) (Commenges et al., 2011). The second approach is Bayesian mixed-effects 

modeling via Markov chain Monte Carlo (MCMC) (Huang et al., 2006; Huang and Dagne, 

2011; Putter et al., 2002). The Bayesian approach is an efficient way to incorporate prior 

information, both point estimates and uncertainties (variances), into analysis to identify 

more unknown parameters in complex models.

Via Bayesian approach, the main focus of this paper is to provide a comprehensive 

comparison of five commonly used HIV dynamic models with skew-elliptical (SE) 

distribution in random error. The rest of the paper is organized as follows. Section 2 presents 

the HIV dynamic models that have a time-varying decay rate function, so they can be 

applied to the entire follow-up data. In Section 3, we describe a general Bayesian mixed-

effects modeling approach. In Section 4, we present the motivated AIDS data and results of 

model comparisons. Section 5 includes the conclusion and discussion.

2. HIV dynamic models with time-varying decay rate function

As mentioned in Section 1, there is a multiphasic change in HIV viral load after the 

initiation of HAART. One potential interpretation of this phenomenon is that the process 

involves distinct populations with different homogenous behaviors. For example, the fast 

decreasing decay rate observed in the first phase is due to the treatment effect on 

productively infected CD4 cells, while the slower decay rate in the second phase is primarily 

due to the effect on the latently or long-lived infected cells (Perelson et al., 1997). However, 

some phenomena can’t be explained by this theory. For example, there can be large 

differences in mean decay rates in response to different treatment regimens: during the first 

week, the death of infected cells may be substantially slower during days 3–6 than during 

days 2–3 (Grossman et al., 1999). Following equation (1), Grossman et al.(1999) proposed 

an equation for viral load as:

(2)

where R is reproduction ratio and is a function of time, ρ is an adjustable parameter, τ is the 

average infection cycle time, υ(t) is the ratio between the viral load at time t and the 

baseline. Following Zhang and Wu (2011), equation (2) is equivalent to the following 

equation,

(3)

where  is the average relative lost rate of the viral load V (t). λ(t) can be 

positive (if R < 1), zero (if R = 1), or negative (if R > 1). If λ(t) < 0, the decay rate λ(t) at 
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time t actually is a growth rate. Therefore, by including a time-varying decay rate function 

λ(t), compared with equation (1), equation (3) is more flexible and can be applied to include 

the entire follow up data without the need to arbitrarily truncate the data.

A unified model with a time-varying viral decay rate function can be expressed as:

(4)

where y(t) is the natural logarithm transformation of the number of HIV-1 RNA copies per 

mL of plasma, ε is the measurement error, ln(V (0)) = β1 and is the macro-parameter for 

initial viral load in natural log scale.

Among the different decay rate functions proposed in literature, we select five 

representatives as follow (Dagne and Huang, 2012; Grossman et al., 1999; Wu, 2004; Zhang 

and Wu, 2011),

(5)

where the last one, λ(t) = υ[w(t), hi(t)], is a nonparametric function.

3. Bayesian mixed-effects models with skewed distribution

To account for the skewness observed in the data, the random errors in mixed-effects models 

can be assumed to follow an SE distribution (see Appendix A in detail). The SE distribution 

is a family of distributions that is not only mathematically tractable but also flexible in its 

possible shapes. Because in the SE family, skew-normal (SN), normal and Student-t 

distribution are all a special case of skew-t (ST) distribution, therefore, in this section, we 

present a general form of a mixed-effects model with an ST distribution under the Bayesian 

approach. A general mixed-effects model with an ST distribution can be expressed as,

(6)

yi = (yi1, …, yini)
T with yij being the response value for the ith individual at the jth time (i = 

1, …, n; j = 1, …, ni), gi(ti, βi) = (g(ti1, βi), …, g(tini, βi))T, ti = (ti1, …, tini)
T, βi and β are 

individual-specific parameter vector and population parameter vector, respectively, g(·) and 

d(·) are linear or nonlinear known parametric functions, bi is normal random-effect vector 

with Σb being an unstructured covariance matrix. The vector of random errors εi = (εi1, …, 

εini)
T follows a multivariate ST distribution with degrees of freedom ν, within-subject 

covariance matrix Σ and we usually can assume Σ = σ2Ini, and unknown ni × ni skewness 

diagonal matrix such that Δ = diag(δi1, …, δini), skewness parameter vector δi = (δi1, …, 

δini)
T. In particular, if δi1 = ⋯ = δini ≙ δ, then Δ = δIni and δi = δ1ni, where 1ni = (1, …, 1)T, 

indicating that we are interested in skewness of overall data set.
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Following discussion in Appendix A, to implement an MCMC procedure to model (6), by 

introducing one ni × 1 random vector wi, based on the stochastic representation, the model 

can be hierarchically formulated as follows.

(7)

where , tni,ν(μ, A) denotes the ni-variate Student-t distribution with 

parameters μ, A and degrees of freedom ν, I(w > 0) is an indicator function and w = |X0| with 

X0 ~ tni,ν(0, Ini). Note that the hierarchical models above under Bayesian framework will 

allow researchers to easily implement the methods using the freely available WinBUGS 

software (Lynn et al., 2000) and the computational effort for the model with an ST 

distribution is almost equivalent to that of the model with a Student-t distribution.

The unknown population parameters in the model (6) are θ = {β, σ2, Σb, ν, δ}, and we 

assume they are independent of one another. Under Bayesian framework, we also need to 

specify prior distributions for unknown parameters as follows.

(8)

where the mutually independent Normal (N), Inverse Gamma (IG), Exponential (Exp) and 

Inverse Wishart (IW) prior distributions are chosen to facilitate computations (Davidian and 

Giltinan, 1995). The super-parameter matrices ∧ and Ω can be assumed to be diagonal for 

convenient implementation.

Let π(.) be a prior density function, so π(θ) = π(β)π(σ2)π(Σb)π(ν)π(δ). Denote the observed 

data by  = {yi, i = 1, …, n}, and f(·|·) as a conditional density function. Based on Bayesian 

inference, the posterior density of θ is proportional to the observed data and prior 

distribution as:

(9)

In general, the integral in (9) is of high dimension and does not have any closed form. 

Analytic approximations to the integral may not be sufficiently accurate. Therefore, it is 

prohibitive to directly calculate the posterior distribution of θ based on the observed data. As 

an alternative, MCMC procedures can be used to sample based on (9) by the Gibbs sampling 

along with the Metropolis-Hastings (M-H) algorithm.

4. Application: AIDS clinical trial data

4.1. AIDS clinical trial data and specific models

We used two AIDS clinical trials to explore the best fit among the models with different 

time-varying decay rate functions and different model error assumption such as normal, SN, 

Student-t and ST distributions. The first trial, ACTG5055 (Acosta et al., 2004), is the focus. 

Further, we used data from another clinical trial, ACTG398 (Pfister et al., 2003), to validate 

the conclusions obtained from ACTG5055.
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ACTG5055 study was a phase I/II, randomized, open-label, 24-week comparative study. It 

included 44 HIV-1 infected patients who failed their first protease inhibitor (PI) treatment. 

Subjects were randomly assigned into one of the two arms. RNA viral load was measured 

(copies/mL) in blood samples collected at study days 0, 7, 14, 28, 56, 84, 112, 140 and 168 

with a low limit of quantification of 50 copies/mL. HIV-1 RNA measures below this limit 

are not considered reliable. Following the simple substitution method of one half the 

detection limit for the detection (Helsel, 1990), we used 25 copies/mL if the viral load was 

50 copies/mL or less.

ACTG398 study was a phase II trial that included 481 HIV-1 positive patients with prior 

exposure to approved PIs and loss of virological suppression. All patients were assigned to 

receive routine antiretroviral treatment (ART). Besides these medications, depending on the 

dose and type of PIs to which the patients previously exposed, they were selectively 

randomly assigned into one of four groups. HIV-1 RNA levels were measured at the time of 

entry into the study (day 0), at study weeks 2, 4, 8, 16, 24, 32, 40, and 48, every 8 weeks 

thereafter, and at the time of confirmed virological failure. The low limit of quantification is 

100 copies/mL and the HIV-1 RNA measures below this limit are not considered reliable 

and 50 copies/mL was used instead. We draw two samples from ACTG398 based on the 

method of simple random sampling without replacement, one sample includes 44 subjects 

and the other includes 100 subjects. We also used all of the 481 subjects in ACTG398 in the 

model comparisons.

Figure 2 shows the measurements of viral load in natural log scale for four randomly 

selected patients from ACTG5055 and two sample data sets from ACTG398. We can see 

that viral load trajectories vary widely and they are substantially different across individuals. 

To account for this time-varying viral load change, we applied a mixed-effects model with a 

time-varying decay rate function, as discussed in Section 2. In addition, we assumed the 

model errors followed an ST distribution in order to make it flexible in dealing with the 

skewness observed in the data. The exact day of viral load measurement was used to 

compute study day in our analysis.

Under the general layout as model (4), corresponding to the five time-varying decay 

functions presented in Section 2, the mixed-effects models can be expressed as follow.

Model I: Quadratic linear mixed-effects model:

(10)

where β = (β1, β2, β3)T and 

Model II: Nonlinear mixed-effects model (uniexponential plus a constant):

(11)

where β = (β1, β2, β3, β4)T and 
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Model III: Nonlinear mixed-effects model (uniexponential plus a linear function):

(12)

where β = (β1, β2, β3, β4, β5)T and 

Model IV: Nonlinear mixed-effects model (two uniexponential):

(13)

where β = (β1, β2, β3, β4, β5)T and 

Model V: Semiparametric mixed-effects model:

where w(t) and hi(t) are unknown nonparametric smooth fixed-effects and random-

effects functions, respectively, and hi(t) are iid realizations of a zero-mean stochastic 

process. Model V is a semiparametric mixed effects model if w(t) and hi(t) are modeled 

non-parametrically such as splines or local polynomials. There are several ways to 

approximate these nonparametric functions. Following the similar approach as Shi et al.

(1996), Rice and Wu (2001) and Huang and Dagne (2010), we used natural cubic basis 

function instead of smoothing splines or kernel methods for two reasons: this method is 

more straightforward in application and we can select the bases by Akaike information 

criterion (AIC) or the Bayesian information criterion (BIC) to balance the goodness-of-

fit and model complexity. A linear combination of base function can be expressed as:

(14)

where μp and ξiq (q ≤ p) are the unknown vectors of fixed and random coefficients, 

respectively. We set ψ0 = ϕ0 ≡ 1 and took the same natural cubic splines in the 

approximations with p ≤ q, based on the AIC and BIC values, selected as w(tij) + hi(tij) 

≈ μ0 + μ1ψ1(tij) + μ2ψ2(tij) + ξi0, where p = 3 and q = 1. Model V, therefore, can be 

expressed as,

(15)

where β = (β1, μ0, μ1, μ2)T and .

In each of the five models above, besides the ST distribution assumption, the model random 

error can also be assumed to follow other more specific distributions as normal, SN and 
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Student-t. We used several criteria to check the model fit by applying the models on the data 

mentioned above.

We first used deviance information criterion (DIC) (Spiegelhalter, 2002) to compare models. 

DIC is a generalization of AIC that can be directly obtained from WinBUGS (Lunn et al., 

2000), and it consists of two components:

(16)

where D̄ = Eθ|Y [D(θ)] = Eθ|Y [−2 log p(Y |θ)] is the posterior mean of the deviance and 

measures “goodness of fit”, pD = D̄ −D(θ̄) is the effective number of parameters that 

indicates “complexity”. Therefore, DIC = “goodness of fit” + “complexity”. Same as AIC 

and BIC, the smaller the value of DIC, the better of the model fit. DIC is not intended for 

identification of the ‘correct’ model, but rather merely as a way to compare a collection of 

alternative formulations.

Because model comparisons are critical for our study, besides DIC, we also compared the 

values of expected predictive deviance (EPD) and residual sum of squares (RSS) that are 

obtained from each model. EPD is formulated by EPD = E{Σi, j(yrep, ij − yobs, ij)2}, where 

the predictive value yrep, ij is a replicate of the observed yobs, ij and the expectation is taken 

over the posterior distribution of the model parameters θ (Gelman et al., 2003). RSS is given 

by Σi, j(yobs, ij − yfitted, ij)2. The smaller the value of DIC, EPD and RSS, the better fit of the 

model to the data. Besides these statistical criteria, two types of plots, Quantile-Quantile (Q-

Q) plot and observed values vs. fitted values, were also reported to give a visualized 

goodness-of-fit in the model comparisons.

To avoid very small (large) estimates, which may be unstable, we rescaled the original time t 

(days) so that the time scale was between 0 and 1. We used the entire follow up data in all of 

the models. In the Bayesian inferential approach, we also need to specify values of the 

hyper-parameters at the population level. Weakly informative prior distributions are taken 

for all the parameters: (i) for each component of fixed-effects vector of β, the prior was 

assumed to follow independent normal distribution as N(0, 100); (ii) for the scale parameter 

σ2, we assumed a limiting non-informative inverse gamma prior distribution as IG(0.01, 

0.01), therefore, the mean is 1 and variance is 100; (iii) the prior for the variance-covariance 

matrix for the random-effect Σb was taken to be inverse Wishart distribution as IW(Ω, υ), the 

degree of freedom, υ = 5, and Ω is diagonal matrix with diagonal elements being 0.01; (iv) 

for the skewness parameter δ, we chose normal distribution; (v) the degree of freedom ν 

followed truncated exponential distribution with ν0 = 0.5

The MCMC sampler was implemented using WinBUGS package (Lunn et al., 2000), and 

the WinBUGS program code is available in Appendix B. The posterior means and quantiles 

were drawn after the collecting the final MCMC samples. We used one long chain. 

Convergence, which refers the algorithm has reached its equilibrium target distribution, was 

closely watched by using the standard tools within WinBUGS such as trace plots, the MC 

error and depicting the evolution of the ergodic means of a quantity over the number of 

iterations. After an initial 100,000 burn-in iterations, every 50th MCMC sample was 
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retained from the next 200,000. Thus, we obtained 4,000 samples of targeted posterior 

distribution of the unknown parameters for statistical inference.

4.2. Results

We carry out model comparisons in two steps. Step 1: in Section 4.2.1, we determine when 

the model errors are assumed to have an ST distribution, among the five models presented in 

Section 4.1, which one has the best fit. Step 2: in Section 4.2.2, because normal, SN and 

Student-t distributions are all a special case of an ST distribution, focusing on the best model 

selected from Step 1, we compare the results based on random errors with the normal, SN, 

Student-t and ST distributions. The model comparisons are carried on A5055 data and 

confirmed by A398 data. Section 4.2.3 presents the results based on the best model selected.

4.2.1 Comparison of five models under an ST distribution—We should not 

directly compare the parameter values obtained from the models that have different 

components. However, because the models were applied to the same HIV viral load data, we 

could use DIC, EPD and RSS to find out which model had the best fit. Table 1 indicates that 

Model IV has the best fit. Among all of the data sets: ACTG5055, the two randomly 

selected samples from ACTG398 and ACTG398 that includes every subject, Model IV 

constantly has the lowest DIC, EPD and RSS. For example, in ACTG5055, the DIC value 

for Model IV is 21.7, while the DIC values are 1192.0, 401.1, 669.2, and 1015.7 in Models 

I, II, III and V, respectively.

4.2.2 Comparison of the best Model IV with four distributions of random error
—For Model IV, we further investigated how different distributions of random error would 

affect the model fit and the DIC values are shown in Table 2 below. The model with either 

ST (ACTG5055, two samples of ACTG398) or SN (whole ACTG398) has the lowest DIC. 

Because SN has a simpler structure than ST, and the larger the degree of freedom, the closer 

the Student-t distribution is to the normal distribution, it is not surprising to see when the 

sample size is big (e.g. ACTG398, n=481), SN has a smaller DIC value than ST. We also 

evaluated EPD and RSS (not shown here) which provide the equivalent conclusion to that 

from DIC.

We applied Model IV on ACTG5055 to further compare the estimation results obtained 

from different distributions. The posterior mean (PM), the corresponding standard deviation 

(SD) and 95% credible interval (CI) for fixed-effects parameters are presented in Table 3. 

We found that: (i) with the exception β5 based on the normal distribution, all of the other 

estimates were significant because the 95% CIs don’t include zero; (ii) for the variance σ2, 

the estimated value based on the SN (0.05) and ST (0.01) models were much smaller than 

the model with normal (1.15) or Student-t assumption (0.38); (iii) among all of the 

parameters estimated, the SD obtained from ST were the smallest; (iv) the estimates were 

similar between normal and Student-t model, but they were substantially different to those 

obtained from SN or ST model. For example, β2 based on normal and Student-t models was 

34.67 and 38.10, respectively, while it was 24.53 and 27.89 in SN and ST models, 

respectively; (v) the skewness parameter δ was significantly positive in SN and ST models, 

confirming the positive skewness of the viral load in natural log scale as shown in Figure 
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1(a); (vi) compared to the model with normal or Student-t random error, the models with an 

SN or ST fit the data better. For example, in ACTG5055, for DIC values, 1133.3 (normal) 

vs. 222.8 (SN), 1004.9 (Student-t) vs. 21.7 (ST), it indicates that consideration of a departure 

from normality will improve the model fitting.

Several diagnostic plots for goodness-of-fit are also applied. Firstly, we select three 

representative subjects corresponding to the three typical patterns trajectories displayed in 

Figure 1 (a). These three trajectory patterns represent (i) rapid decline followed by slow 

decrease, (ii) rapid decline followed by rebound and then decrease, and (iii) decline followed 

by rebound. The individual estimates of viral load trajectories are shown in Figure 3. The 

following findings are observed: (i) the estimated individual trajectories obtained from SN 

and ST fit the originally observed data much closer than those got from the model where the 

random error is assumed to be normal or Student-t ; (ii) the average SD obtained from ST is 

the smallest, which is 0.15, while the mean of SD for the individual estimation got from SN, 

N and Student-t is 0.22, 0.52 and 0.46, respectively. Note that the lack of smoothness in SN 

and ST model estimates of individual trajectories is understandable since a random 

component wi was incorporated in the expected function (see equation (7) for details) 

according to the stochastic representation feature of the SN and ST distributions for “chasing 

the data” to this extent.

We also applied two diagnostic plots: plot of the observed values versus the fitted values 

(Figure 4) and Q-Q plot (Figure 5). The findings agree with that from DIC criterion: the 

models with SN and ST distributions provided better fit to the observed data than the ones 

with normal or Student-t distribution. Based on the results from DIC, EPD, RSS and the 

diagnostic plots, we conclude that Model IV with an ST distribution fits the data better than 

the other combinations among the models with a different time-varying decay rate function 

and/or distribution assumption of random errors.

4.2.3 Results based on Model IV with an ST distribution—Based on Model IV with 

an ST distribution, the estimated population decay rate function based on ACTG5055 data is

Because the estimated λ̂(t) is always positive, the population viral load would always 

decrease in this specific HIV/AIDS data set.

The individual time-varying decay rate function is given by,

where the individual estimated decay rate λ0302;(tij) is considered to be dependent on both 

subjects and time points. We found that the individual decay rate at initial treatment, λ̂(ti1), 

where ti1 = 0, was positively correlated with baseline viral load (Spearman correlation 

coefficient r = 0.769, p < 0.0001) and negatively associated with baseline CD4 cell count (r 
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= −0.447, p = 0.0025). Overall, the individual decay rate, λ̂(tij), was positively associated 

with viral load (p < 0.0001) and negatively associated with CD4 cell count (p < 0.0001).

Because 30 ~ 60% (Havlir et al., 2000) of patients eventually will have viral rebound, it is 

important to have a model that can reasonably predict this type of treatment failure in the 

long term. Following Wu et al.(2008), we defined rebound as, comparing with the HIV-1 

viral load (natural log transformed) from the previous measurement, if there was ≥ 1.15 

increase at one time point or ≥ 0.46 increase at two or more consecutive time points. In 

ACTG5055, there were 11 (26.2%) subjects had rebound. There was no significant 

difference in the baseline viral load (natural log (RNA)) between the rebound and no 

rebound group (median was 9.18 and 8.78/mL, respectively, p = 0.8610), while the median 

of baseline CD4 cell count intended to be higher in the no rebound group than in the 

rebound group (285 vs. 253/mL, respectively, p = 0.1169).

The trend of the changes in decay rates during the treatment was different between the 

rebound and no rebound group (Figure 6). For example, every individual decay rate was 

positive in the no rebound group, while some individual decay rates in the rebound group 

became negative, especially after the 3rd month of the treatment, which corresponded to the 

viral load rebound.

Based on the results of Model IV under the ST distribution in ACTG5055 data, we also 

found that: (i) overall, the average value of individual decay rates, λ̂(tij), was bigger in the no 

rebound group (14.97) than in the rebound group (12.93); (ii) the initial individual decay 

rates, λ̂(ti1), were significantly bigger in the no rebound group than in the rebound group 

(mean is 53.16 and 40.95, respectively); (iii) λ̂(ti1) was significantly associated with the 

rebound status in the long term (OR = 0.703, 95% CI is 0.580 – 0.853, p = 0.0003) and this 

association was still significant even after controlling the baseline viral load and CD4 cell 

count (OR = 0.717, 95% CI is 0.588 – 0.875, p = 0.0010). (iv) the average individual decay 

rate at the last visit (λ̂(tini)) among the no rebound subjects was 4.67, while it was −2.28 in 

the rebound group which indicates the viral load actually increasing instead of decreasing in 

this group. Among these findings, the most interesting is the associated relationship between 

initial individual decay rate (λ̂(ti1)) and rebound status: the results indicated that the odds of 

rebound decreased about 30% with each 1 unit increased in the decay rate. This may be 

helpful for physicians to predict the long-term results based on the information at early stage 

of the disease.

5. Discussion

With an ST distribution assumption for model random errors to account skewness observed 

in viral load responses, we compared five commonly used mixed-effects models in HIV 

dynamics via the Bayesian approach. We also investigated the impact of the four 

distributions in the skew-elliptical family on the model fitting. The results indicate that with 

the ST distribution, there is potential gain of efficiency and accuracy in estimating certain 

parameters when the normality assumption does not apply to the data. The skew-elliptical 

modeling via the Bayesian approach proposed in this study can be easily carried out via the 
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WinBUGS package. Because the proposed model is quite general in theory and accessible to 

the existing software, it will allow statisticians to apply this method in other fields.

After finding the best fitting model, we estimated the relationship between the individual 

viral decay rate and some clinical important variables. The initial individual decay rate was 

positively correlated with the baseline viral load and negatively associated with baseline 

CD4 cell count. We also found that, overall, the average individual decay rate was lower in 

the rebound group than in the no rebound group. A more interesting finding is the significant 

association between the initial individual decay rate and the rebound status in the long-term, 

even after controlling for the baseline viral load and CD4 cell count. This finding is 

clinically important because it may enable physicians to predict the long-term outcome 

based on the estimated decay rate at an early stage.

Using the model with a time-varying decay rate function has some advantages over the 

biphasical models. (i) In the biphasical models, the association between the first decay rate 

and baseline viral load could be positive (Notermans et al., 1998; Wu et al., 2004) or 

negative (Wu et al., 1999); no significant association was found between the rebound and 

the first decay rate either (Wu et al., 2008); (ii) although the second decay rate in the 

biphasical models is supposed to be associated with long-term treatment status such as 

rebound (Ding and Wu, 1999; Wu et al.,2005), no significant association was found between 

the second decay rate and the low-level viral replication in long term (Sedaghat et al., 2008; 

Wu et al., 2003).

This paper has some limitations. Usually, covariates are included in the mixed-effects model 

to control within- and between-subject variation, and CD4 cell count is a commonly used 

covariate in HIV dynamic models. However, in order to use the original proposed models in 

the comparisons, we did not include covariates such as CD4 cell count or demographic 

information. For the viral load, the values below the detectable level are usually considered 

as inaccurate. Instead of treating these values as censored, we computed them by half the 

value of the detectable level. Furthermore, the issue of missing values is not considered in 

this study either.

In conclusion, the skewness parameter in the model with SN or ST distribution assumption 

is significantly positive, which confirms the positive skewness observed in the viral load 

data even after natural log transformed. The model fit is the best in the model with skewed 

(SN or ST) distribution. Because estimated parameters can be considerably different 

between the models with skewed distribution and normal or Student-t distribution, it is 

important to account for skewness in the model when data exhibits noticeable skewness. 

Different models may yield different conclusions about the relationship between the 

individual decay rate with viral load, CD4 cell count and the rebound status in HIV 

dynamics, therefore, it is also critical to choose a reasonable model that can balance between 

complexity and utility.
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Appendix A. Skill-elliptical distributions

Skew-elliptical (SE) distribution is a parametric class of probability distributions that is 

extended from elliptical distribution by including an additional shape parameter for 

skewness. This class, which is usually obtained by using transformation and conditioning, 

contains many standard families such as multivariate skew-normal (SN) and skew-t (ST) 

distributions. Different versions of the multivariate SE distributions have been proposed. We 

adopt a class of multivariate SE distributions proposed by Sahu et al.(2003), which is 

obtained by using transformation and conditioning and contains multivariate ST, SN, 
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Student-t and normal distributions as special cases. A k-dimensional random vector Y 
follows a k-variate SE distribution if its pdf is given by

(A.1)

where A = Σ + Δ2, μ is a location parameter vector, Σ is a covariance matrix, Δ is a 

skewness diagonal matrix with the skewness parameter vector δ = (δ1, δ2, …, δk)T ; V 

follows the elliptical distribution  and the density 

generator function , with mν(u) being a function such 

that  exists. The function mν(u) provides the kernel of the original 

elliptical density and may depend on the parameter ν. We denote this SE distribution by 

SE(μ, Σ, Δ; m(k)). Two examples of mν(u), leading to important special cases used 

throughout the paper, are mν(u) = exp(−u/2) and mν(u) = (u/ν)−(ν+k)/2, where ν > 0. These 

two expressions lead to the multivariate SN and ST distributions, respectively. In the latter 

case, ν corresponds to the degree of freedom parameter.

ST distribution

We briefly discuss a multivariate ST distribution introduced by Sahu et al.(2003) in this 

section. A k-dimensional random vector Y follows a k-variate ST distribution if its 

probability density function (pdf) is given by

(A.2)

We denote the k-variate t distribution with parameters μ, A and degrees of freedom ν by 

tk,ν(μ, A) and the corresponding pdf by tk,ν(y|μ, A) henceforth, V follows the t distribution 

tk,ν+k. We denote this distribution by STk,ν(μ, Σ, Δ). In particular, when Σ = σ2Ik and Δ = δIk, 

equation (A.2) simplifies to

(A.3)

where Tk,ν+k(·) denotes the cumulative distribution function (cdf) of tk,ν+k(0, Ik). However, 

unlike in the SN distribution below, the ST density can not be written as the product of 

univariate ST densities. Here Y are dependent but uncorrelated.

By the proposition of Sahu et al.(2003), the ST distribution of Y has a convenient stochastic 

representation as follows.

(A.4)
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where X0 and X1 are two independent random vectors following tk,ν(0, Ik). Note that the 

expression (A.4) provides a convenience device for random number generation and for 

implementation purpose. Let w = |X0|, then w follows a k-dimensional standard t distribution 

tk,ν(0, Ik) truncated in the space w > 0 (i.e., the standard half-t distribution). Thus, a 

hierarchical representation of (A.4) is given by

(A.5)

where ω = (ν + wTw)/(ν + k).

The ST presented in equation (A.5) can be reduced to the following three special cases:

i. as ν → ∞ with probability of 1, it becomes an SN distribution with SNni (μ, Σ, Δ);

ii. as Δ = 0, it becomes standard multivariate Student-t-distribution tni,ν(μ, Σ);

iii. if both (i) and (ii) are satisfied, then it is a standard multivariate normal distribution 

Nni(μ, Σ);

SN distribution

We briefly discuss a multivariate SN distribution introduced by Sahu et al.(2003) in this 

section. A k-dimensional random vector Y follows a k-variate SN distribution, if its pdf is 

given by

(A.6)

where V ~ Nk{ΔA−1(y−μ), Ik−ΔA−1Δ}, and ϕk(·) is the pdf of Nk(0, Ik). We denote the above 

distribution by SNk(μ, Σ, Δ). An appealing feature of equation (A.6) is that it gives 

independent marginal when . The pdf (A.6) thus reduces to

(A.7)

where ϕ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively.

It is noted that when Δ = 0, the SN distribution reduces to usual normal distribution. In 

addition, the SN distribution is a special case of the ST distribution. That is, the ST 

distribution reduces to the SN distribution when the degree of freedom is large.

Appendix B. WinBUGS code for Model IV with ST distribution

## Begin of model

model

{

for (i in 1:N)

  {
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# Random effects of response model

   b2[i,1]<-0

   b2[i,2]<-0

   b2[i,3]<-0

   b2[i,4]<-0

   b2[i,5]<-0

   b[i,1:5]~dmnorm(b2[i,1:5],Omega2[,])

# Individual parameter estimates

   nbeta1[i]<-beta[1]+b[i,1]

   nbeta2[i]<-beta[2]+b[i,2]

   nbeta3[i]<-beta[3]+b[i,3]

   nbeta4[i]<-beta[4]+b[i,4]

   nbeta5[i]<-beta[5]+b[i,5]

  }

for (j in 1:M)

 {

 ## LME model with ST distribution

   beta1[j]<-beta[1]+b[y[j,4],1]

   beta2[j]<-beta[2]+b[y[j,4],2]

   beta3[j]<-beta[3]+b[y[j,4],3]

   beta4[j]<-beta[4]+b[y[j,4],4]               # y[j,4]= id

   beta5[j]<-beta[5]+b[y[j,4],5]

   decay[j]<-(beta2[j]*exp(-beta3[j]*y[j,6])

           + beta4[j]*exp(-beta5[j]*y[j,6]))  # decay rate

   dm1[j]<-beta1[j] -decay[j]*y[j,6]         # y[,6]= time

   w[j]~dt(0, 1,nu) I(0,)

   mu[j]<-dm1[j]+delta*w[j]                    # ST distribution

   aau[j]<-(nu+w[j]*w[j])/n1*eta

   y[j,12]~dt(mu[j],aau[j],n1)                 # y[,12]=logeRNA

   Y.pred[j]~dt(mu[j],aau[j],n1)               # predicted values

# Fitted values and Residuals

   fit[j]       <- mu[j]

   resid[j]     <- y[j,12]-fit[j]

   ssr.r[j]     <- pow(resid[j],2)            # squares of residuals

   ssr.Y.obs[j] <- pow((Y.pred[j]-y[j,12]),2) # squares of predicted 

deviation

 }

SSR<-sum(ssr.r[])              # SSR

SSR.pred<-mean(ssr.Y.obs[])    # EPD

# Prior distributions of the hyperparameters

#(1) Degree of freedom

  nu0<-0.1

  nu ~dexp(nu0) I(3,)

  d1<-0.5*nu
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  n1<-nu+1

#(2) Coefficients

 for (l in 1:5) {beta[l]~dnorm(0,0.01)}

#(3) Skewness parameter

 delta ~ dnorm(0, 0.01)

#(4) Variance-covariance matrice

 Omega2[1:5,1:5]~dwish(R2[,],5)

 v2[1:5,1:5]<-inverse(Omega2[,])

#(5) Precision parameters

 eta~dgamma(0.01,0.01)

 sigma <-1/eta

}

## End of model
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Figure 1. 
Profile and histogram of viral load in natural log scale from a clinical trial study.
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Figure 2. 
Profiles of viral load in natural log scale for four randomly selected patients among 

ACTG5055 and ACTG398, respectively.
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Figure 3. 
Individual estimates of viral load trajectories for three representative patients based on 

Model IV with normal, Student-t, SN and ST distributions. The observed values are 

indicated by circle.
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Figure 4. 
The observed values versus fitted values of ln(RNA) based on Model IV with normal, 

Student-t, SN and ST distributions, respectively.
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Figure 5. 
Q-Q plots based on Model IV with normal, Student-t, SN and ST distributions, respectively.
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Figure 6. 
Profiles of viral load in natural log scale and decay rate in rebound and no rebound group.
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Table 2

DIC values based on For Model IV with different distribution assumptions.

Data set:

Distribution ACTG5055 (n=44) ACTG398 (n=44) ACTG398 (n=100) ACTG398 (n=481)

Normal 1133.3 961.4 2158.5 10222.0

SN 222.8 727.3 1937.2 7788.2

Student-t 1004.9 949.8 2144.3 8993.9

ST 21.7 576.9 1757.7 8819.3
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