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ABSTRACT
We present a generalisation of the classical Lanchester model for directed fire be-
tween two combat forces but now employing networks for the manoeuvre of Blue
and Red forces, and the pattern of engagement between the two. The model there-
fore integrates fires between dispersed elements, as well as manoeuvre through an
internal-to-each-side diffusive interaction. We explain the model with several simple
examples, including cases where conservation laws hold. We then apply an optimi-
sation approach where, for a fixed-in-structure adversary, we optimise the internal
manoeuvre and external engagement structures where the trade-off between max-
imising damage on the adversary and minimising own-losses can be examined. In
the space of combat outcomes this leads to a sequence of transitions from defeat to
stalemate and then to victory for the force with optimised networks. Depending on
the trade-off between destruction and self-preservation, the optimised networks de-
velop a number of structures including the appearance of so-called sacrificial nodes,
that may be interpreted as feints, manoeuvre hubs, and suppressive fires. We discuss
these in light of Manoeuvre Warfare theory.
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1. Introduction

In the age of high powered computers it has become accepted folklore that the days
of understanding warfare through equation-based models are over. This is argued to
be the case because of the multiplicity of factors influencing modern warfare, such as
dispersed forces, networked Command and Control (C2), diverse rivals and stakehold-
ers in conflicts, and technologies for Intelligence-Surveillance-Reconnaissance (ISR).
In this paper we propose and explore a model that offers a platform to bring such
factors together while still retaining the advantages of equation based approaches. At
the heart of this remain the Lanchester equations for combat (Lanchester, 1916). For
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directed fires these are

Ḃ(t) = γBB(t)− κRR(t)

Ṙ(t) = γRR(t)− κBB(t) (1)

where B(t), R(t) represent the total number of forces of Blue and Red at time t, γB, γR
the rate of resupply, and κB, κR represent their respective kill-rates of the other. The
κ are also variously referred to as fire-rates or fire-power or lethality, terms which we
shall use interchangeably. The so-called ‘undirected fire’ version of these have B(t)R(t)
on the right-hand side of the equations. Proposed in 1916 by F.W. Lanchester, these
simple equations have seen diverse uses beyond the original context of the statically
arrayed massed fires of World War I. Such extensions will be reviewed below, but
nascent is the incorporation of recent concepts such as as Network Centric Warfare
(Alberts, Garstka and Stein, 1999), and realised in General Stanley McChrystal’s

strategy for battling the Taliban in Afghanistan “It takes a network to defeat a net-
work” (McChrystal, 2011). Nevertheless, a fully networked version of the Lanchester
model has not, to our knowledge, been written down.

In other dynamical systems, the network approach is well-developed, offering in-
sights into various complex systems – biological, social and technological (Bornholdt
and Schuster, 2003) – through numerical simulation and analytical approximation.
The network paradigm has advanced to multi-layer networks (Boccaletti et al., 2014),
where the connectivity within any layer and across layers may vary considerably. In
warfare such layers may describe how forces are internally distributed, how they engage
with the enemy, how C2 is arranged, and how ISR systems enable situation awareness.
This paper takes initial steps towards capturing some of these using the multi-layer
formalism.

We propose a form of the Lanchester equations whereby rival heterogeneous forces
manoeuvre internal resources, and apply force against each other on external networks.
We explore optimisation of these networks and observe emergent behaviours that may
be interpreted through known manoeuvre warfare concepts.

We first review the literature on the Lanchester model, situating our formulation in
recent variations of the model. We propose our networked Lanchester model and exam-
ine a small scale example to illustrate its dynamics. We then outline the optimisation
and explore the trade-off between a force seeking to minimise its losses versus max-
imising its degradation of the adversary. In particular, we observe behaviours that may
be interpreted as ‘concentration’, ‘suppressive fire’ and ‘feints’, concepts well-known
in manoeuvre warfare. We show how some of these behaviours arise analytically ex-
ploiting the power of the Lanchester analytical framework. We then conclude, discuss
these aspects in light of the literature on Manoeuvre Theory of warfare, and offer
prospects for the future. An appendix provides analytical explanation for some of the
numerical results and supplementary material presents an alternate constraint in the
optimisation scenario.

2. Status of Lanchester combat modelling

Enhancements of the original Lanchester equations are many. As a description of
the waxing and waning of two abstract entities, the equations may be interpreted
more generally than mortal combat, for example in terms of network cyber-attack and
defence (Liu et al., 2013). Mathematical generalisations include: general power law
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BαRβ forms for the right hand side (Epstein, 1997) and other nonlinear forms (Kim
et al., 2017), stochastic diffusive models with advection (Protopopescu, Santoro and
Dockery, 1989) and swarming effects (Keane, 2011) as partial differential equations,
and game theory applications (Hohzaki and Higashio, 2016). These still only represent
two homogeneous sets of forces arrayed against each other. In this era of joint or
combined operations and multi-role platforms, the need for representing mixed-forces
becomes acute. For such mixed-forces, numerous authors have proposed the (N,M)
Lanchester problem of N Blue forces arrayed against M Red forces. Suppressing, at
this stage, logistics/replenishment, this can be expressed through the system (i =
1, . . . , N ; j = 1, . . . ,M)

Ḃi(t) = −
M∑
j=1

µ(B)ijRj

Ṙj(t) = −
N∑
i=1

µ(R)jiBj , (2)

where the µ capture the distribution of fire between units of Blue and Red respectively
in a manner that tailors the rate to the adversary unit; for this reason some functional
dependence of the µ on B or R is indicated. (Note that many authors use upper and
lower indices according to attack and defence, which we will treat symmetrically).

Early such approaches are (Roberts and Connolly, 1992) on the (2, 1) problem and
(Colegrave and Hyde, 1993) on the (2, 2) case who typically used time-independent
µ(B)ij , µ(R)ij . It was pointed out in (Kaup et al., 2005) that such heterogeneous mod-
els cannot be interpreted in terms of the reality of combat; significant discontinuities in
the redistribution of fire must be taken into account when units reach the value zero,
when combat entities die. They proposed a model where the lethality depends on the
attacker and the defender such that when one defender is destroyed the attacker may
engage other targets.

These concerns have been furthered in a series of works authored solely or jointly by
MacKay, starting with (MacKay, 2009) where analytic solubility could be gained by
considering certain separable but dynamical forms µij(t) = κiµj(t), using weighted-
ratios of one force element to the total weighted-sum of the force, for example
µi(t) = ρiBi(t)/

∑
j ρjBj(t). These reflect that a commander may have a choice in

how to distribute fire at the start of a battle but thereafter it evolves according to
the proportion of units of a particular type. This was challenged by (Liu et al., 2012)
who allowed for targets to change during battle as adversary units were eliminated.
This also was questioned by MacKay, noting that in the fog-and-friction of war, such
reallocation of targets may be unrealistic after the battle has begun (MacKay, 2012).
We return to these points when we develop our model.

MacKay’s formulations generate conserved quantities generalising the Lanchester
square law for directed fire, κRR(t)2 − κBB(t)2 when γB = γR = 0 in Eqs.(1). This
determines the victor based on initial conditions. All these authors recognise very well
that these equations purport to describe battle of annihilation; quantities changing sign
have no meaning. Within a ‘kinetic effects’ interpretation (as opposed to non-lethal,
such as cyber (Liu et al., 2013)) the mixed forces models remain representations of
unmitigated attrition, of “perfectly horrible” warfare (MacKay, 2009).
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3. The networked Lanchester model

Readers will recognise a network structure in Eqs.(2): the µij may be interpreted as
weighted adjacency matrix elements describing the engagement interaction between
the heterogeneous Blue and Red units. For µij ∈ (1, 0) we have a network of undi-
rected links of nodes (i, j) that are connected, respectively unconnected. Though many
authors seek to model ‘networked forces’ in Lanchester combat (Tang and Li, 2012),
(Liu et al., 2013), none to our knowledge explicitly represent the network structure in
the dynamics of the combat.

This offers an opportunity of overcoming one of the limitations of even the mixed
Lanchester model, that through the course of battle a force may be dynamically re-
configured to reinforce weak units or exploit weaknesses of the adversary. This seeking
to gain “advantageous position relative to the enemy” (Lind, 1985) is known as
‘manoeuvre warfare’, and is a further ‘warfighting function’ after attrition or ‘fires’.
‘Manoeuvre’ captures the idea that success in the battlefield for forces with equally
matched firepower unit for unit may be gained by not only providing more units, but
through skillful manipulation of those units.

We propose for this the diffusive interaction for Blue force units i, j = 1, . . . , N :

Ḃi(t) =

N∑
j=1

Bij
(
δ

(B)
i (t)Bi(t)− δ(B)

j (t)Bj(t)
)

(3)

where Bi(t) ∈ IR, Bij is a (0, 1) adjacency matrix and δ
(B)
i (t) represent possibly time-

dependent weight factors between different Blue force elements. Such an approach has
been used successfully for human population migration (Roman et al., 2017). It is
trivially seen that for symmetric Bij

N∑
i=1

Ḃi(t) = 0 (4)

as a consequence of the double sum becoming a difference under the sum of terms
kiδiBi, where we use the convention of ki =

∑
j Bij =

∑
j Bji for the degree of node i.

For the Red force, we introduce Ri(t) ∈ IR, and the corresponding internal adjacency
matrix Rlm with nodes l,m = 1, . . . ,M for Red agents. The networks Bij and Rlm
represent how a given distribution of resources Bi(t) ≥ 0 and Rl(t) ≥ 0 may manoeuvre
dynamically through the course of battle; we distinguish this from a future extension
with logistics networks that represent replenishment of the forces from outside the
battle-space. Thus Bij and Rlm are denoted as manoeuvre networks. Characteristic
constants γB and γR determine the strength or time-scale of transfer of forces within
the respective networks; these constants may be made node-dependent, not treated in
this work.

Extending the network idea to the application of fires, we have engagement networks

E(BR)
il and E(RB)

li (called µij previously) representing the pattern of directed fires from
one side to the other; these need not be symmetrical between Blue and Red. Corre-
spondingly kill-rates κB and κR, as with Eq.(1), characterise the combat effectiveness
of the respective forces. These, like γB, γR, may also be node or link dependent. Given
the complexity already of this model, we consider homogeneous forces with uniform
fire-power to understand the key impact of dynamical manoeuvre within each side’s
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forces. In the same spirit, we will use simplistic static engagement networks in con-
trast to (MacKay, 2009). Arguably, the ability to dynamically reallocate targets or the
degree of fire-power may only be possible with improved ISR and a functioning C2
system able to integrate situation awareness into decision-making. Indeed, as we shall
argue further below, sometimes in warfare strategies, are based on the adversary’s
over-estimation of the strength of some formations, or even that “dead” or “dummy”
units may indeed be the mis-directed focus of attack.

Bringing these elements together gives an initial network generalisation of Eqs.(1):

Ḃi = −γB
∑
j

Bij(δ(B)
i Bi − δ(B)

j Bj)− κR
∑
m

E(RB)
im Rm

Ṙl = −γR
∑
m

Rlm(δ
(R)
l Rl − δ(R)

m Rm)− κB
∑
j

E(BR)
lj Bj . (5)

This will not be the model’s final form. The first terms in each set of equations are
the manoeuvre contributions, where resource may be shifted through the respective
networks according to relative strengths. The second set of terms are the engagement
contributions but with predefined static distributions of fire.

Thus far, Eq.(5) describe a dynamics where the Bi, Rl may become negative: the
equations need factors that forcing nodes to ‘drop out’ once resource levels reach zero.
We may do this by Heaviside step functions Θ(x) or by a smeared form using the
hyperbolic tangent function

Θε(x) ≡ 1

2
(1 + tanh(x/ε)) (6)

which for small ε approximates a step function at x = 0. In the same spirit, the diffusive
transfer of resources to a weaker node should cease when that node has reached zero or
a sufficiently low level ϑ. This may be achieved by using a shifted Heaviside function,
Θ(x−ϑ) but for simplicity we set ϑ = 0. The third modification of the equations is to
moderate the attrition term: in its form in Eq.(5) the entire resource of a node may
be brought to bear on multiple nodes of the adversary without diminution. Thus it is
more realistic to divide the attrition by the out-degree according to the engagement
network,

k
(RB)
i ≡

∑
m

E(RB)
im (7)

for the engagement of Red with Blue agent i, with the same for BR.
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Thus the final form of the equations reads:

Ḃi = −γB
∑
j

Bij(δ(B)
i Bi − δ(B)

j Bj)Θε(Bi)Θε(Bj)

−κR
∑
m

E(RB)
im

Rm

k
(RB)
i

Θε(Bi)Θε(Rm)

Ṙl = −γR
∑
m

Rlm(δ
(R)
l Rl − δ(R)

m Rm)Θε(Rl)Θε(Rm)

−κB
∑
j

E(BR)
lj

Bj

k
(BR)
l

Θε(Rl)Θε(Bj).

(8)

For the weights δ we initially trialed constant values. Optimisation of the manoeuvre
networks here generated disconnected graphs with isolated strong nodes and poorly
connected weak nodes of commensurate initial conditions. The explanation for this is
straightforward: connectivity here drains resource from strong nodes to weak which
eventually die. Intuitively, channelling resource from strong to weak nodes should take
into account their relative strengths to engaged adversaries. We therefore propose the
following form, here for Blue’s engagement with Red:

δ
(B)
i =

1∑
m E

(BR)
im Rm + ε

, (9)

with some regularisation parameter ε.
The choice of δi is a warfighting heuristic: not intrinsic to the model, it implements

a principle for how a force seeks to achieve manoeuvre. While regularising divergences,

ε also has physical meaning, noting that when
∑

m E
(BR)
im Rm vanishes, ε scales into the

rate γR. Thus, ε represents a form of ‘standing force’ that a non-combatant node seeks
to maintain: for small ε non-engaged nodes will give up resource rapidly to engaged
partners; for large ε all nodes in the manoeuvre network will redistribute resource
regardless of the state of engagements. In this work we will treat ε as infinitesimal. The
model of Eqs.(8) offers a framework for testing the consequences of such heuristics.
Our purpose then is to show that such a manoeuvre heuristic realises recognisable
warfighting concepts, so the validity of the model will be determined post hoc.

We will be interested in equally resourced, fire-power matched but differently struc-
tured forces, so-called “near peer adversaries”, as has become the focus of recent shifts
in the US (US Army, 2017) and UK (Chuter, 2019) militaries, but without necessarily
the ‘massed force’ paradigm (Cole, 2019). Thus,Bi = Ri for engaged units (the distinc-
tion between indices i, j and l,m now becomes superfluous), or

∑
j Bj =

∑
mRm = T .

Given this, and because the model is linear we may divide through by the initial con-
ditions Ri(0) = Bi(0) or total force T . But from herein we consider 0 ≤ Bi, Rl ≤ 1.

We will also set γR = γB = 1 and vary the lethality κR, κB. We will thus be exam-
ining the impact of differing lethalities of the two sides given different structures for
manoeuvre and engagement for fixed time-scale at which they are able to dynamically
adapt the allocation of their force.
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Figure 1. Illustration of the full model Eq.(8) with two Blue against four Red, where solid black lines indicated

directed fire and purple dashed lines indicate resource sharing paths. Network quantities are labelled across

the top and rates below the top row. The directions of flow, indicated by blue and red arrows, are governed by
the conditions involving the δ; if the direction of the inequalities reverses so too does the direction flow.

4. Simple case study

To illustrate the key dynamics of the model we consider an engagement of two Blue
units engaged against four Red units, where the latter use a manoeuvre network to
draw reserves as defined in Eqs.(8,9). We will consider a number of ways of determining
where manoeuvre provides advantage:

(1) initially equally matched adversaries, Bi(0) = Ri(0) = 1/2 for i = 1, 2 but
with Red having varied reserves in R3(0) = R4(0) = fR/2, so that

∑
j Bj(0) =

1,
∑

mRm(0) = 1 + fR;
(2) initially mismatched adversaries, Bi(0) = 1/2, Ri(0) = fR/2 for i = 1, 2, but

equal total,
∑

j Bj(0) =
∑

mRm(0) = 1 so that R3(0) = R4(0) = (1− fR)/2 or
zero if fR > 1; and

(3) initially mismatched adversaries, but where Red has extra reserves it can call
upon, namely Bi(0) = 0.5, Ri(0) = fR/2 for i = 1, 2, as well as Rl(0) = fR/2 for
l = 3, 4 so that

∑
j Bj(0) = 1,

∑
mRm(0) = 2fR.

With the Blue kill-rate fixed at κB = 1, and equal manoeuvre rates γR = γB we vary
both the Red kill-rate κR and the fraction of the force available to Red. We focus first
on case (3) for κR < κB where Red has the most extreme initial disadvantage. How
can Red’s ability to manoeuvre spare resources provide advantage?

In Fig.2 are the profiles for the units as functions of time for the case of fR = 0.8
and two marginally different values of κR = 0.91, 0.92 both less than κB = 1. Recall for
case (3) the total resources available initially for Red are 1.6 but each Red combat unit
begins with only 0.4 compared to Blue’s 0.5. We also show the mean initial resource
per unit, black for Blue and grey for Red so that Red is on average less resourced than
Blue.

For the lower value of κR (left-hand panel), Blue’s combat units maintain their
initial advantage; the dashed and dotted red lines indicate Red reserves are offering
resource to their combat partners, but too slowly, given the combat units’ insufficient
fire-power, to save the day. When the Red combat units have expired, their reserve
counterparts stabilise as the combat has finished. Blue has won in terms of the combat
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0.5

Bi(t),Ri(t)
κR=0.91

1 2 3 4 5 6 7
t

0.1
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0.3

0.4
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Bi(t),Ri(t)
κR=0.92

Figure 2. Case of two Blue against four Red dynamics for two different Red kill-rates, where Blue and Red
solid lines represent engaged units and Blue and Red dashed/dotted lines represent supporting units. Black

and gray represent the mean force per unit of Blue and Red respectively.

dynamics; the remaining Red units are unable to transfer any more resource into the
fight.

With a small increase of fire rate by Red, this situation is reversed. In the right
hand plot of Fig.2 Red is able to manoeuvre resources into the fight with Blue, and
Red combat units are able to degrade Blue sufficiently, to enable Red to defeat Blue.
After Blue’s expiry, Red reserve units continue to share resource with combat units
until they equalise and stabilise.

There is thus a balance between reserve capacity, fire power and manoeuvering rate
enabling a set of combat units to defeat a unit-for-unit superior force.

Within the same model we explore the critical value of Red fire power, denoted
κ∗R, at which Red is able to defeat Blue for the different cases (1)-(3). To this end we
numerically solve for sufficient time until one or the other combat force is degraded
to zero for different κR, fR and for the three cases of reserve supply. This is shown
in Fig.3. In the plot we overlay a grey region where Red has weaker fire power and
initial combat unit strength compared to Blue. In other words, curves that cross into
the grey region show where Red genuinely gains advantage significantly because of its
manoeuvre capability rather than numerical or weapon strength.

For the second case with equal total resource for both forces at the outset (dot-
ted curve), fR must exceed the value one for Red to achieve advantage with lesser
fire-power. In other words, each Red combatant unit requires more than half the ini-
tial resource of the Blue combatants. Thus with the same total initial resource and
lesser fire-power and initial strength, the Red force is able to defeat Blue through
the manoeuvre of resource through its network. However, with even more total initial
resource, it is possible for Red to achieve victory with even lower fire-power and initial
resource for its combat units, as seen in the solid and dashed curves for values inside
the grey region. We see then that the manoeuvre capability provides advantage over
and above pure fire-power and strength.

5. Optimal structures for manoeuvre and engagement

We now amplify the scale of forces represented in the model, and focus on how network
heterogeneity develops to provide advantage to one side even with less raw fire-power
than the adversary. We will be interested in the heterogeneity that emerges according
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1: ΣR=1+ fR, ΣB=1

2: ΣR=ΣB=1

3: ΣR=2 fR, ΣB=1

0.2 0.4 0.6 0.8 1.0 1.2
fR

1

2

3

4

κR
*

Figure 3. The critical value of κR at which for a value of fR Red defeats Blue for the three different cases.

With the grey region we indicate where Red gains advantage with lesser fire power and initial resource for its

combat units.

to the balance of priorities of an optimal force.

5.1. Network optimisation

We consider optimisation of battle outcomes for one side, here chosen as Red. We
presume that Red’s decision makers are interested in overall outcomes in which certain
trade-offs UR(λ) between their own remaining forces R(t) =

∑
iRi(t)/N and the

number of destroyed and remaining opponents B(t) =
∑

iBi(t)/N are optimised;
here N =

∑
iRi(0) =

∑
iBi(0) since all Bi(0), Ri(0) = 1, i = 1, . . . , N . Because of

equal initial forces we cease distinguishing between indices (i, j, k, l) ∈ (1, . . . , N). We
quantify utility for Red by

UR(λ) = λR+ (1− λ)(B(0)−B), (10)

where B(0) gives the initial average force of Blue and λ measures a trade-off between
an interest in preserving their own forces (‘defence’) and destroying the adversaries’
forces (‘offence’). Since we do not include resupply terms here this quantity will be
non-negative.

The optimisation scheme is based on stochastic hill-climbing, to maximise UR. In
more detail:

(1) Start with some initial engagement and manoeuvre networks Rij , Bij and ERBij =

EBRji , based on Erdos-Renyi random graphs, which are built by randomly assign-
ing links between nodes according to a uniform probability; here we use average
degree of the network k = 4. The combination of manoeuvre and engagement
networks for one side we refer to as a ‘configuration’.

(2) Perform a random rewiring of Red’s configurations by, either, with some proba-
bility p rewiring Red’s manoeuvre network Rij or, with probability 1−p, rewiring
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of Red’s engagement network ERBij . For these modifications of the manoeuvre net-
work, we pick a randomly selected link and move it to a randomly selected link
vacancy, thus preserving the average degree of the manoeuvre network. Simi-
larly, for modifications in the engagement network, we select one engagement
link uniformly at random and move it to a randomly selected link vacancy in
the engagement network. Additionally, we also consider additions of new engage-
ment links to randomly selected engagement network link vacancies or removal
of randomly selected engagement links, such that Red can optimise the number
of engagements it wants to participate in.

(3) For this modified structure we then numerically integrate the respective net-
work Lanchester system Eqs.(8) to determine stationary force concentrations and
evaluate Red’s utility UR(λ). New configurations are accepted if the stochastic
modification resulted in an improvement in Red’s utility, otherwise we reject the
modification. In the first case, we keep the modified configuration and repeat
(2). In the second case, we restore the previous battle structure before repeating
step (2).

To integrate the equations we use fourth order Runge-Kutta with time-step δt = 0.01.
Optimisation steps are repeated in the order of 105 times, ensuring near-convergence
to a final configuration. We repeat the procedure for a fixed number of different ran-
dom initial conditions, and check final configurations to ensure the robustness of our
findings presented below. We have also attempted simulated annealing to avoid trap-
ping in local minima, however such localised methods did not result in significant
improvements compared to the method outlined here. One optimisation run of these
105 iterations takes approximately 2 hours, but most of our results below have been
averaged over 20 independent runs, resulting in a simulation time of approximately 2
days for one choice of parameters.

Now we scrutinise the optimisation outcomes for a system with numbers of nodes
NR = NB = 50, numbers of manoeuvre links LR = LB = 100, and numbers of
engagement links LRB = 10, and rates κR = 0.5, κB = 1 (thus Red is inferior to
Blue in fire-power), and initial conditions Ri = Bi = 1. The Red force optimises both
its manoeuvre network and the engagement. This scenario will remain the focus for
the remainder of the paper. Fig.4 shows results for different values of λ exploring
the offence-defence trade-offs. The first row has λ = 0.2, for emphasis on offence,
the middle λ = 0.5, and the bottom row λ = 0.9, with emphasis on defence. The left
column shows the density of surviving agents for each side and the value of the trade-off
utility function as a function of the number of iterations of the optimisation process; the
right column shows a typical network diagram with Blue and Red coloured manoeuvre
networks at the end of the optimisation and green the symmetric engagement network;
and the panels in Fig. 5 shows the surviving densities for networks optimized at κR =
0.5 and κB = 1 as a function of Red’s and Blue’s lethalities.

In the first column we observe the (approximate) plateauing of the curves showing
equilibration of the optimisation, with the utility reaching a maximum value. We see
the intuitive behaviour that, as λ increases with more emphasis on self-preservation,
the equilibrium value of Blue ceases to be close to zero (panel (a)) but to a value of
approximately 0.9 (panel (c)), though still less than the optimising Red force which
suffers only very small losses.

In the networks in the right column (panels (d-f)) we show the structure at equilib-
rium and indicate the resulting force strength at each node by its size. The difference in
structure for different λ is noteworthy. For low and intermediate λ we see a concentra-
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Figure 4. Evolution of stationary values of forces and trade-off utility function optimization for (a,d) low

(λ = 0.2), (b,e) intermediate (λ = 0.5), and (c,f) large trade-off parameter λ (λ = 0.9). Trajectories are averaged

over 20 independent runs. On the right, example networks at equilibrium after 105 optimisation iterations for
(d) low, (e) intermediate, and (f) large λ as above. Red force nodes drawn in red, Blue force nodes in blue.

Connections in the manoeuvre networks of Red and Blue forces in red or blue. Engagements are drawn in green.

Nodes surrounded by a black circle indicate red sacrificial nodes, blue nodes in a triangle denote blue nodes at
which Red’s attack is focused. The red node in a diamond in (f) indicates a manoeuvre hub. In all cases the

system size is NR = NB = 50, LR = LB = 100, κR = 0.5, κB = 1, and initial conditions Ri = Bi = 1.
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Figure 5. Heat map of differences between normalised stationary Red and Blue forces vs. lethalities κR and

κB for the best configuration found for networks optimized for κR = 0.5, κB = 1 and (a) λ = 0.5 and (b)
λ = 0.9. Panel (c) shows the heatmap for a random Blue and Red network with the numbers of links in the

manoeuvre and engagement networks consistent with the optimised networks of Red. Red colours indicate
regimes of larger Red surviving forces and Blue colours regimes of larger Blue surviving forces. In all cases the
system size is NR = NB = 50, LR = LB = 100, κR = 0.5, κB = 1, and initial conditions Ri = Bi = 1.
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tion of Red nodes that are multiply engaged with Blue, highlighted by a black circle.
Significantly, as closer inspection shows, these are very weak nodes. These multiply
engaged nodes may be termed ‘sacrificial attackers’, namely nodes attack many adver-
sary nodes simultaneously. On the other hand these same nodes have few manoeuvre
(red) links within their force, so that they are relatively unsupported. In this sense,
they are sacrificed – many concurrent attacks with no local support so that they are
allowed to drain of resource. We also observe at small λ in panel (d) an absence of Red
hubs for manoeuvre, with a hint of clustering of Red nodes for λ = 0.5 in panel (e).
Thus Red’s emphasis on Blue’s destruction manifests as little internal structure for
its manoeuvre but a significant structure in the formation of sacrificial hubs. At high
λ, with survival more significant in the utility function, a manoeuvre hub becomes
more prominent in panel (f), highlighted by a black diamond. As can be seen, this
node does not attack Blue. The large Red nodes on the ring boundary attack, but
accumulate in different groups onto a few Blue targets, indicated by black triangles.
Evidently, attacks are focused on a few Blue nodes which are quickly extinguished.
These behaviours are a key insight from this approach to which we return later.

The panels of Fig. 5 shows the lethality dependence of the difference in the surviving
densities for networks optimised at κR and λ = 0.5, 0.9 (note that the heatmap for
λ = 0.2 is similar to that for λ = 0.5 and hence omitted), and then run simulations
across different values of κR and κB. Such ‘battle outcome’ heatmaps represent a
continuum of scenarios within the broad case of near-peer adversaries. As a reference
case, panel (i) corresponds to random networks that are different instances of the same
probability distribution. It is obvious that a region of larger surviving Blue forces is
separated from a region of larger surviving Red forces by the diagonal line κR = κB.
Hence, given random structure of engagement and manoeuvre networks, the force with
larger lethality ‘wins’ and – visualised by more intense hues of the respective colours–
victories are the more expressed the larger the distance to the diagonal line.

This scenario is dramatically altered for the optimised networks. In panel (a) we
see the heatmap for a network optimised for λ = 0.5 . It is now obvious that opti-
misation has dramatically reduced the area in parameter space that corresponds to
Blue victories. Red victories typically correspond to a dark Red hue; as we have seen
in Fig. 4(b,e), Red tends to win by eliminating the Blue force. Similarly, in panel (c)
a heatmap for a configuration optimised for λ = 0.9 is shown. Inspecting panel (c)
a further reduction in the Blue area is apparent: Blue wins are now restricted to a
very small area of parameter space in which Blue has much larger lethality than Red.
However, as a trade-off, the Red victory becomes coloured in a less intense red. Here
Red is no longer able to eliminate most Blue but wins by preserving most of its force
and destroying a small proportion of Blue (see also Fig. 4(c,f)).

Analysis of optimisation results for particular parameter configurations above hints
to the existence of different regimes for optimal configurations. In the next section we
proceed with a more systematic analysis of the dependence of properties of optimal
configurations on the trade-off parameter λ.

5.2. Tradeoffs in optimal networks

Now we study the dependence of the behaviours in optimised networks against the
trade-off parameter λ. Here, for every value of λ we run the optimisation and take
the five best configurations and average properties over these. We plot in Fig.6 the
dependence of λ of averages of a range of quantities - the utility, numbers of evolved
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links, numbers of sacrificers (as discussed above), the numbers of attacked nodes, and
network degrees of various types. Note that Red wins in every case - as the optimised
force - but the λ dependence of these quantities reveals different properties for Red to
achieve its optimal performance.

Firstly, the utility function in panel (a) shows a steady decrease as λ increases
until approximately λ = 0.7 at which point it begins to increase again. Thus as the
two objectives - destruction of the adversary and survival of own forces - compete
with each other the overall utility available decreases. We see distinct ‘offensive’ and
‘defensive’ phases which swap at λ = 0.7, and diminishing utility in the intermediate
regime; ‘pure’ offence or defence objectives (λ = 0 and λ = 1 respectively) have
higher utilities. We emphasise that ‘defence’ here always involves offence as fire is
continuous, but the degree of seeking to preserve forces at the same time. This same
point of transition, λ = 0.7, manifests in all the other measures. In the surviving forces
in panel (b) we see it in a transition from complete Blue destruction in the offensive
phase (it is Red that is optimised) to a coexistence of Blue and Red for λ > 0.7.

In panel (c) we compute the number of sacrificer nodes identified as those with
no manoeuvre links with their own force but solely engaged with a sufficiently large
number of adversary nodes. We choose k = 10 as the threshold. We observe three
phases: a slight decrease for low λ, a plateau and then significant drop at high λ, again
at the threshold value of λ = 0.7. In other words, sacrificial nodes are a significant
structure in the optimal networks in the offensive phase.

The number of links per node in the evolved engagement networks, denoted lRB, is
shown in panel (d). Recall that the seed networks start with LRB = 10 total number of
links and 50 nodes, so lRB, the ratio, may change through iterations of the optimisation.
The plot in (d) exhibits several changes with increasing λ, though the transition at
λ = 0.7 is also evident. Again, as the emphasis shifts from offence to defence there is
a drop in the number of optimal engagement links. This transition is sharper in the
fraction of attacked Blue nodes in panel (e): Red goes from attacking the entire Blue
force in the offensive phase, to very few at the critical value of λ. In panel (f) we show
the number of attacks on attacked Blue nodes, in other words the number of Red force
agents that simultaneously attack a Blue node

This goes from a steady value of approximately 5 ≤ kRB ≤ 10 to an order of
magnitude larger at the critical value of λ. In other words, as utility shifts in emphasis
to self-preservation, Red must concentrate rather than disperse its engagement and
thus chooses to engage very few Blue nodes (as seen in (e)) but with overwhelming
force. A similar result is seen in panel (g) in the maximum degree of manoeuvre nodes
in Red. These nodes of high degree are the manoeuvre hubs observed in the network
diagrams of Fig.4.

To address the question whether Red attacks well supported or unsupported Blue
nodes, in panels (h) and (i) we examine the overlap between manoeuvre and engage-
ment in the force elements. Specifically, we measure the average manoeuvre degree
of attacked Blue nodes (panel (h)) and the average degree of an attacking Red node
(panel (i)).

Panel (h) shows how Red targets the manoeuvre network of Blue: up to the critical
value of λ almost all Blue nodes are attacked and hence the average manoeuvre degree
of attacked Blue corresponds to the average manoeuvre degree k = 4, after which it
drops, though the error bars here are quite large. In the network diagram of Fig.4(f) we
see such overwhelming attacks in the green links from multiple Red nodes on to three
separate single Blue nodes inside the ring. The left-most one is evidently a poorly
supported Blue node, while the right-most node appears to have a number of Blue
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manoeuvre links feeding into it. Given that Blue remains an Erdos-Renyi network
(it has not been subject to optimisation) we cannot speak here of a corresponding
manoeuvre hub for Blue. So, for this form of structure, statistically in the defensive
phase Red targets poorly supported Blue nodes.

In panel (i) we see the coincidence in Red of manoeuvre links that are attacking
Blue, and see a drop at the critical λ, again with some noise. In the defensive phase
Red tends to attack with nodes of low manoeuvre degree, but resources tend to be
funnelled into these nodes from hub nodes in the Red manoeuvre network.

We see overall a consistent pattern that matches intuition, on the one hand, but is
non-trivial in other respects: the offensive phase persists beyond the trade-off point of
λ = 0.5, there is a pattern of sacrificial nodes appearing in the intermediate region,
and manoeuvre hubs developing in the defensive regime. In the Appendix we show
analytically how this phenomenon occurs in the model.

In the supplement we consider the case where the number of attacks may be con-
strained, arguably a more realistic scenario in warfare, and find similar behaviours
to those described here except that in the offensive phase we find Red concentrating
attacks to suppress the Blue force capacity to manoeuvre resources.

5.3. Network structure dependence on Red fire-power

Thus far we have fixed the fire-power, or lethality, of Red to a discrete set of values.
We now examine the properties of optimised networks for varying Red lethality.

For this purpose we focus on the offensive regime and fix a trade-off parameter
of λ = 0.5 (and κB = 1). We then optimise networks for varying values of κR and
investigate their properties.

These results are shown in the various panels of Fig.7. In panel (a) we see the
surviving densities of the two forces with the result that Red is superior for all κR but
with a sharp increase between 0.3 ≤ κR ≤ 0.5, and then a plateau for larger κR. Thus,
given the trade-off between destruction of the adversary and self-preservation at this
value of λ, there are diminishing returns for Red increasing its lethality beyond κR =
0.5. There is a corresponding flattening of Blue’s curve at large κR. We superimpose
on these plots the results for the original random Blue and Red graphs which seeded
the optimisation procedure with the clear result that Red only overcomes Blue when
it has the same lethality in the absence of optimal networks. Thus the optimisation
for Red genuinely improves its performance across all values of κR compared to the
initial seed configurations.

In (b) we show the number of attacks per node of Blue, namely the degree of Blue
nodes in the engagement network. This evidently linearly increases with κR. A more
powerful Red force will carry out more attacks than a less powerful Red force.

In (c) we give the average degree of manoeuvre nodes in Blue that are attacked by
Red which shows a linear increase then at κR = 1 flattening to the average degree of
the overall Blue manoeuvre network, k = 4. For low lethality Red cannot overwhelm
the entire Blue force. Thus, in this regime Red focuses its attack on selected Blue nodes
which are precisely those which are least supported by Blue’s manoeuvre network. For
increasing lethality Red then targets most Blue nodes, thus explaining the plateau.

Finally, (d) reveals how much of Red’s network is ‘dual-purpose’, manoeuvre and
engagement, by computing the manoeuvre degree of Red nodes that also attack Blue.
The result is that at κR ≈ 1 there is again, a transition: for low fire-power there are
high-degree Red manoeuvre hubs that also engage Blue while at high fire-power these
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Figure 6. Dependence of properties of the optimised configurations on the trade-off parameter λ when opti-
mising Red’s utility UR = λR+ (1 − λ)(1 −B) (i.e. for λ = 0 R is only interested in extinguishing B whereas

for λ = 1 force R is only interested in force preservation.) (a) Utility, (b) remaining stationary forces. (c) the

number of sacrificial nodes, namely nodes with no input in the manoeuvre network but engagement degree
k > 10, (d) evolved number of links per node (attacks), (e) fraction of attacked B nodes, (f) average number of
attacks on attacked B-nodes, (g) evolved max. degree of R nodes in R’s manoeuvre network (note that the avg.
maximum degree for a random network with the same number of connections is 8.9 ± 0.5), (h) avg. degree in
manoeuvre network of B nodes that are attacked by R, (i) avg. degree in manoeuvre network of R nodes that

are attacking nodes of B. System of size NR = NB = 50, LR = LB = 100, κR = 0.5, κB = 1 (note that R is
inferior to B), and initial conditions Ri = Bi = 1. Data points represent averages over the five best optimised

configurations found for the respective value of λ, if not otherwise indicated error bars are about the size of
the symbols. Force R optimises both its manoeuvre and engagement networks.
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Figure 7. Outcomes for varying strength κR of Red when manoeuvre and engagement networks are optimised

for λ = 0.5. (a) optimised stationary forces (solid lines give averages for a random networks that were used as
seeds for the optimisation for comparison). (b) Avg. number of B nodes under attack from R. (c) avg. degree

in the manoeuvre network B of B nodes that are attacked by R. (d) degree in the manoeuvre network of

R of R nodes that attack B. In (c) and (d) the dotted lines indicate expectations (plus/minus one standard
deviation) for random attacks calculated from the (random) networks that were used to seed the optimisation.

Data points represent averages over 20 optimisation runs.

dual-purpose hubs have disappeared. In light of the evidence for Red manoeuvre hubs
in the networks of Fig.4, this suggests that at high fire-power the hubs become more
specialised, purely manoeuvre or attack.

In (c) and (d) we also give in the dotted lines the expectation within one standard
deviation of the result using the original random networks that seeded the optimisa-
tion. We see that the results are constant in κR, so that there is nothing distinguishing
in the networks between manoeuvre and engagement nodes in the overall combat out-
come, due to the uniform random nature of the Erdos-Renyi graph. In other words,
the optimisation is generating specialised roles in the manoeuvre and engagement
structure of Red that are different at the various values of lethality.

In summary to the analyses thus far, we conclude that optimising with higher fire-
power, when offence and defence are similarly weighted in utility, gives diminishing
returns. An optimised Red force structure with lesser lethality than Blue is able to
achieve victory through dual-purposing manoeuvre and attack hubs. In the supple-
ment, when the optimal force is constrained in the number of targets it may engage,
in the offensive phase it focuses on the adversary ability to manoeuvre its own forces.
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We shall discuss later the extent to which these results resonate with ideas in Manoeu-
vre Warfare.

5.4. Battle-outcome heatmaps for optimised networks

We now take exemplar optimal networks and scan across the parameters for the Red
force, γR, κR, to examine the regions where that force has advantage over Blue. This
type of analysis would be typical as an application of our model for trade-offs in
investment over technology that either enhances fire-power or manoeuverability of a
force but also where optimisation of structure, both for manoeuvre and engagement,
is a consideration.

We consider again forces of equal size N = 50 and number of manoeuvre links
LR = LB = 100 and optimise the Red force at κR = 0.5, γR = 1 against a Blue force
with κB = 1, γB = 1. We examine two cases, with trade-off parameter λ = 0.5 for
the offensive phase and λ = 0.9 for the defensive phase. We then solve the system
to determine steady-state densities of force at κB = 3, for a more powerful adversary
than the one for which Red has optimised. In Fig.8 we plot battle-outcome heatmaps,
similar to those in Figs.4 (g-i) but for Red’s variable choices, γR, κR.

We note the following key features in these results in Fig.8. Firstly, in all cases of
optimised network there is a threshold lethality required before Red has an advantage
over Blue. In panel (a), this threshold is close to that used for the optimisation,
κR = 0.5, however in panel (b), where self-preservation is emphasised, the critical value
is even less than that used for optimisation. We note that these are significantly less
than the actual value of lethality for the Blue force; the optimisation is robust against
variation in adversary lethality. In both cases, the threshold lethality is insensitive to
the manoeuvre rate γR.

The exception to this insensitivity is at low γR for panel (a) where λ = 0.5: here the
Blue force has an advantage for γR ≤ 0.5 unless the Red force increases its lethality
κR. Contrastingly, in panel (b) the Red force maintains advantage for κR ≥ 0.25, right
down to very small values of γR. Recalling the key result from our previous analyses,
when offence is more valued in utility for λ ≤ 0.7, the optimised Red networks strongly
figure sacrificer nodes as a key mechanism in the engagement structure. As we saw in
previous analyses, for λ > 0.7, these disappear and are replaced by Red manoeuvre
hubs while all the remaining Red nodes engage with a small number of Blue. Thus
in Fig.8(a), the optimised network will have more emphasis on attack rather than
manoeuvre, with this flipping for panel (b). It is clear then that for (a), at low γR the
optimised manoeuvre network is insufficient to guarantee victory - additional lethality
is required. Contrastingly, in (b) the manoeuvre network gains prominence in the
optimisation through the manifestation of hubs while the rest of Red are engaged in
concentrating attacks on Blue. Thus fewer Red require to manoeuvre (they purely
attack) except through an efficient structure, a hub. This leads to low γR values being
sufficient for effectiveness against the Blue force.

Comparing Figs.8(a,b) we also see that in the region where Red does have advantage
it scores better when equally weighting offence and defence (panel (a)) compared to
emphasis on defence (in (b)). This seems in apparent contradiction to Fig.6(b) where
at high λ the number of surviving Red forces is larger than at lower λ. However, at
lower λ no Blue forces survive, unlike the case for larger λ. Thus the difference between
steady-state force numbers at λ = 0.9 may indeed be less than for λ = 0.5.

In Fig.8(c) we show the result using the original random networks that seeded the
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Figure 8. Plots of the victory heat-map showing the difference of steady-state densities for Red against Blue

across values of γR, κR for NB = NR = 50, LB = LR = 100, and networks optimised for κR = 0.5, γR =
1, κB = 1, γB = 1 but solving the system for κB = 3. Panel (a) for λ = 0.5, (b) for λ = 0.9, and (c) the result

using the original random network that seeded the optimisation.
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optimisation; both Red and Blue have Erdos-Renyi random graphs. The shape of the
cross-over region is understandable: Red has advantage when it is high in manoeuvre
rate γR and fire-power κR. Contrasting this with the optimised results, we see the
sensitivity in both of Red’s parameters with gradients even beyond the threshold for
Red victory. Thus the key role of optimisation is in flattening the variability in the
various parameters.

To summarise these results, we see that with the capacity to invest in optimised
networks, and fire-power or speed of manoeuvre through its structures, the Red force
gains advantage through allocation of resources up to a minimum level in fire-power.
Beyond that, it is wasted resource. Similarly, as long as it has optimised structure
for both manoeuvre and engagement, the force only needs a minimal threshold in
manoeuvre rate to gain advantage.

6. Conclusions and Discussion

We have generalised the (N,M) Lanchester model to include manoeuvre warfare
through the incorporation of networks. The model allows the embedding of warfighting
heuristics for how a force dynamically redistributes resources through battle accord-
ing to some local weighting across connections; here we used the local ratio of a force
element to its adversaries. We optimised the structure of networked forces for both ma-
noeuvre and engagement against a randomly structured adversary, as functions of an
offence-defence trade-off and fire-power. We found consistently, that a force with opti-
mised networks could defeat an equally sized opponent for lesser fire-power than that
of the adversary. Depending on how it valued the offence-defence trade-off, different
structures emerged for the optimised force.

We now reflect on how these structures figure in the literature of Manoeuvre War-
fare.

Arguably, our model only narrowly reflects the manoeuvre dimension of warfare,
purely in terms of the movement of resources around a networked force rather than
the decision process. For something that is defined as one of the warfighting functions,
military writings on Manoeuvre Theory tend to wrap numerous functions together, as
well as the psychological dimensions of surprise and shock. Thus (Lind, 1985) draws
upon the Manoeuvre Theory of John Boyd which treats Manoeuvre as a competition
between adversarial Observe-Orient-Decide-Act (OODA) loops, itself a a model for
C2. Thus our the manoeuvre rate constant γ is a proxy for the speed of each agent’s
OODA loop in the absence of an explicit structure for distributed decision making (also
enabled by networks) that may facilitate or undermine the capacity to manoeuvre. In
this interpretation, γ measures not just technology (speed and agility of vehicles or
computers) but cognitive and psychological capacity.

Many authors see Sun Tzu (Smith and LeBrun, 1994) as the father of Manoeuvre
Theory in his maxim “To subdue the enemy without fighting” (III.6). Clearly in our
model, fighting is continuous through the process represented by the differential equa-
tions. However, implementations of Manoeuvre Theory into US Army doctrine, such
as the 1970-1990s US Defense Reformers who emphasised (some argue, erroneously
(Lauer, 1991)) “smaller, more mobile forces” against larger adversaries, preserving
one’s own overall resource during the fight is the real point of Sun Tzu. This our
model captures and leads to recognisable structures. To this end we may focus on
Clausewitz’s Principles of War (Clausewitz, 1942), the tactical precursor to his most
well-known work On War (Clausewitz, 1976): “We must select for our attack one
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point of the enemy’s position and attack it with great superiority, leaving the rest of
his army in uncertainty but keeping it occupied. This is the only way that we can use
an equal or smaller force to fight with advantage and thus with a chance of success.
The weaker we are, the fewer troops we should use to keep the enemy occupied at
unimportant points, in order to be as strong as possible at the decisive point.” (Sect
II.2.1). There follows a set of diagrams outlining how reserves may be used in certain
tactical configurations, with forces circling an enemy and reserves in interior lines.

Though often contrasted with Sun Tzu as an attritionist, one can recognise here
that Clausewitz espouses mobility of weaker forces to achieve localised concentration
on the enemy. While valuing decisive battle over Sun Tzu’s elusive force, Clausewitz
emphasise manoeuvre in getting to that fight.

Analysing these ideas in reverse we see first in the manoeuvre hubs arising in the
model for λ ≈ 1 a pattern of how reserves should flow into battle, abstracted from
spatial location, identifiable with Clausewitz’s “formation in depth”. The sacrificial
nodes that emerged in the intermediate region of the offence-defence trade-off λ may
be interpreted as feints – “unimportant points” – insofar as they distract the adversary
fire with ‘mass scale expendable’ resources. These may be ‘dummy’ units, as we alluded
in the introduction, which are replete in military history. Successful feints are based on
incomplete information - the enemy lacks knowledge of the true nature of these targets.
In our model the lack of information is reflected in the fact that engagement targets (of
Red, from the Blue force) are assigned non-adaptively; only the manoeuvre of resource
given the state of the fight is adaptive. If we were to use more sophisticated adaptive
engagement mechanisms, such as examined by (MacKay, 2009) we can anticipate that
this will change. The ignorance implied for such an interpretation of the sacrificial node
behaviour is consistent with the absence of a representation of ISR at this stage of the
model development.

The point of concentration of fire on the enemy is often described as the schwerpunkt.
In our analyses, Blue is not optimised and thus is not adaptive to form structural or
spatial hubs, thus offering Red a functional schwerpunkt for its attacks. The force with
optimised networks thus attacks the ability of its adversary to manoeuvre resources,
particularly when the number of attacks is constrained (as in the supplement), through
what may be interpreted as suppressive fires. Finally, we may recognise in the colloca-
tion of manoeuvre and engagement hubs for the optimised force qualities seen in the
coincidence of armour, speed, fire-power and mobile communications of the panzer di-
visions from 1940-41 of World War II. Indeed, this form of warfare was the realisation
of many of the visions of manoeuvrist theorists, both British and German included,
in the aftermath of the Great War.

These are qualitative observations about the patterns emerging in this mathemati-
cal approach. As alluded from the outset, the value of this approach is that it may be
readily generalised further to include alternate heuristics for resource and target real-
location, and further warfighting functions. In particular, current work is developing
this model to incorporate C2 through models of synchronising dynamical processes
on network, effectively modelling the interactions of multiple Boyd OODA loops in
the elements of each force. Logistics, built on yet other networks, are also straight-
forwardly incorporated into the model as source terms to represent how forces enter
into and sustained through the battle. Also, using various differential equation based
models of swarming, spatially embedding the model is also straightforward. It would
be at this stage that appropriate validation studies should be undertaken to compare
with data from a range of manoeuvrist centric battles in history. Nevertheless, we
would agree with MacKay that the value of such models is less to be predictive (for
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which the quality of data is often lacking), but more to explore more sophisticated
warfighting concepts such as the role of, and balance of investments, across competing
technologies, doctrine and human training to realise the various warfighting functions.
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Appendix: An analytical explanation of ‘sacrificer’ nodes

In subsection 5.3, we saw that when optimising the combined engagement-manoeuvre
networks a regime for low λ exists in which optimal configurations show the coexis-
tence of ‘normal’ Red nodes that attack one Blue node each and a certain number
of ‘sacrificial’ Red nodes which typically attack many Blue nodes, but don’t receive
support via the Red manoeuvre network. Here, we will show analytically that such
nodes are indeed typical in our present setup, even without the presence of manoeuvre
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support. Consider the set-up depicted in Fig. 9, in which the Red force composed of n
nodes consists of two groups n1 +n2 = n and fights a Blue adversary force made up of
n nodes. Suppose, Red nodes in group one each attack k1 Blue nodes and Red nodes in
group two each attack k2 nodes. Below, we will argue about parameters k1, k2, n1, and
n2 that optimise outcomes for Red. For simplicity, we will further assume that Red
nodes target Blue nodes at random. As there is a total of L = L1 +L2 = n1k1 + n2k2

attacks from the Red force, on average a Blue node will be targeted by d = L/n Red
nodes. Of these attacks, L1/L are attacks from group one, and L2/L attacks from
group two. Overall, treating all Red nodes within a group and Blue nodes each as
an average representative node, we thus arrive at the following system of equations
governing the ‘mean-field’ Lanchester dynamics

Ṙ1 = −κBk1B
n

L
(11)

Ṙ2 = −κBk2B
n

L
(12)

Ḃ = −κR
L1

n

1

k1
R1 − κR

L2

n

1

k2
R2, (13)

where R1 (R2) is the force at an average group one (group two) Red node, and B
the force of an average Blue node. Respectively multiplying Eqs. (11) and (12) by
−κRL(L1/n

2)(R1/k
2
1) and −κRL(L2/n

2)(R2/k
2
2) and Eq. (13) by κBB gives

d

dt

(
−κR

L

n2

(
n1

k1
R2

1 +
n2

k2
R2

2

)
+ κBB

2

)
= 0, (14)

and we have thus found a typical invariant for the Lanchester dynamics. Suppose that,
as also in our computational experiments, initial allocations of Blue and Red forces
are equal. Then, in order to maximize battle outcomes for Red, the Red commander
has to maximize the function

f(k1, k2, n1) =
L

n2

(
n1

k1
+
n2

k2

)
, (15)

where n2 = n− n1 ≥ 0. Straightforward analysis then shows that f is maximized for
n1 = n/2 and k1 = 1 and k2 = n (or k1 = n, k2 = 1). Consequently, optimal results
for Red are achieved if Red splits its force into one group of nodes that each attack all
Blue nodes and one group of nodes who each attack exactly one Blue node, namely if
Red diverts a substantial amount of its forces as sacrificial nodes.

The advantage Red can gain by introducing sacrificial nodes is seen when we eval-
uate comparable invariants of the Lanchester dynamics. We find the following vic-
tory conditions for Red. Presuming that each Red node initially has equal force
R1(t = 0) = R2(t = 0) = R0 and B(t = 0) = B0, at the optimal engagement
configuration we have

κRR
2
0

(
1

2
+
n

4
+

1

4n

)
> κBB

2
0 , (16)

whereas for a non-optimised engagement in which k = k1 = k2 one has

κRR
2
0 > κBB

2
0 . (17)
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Thus, in the limit of very large forces n � 1 a Red commander who optimises its
engagement structure only needs to bring a fraction 2/

√
n of the force to gain victory

compared to the non-optimised configuration.
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