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Abstract 

The effective operation of closed-loop supply chains (CLSCs) can help companies achieve 

sustainability goals and boost economic performance. Critical metrics of CLSCs are related to the 

bullwhip effect, which determines their cost efficiency and service quality. In practice, CLSCs must 

collect used products, a complex process that is often constrained by collection station capacity. 

However, how collection station capacity influences the bullwhip effect and the dynamic performance 

of CLSCs remains unclear. Here, we develop a system dynamics model for CLSC that integrates 

traditional manufacturing with remanufacturing and explore the effects of the stochastic capacity 

constraint of the collection station on the CLSC bullwhip effect. Using simulation and experimental 

techniques, we find that, generally speaking, a collection station with looser or more stable capacity 

constraints tends to reduce bullwhip and improve customer service regarding CLSCs. However, 

pertinent interactions emerge between the relevant parameters; in some situations, reducing the capacity 

level of a collection station may be reasonable and beneficial when the stochastic capacity constraint is 

very stable, or customer demand is highly variable. We also consider the partial backlog in return 

collection, a phenomenon associated with the stochastic capacity constraint of a collection station, and 

identify a new trade-off between CLSC sustainability and economic performance. Ultimately, our 

findings provide evidence that will guide managers’ plans for the capacity management of return 

collection in CLSCs. 

Keywords: Closed-loop supply chains, System dynamics, Bullwhip effect, Stochastic capacity 

constraint, Partial backlog in the return collection. 
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1. Introduction 

In recent decades, concerns about critical environmental issues, including resource scarcity, 

waste management and greenhouse gas emissions, have driven discussion and implementation 

of closed-loop supply chains (CLSCs), a business practice that has been well received by 

industry and academia for maintaining resource use for as long as possible (Kazemi et al., 

2019). CLSCs integrate reverse logistics processes, such as recycling, used product collection 

and remanufacturing, enabling companies to reach their sustainability goals by reducing their 

environmental effects. 

However, common wisdom suggests that adopting CLSCs will decrease a company’s 

economic profit. Although it is important to acknowledge that there are numerous economic 

opportunities derived from CLSCs (see Abbey and Guide, 2017), it is true that closing the loop 

is often expensive. This process involves the choice and implementation of a collection channel 

(Hong et al., 2013), and it also requires the design of mechanisms that will incentivise the return 

of used products (Goltsos et al., 2019). Meanwhile, CLSCs are subject to a wider range of 

uncertainties than traditional supply chains because of uncertainty in the quantity and quality 

of the collected products (Ponte et al., 2021). 

Under these circumstances, efficient operation of CLSCs is an essential catalyst for increasing 

circularity in modern economies. To achieve high operational performance, a CLSC must reach 

the desired service level with low operational costs. Both perspectives (i.e. service level and 

operational costs) can be investigated fruitfully by studying the dynamic behaviour (e.g. 

bullwhip effect) of CLSCs (Goltsos et al., 2019). Previous literature shows that ineffective 

dynamic behaviours and the high bullwhip effect of CLSCs are significantly associated with 

frequent machine ramp ups and ramp downs, excessive inventory levels, and frequent staff 

turnover, which eventually leads to low customer service levels and high operational costs 

(Disney et al., 2008; Lin et al., 2017). Therefore, controlling the bullwhip effect and dynamic 

behaviour of CLSCs is vital to enhance operational performance and efficiency (Hosoda and 

Disney, 2018). 

However, research on the dynamics of CLSCs is minimal compared with research on 

traditional systems (Goltsos et al., 2019). This is even more limited with regard to the dynamics 

of the return collection process and its associated different uncertainties—one of the main 

drivers of the bullwhip effect in CLSCs (Ponte et al., 2019, 2020a). In practice, the capacity of 



return collection can often be constrained, with only a proportion of the returned products 

collected (Georgiadis and Athanasiou, 2013). For instance, garment consumption is 

approximately 14 million tonnes per year in the United States, and the majority of products are 

sent to landfill or are incinerated after use. This means that more than USD 500 billion of value 

is lost each year because of the lack of collection and recycling capacity, as well as for cultural 

reasons (The Billie, 2021). 

Therefore, determining how CLSCs can achieve high operational performance and thus a low 

bullwhip effect under a capacitated return collection process is vital, but the literature has 

largely ignored this angle (Goltsos et al., 2019). To the best of our knowledge, only one work 

in the CLSC dynamics literature (namely, Tombido et al., 2021) considers the capacity 

constraint of collection centres on the CLSCs bullwhip effect. However, the authors’ modelling 

is oversimplified and cannot fully reflect the properties of the situation. Therefore, we highlight 

that the actual implications of the capacitated collection process on the dynamics of CLSCs are 

largely unknown. 

To further uncover the effects of collection station capacity constraint on the dynamics of 

CLSCs, we focus on two specific research gaps. First, we explore the effects of the stochastic 

capacity constraint of a collection station (SCCC) on CLSCs’ bullwhip effect. SCCC means 

that when collecting customers returns, the collection capacity of a collection station or 

collection centre are stochastically constrained and keep changing in different periods. In 

practices, this usually reflects the change of the workforces, capacity of collection vehicles, or 

storage spaces of return collection stations (Easwaran and Üster, 2009; Katami et al., 2015). 

Currently, how constraints relate to return collection in previous CLSC bullwhip and dynamics 

research is not clearly characterised as a fixed capacity (i.e. deterministic capacity). Rather, 

capacity often varies over time (i.e. stochastic capacity), particularly in the current business 

context defined by common supply chain disruptions. Therefore, considering the stochasticity 

of collection constraints has significant practical value. Second, we investigate the effect of a 

partial backlog in return collection (PBRC) on the bullwhip of CLSCs. PBRC is a phenomenon 

associated with SCCC, one that is ignored in the existing literature. It depicts a situation in 

which customers who want to return used products may behave in different ways when they 

cannot do this because of capacity restrictions. Some may be willing to wait for the next 

opportunity to return the product (Tombido et al., 2021), while others may simply dispose of 

the product (Georgiadis and Athanasiou, 2013). Both issues (i.e. SCCC and PBRC) can affect 



return collection and the reverse flow of materials considerably, and eventually CLSC 

performance. 

Therefore, motivated by the practical observations and academic gaps exposed so far, the main 

research question explored here is expressed as follows: 

How do SCCC and its associated PBRC influence the CLSC bullwhip effect? 

By addressing this question, we offer a deeper understanding of how the complexity involved 

in capacitated return collection affects CLSCs dynamics and operational performance. Our 

main contributions are summarised as follows: 

1. We explore the dynamics of stochastic capacity constraint of a collection station in 

closed loop supply chains by using a system dynamics approach . This extends existing 

literature that only focus on the deterministic static capacity constraints from system 

dynamics perspective. Both order and inventory dynamics are investigated, offering 

deep insights for their dynamic behaviour and trade-offs. Based on theoretical findings, 

we also provide practitioners with ‘good practice’ recommendations for designing and 

implementing return collection systems under stochastic capacity constraints. 

2. We evaluate the influence of customer returns behaviour, i.e. the partial backlog 

scenario in return collection, on the dynamics of closed loop supply chains. Comparing 

the existing literature that either assumed customer returns are fully backlogged or lost, 

we develop a novel system dynamics model that incorporate such customer return 

behaviour where backlog may be partially returned. Our system dynamics analysis 

uncover the influence of complicated interactions between customer behaviours and the 

capacity constraints of return collection on CLSC bullwhip, as well as identify a trade-

off between the sustainability of economics in these systems. These novel results also 

have meaningful implications for CLSC management and policymaking in recycling. 

To address the research questions, this paper is structured as follows. After the introduction, 

Section 2 reviews three relevant streams of the literature to highlight our paper’s novelty. 

Section 3 provides technical details of the mathematical model and the experimental design. 

Section 4 presents and analyses the results of the simulations. Section 5 discusses the key 

implications of the findings. Finally, Section 6 draws the main conclusions and proposes 

interesting avenues for future research. 



2. Literature review 

To demonstrate the contribution of this paper to the previous literature, it is necessary to review 

the following three highly relevant streams of existing studies. The first is the bullwhip effect 

and dynamic perspectives in CLSCs. The second addresses the capacity constraints of CLSCs. 

The third relates to a partial backlog in forward supply chains and CLSCs. 

2.1 The dynamics of closed-loop supply chains 

The research on supply chain dynamics, particular the bullwhip effect, has been very active 

since the 1990s. However, compared with traditional forward supply chains, the bullwhip effect 

of CLSCs has not been explored as much (Goltsos et al., 2019). 

Tang and Naim (2004) provided the first paper to explicitly study the bullwhip effect from a 

CLSC perspective. They compared how different information transparency levels can 

influence the bullwhip effect of these systems. Zanoni et al. (2006) examined the influence of 

different inventory control policies on the CLSC bullwhip effect. Using Laplace transforms, 

Zhou and Disney (2006) found that CLSCs with remanufacturing operations tend to experience 

a lower bullwhip effect than traditional supply chains without remanufacturing. In contrast, 

through a simulation study, Chatfield and Pritchard (2013) determined that permitting customer 

returns of unused products increases the bullwhip effect. Turrisi et al. (2013) examined the 

influence of reverse logistics on the bullwhip effect. They proposed a policy called R-

APIOBPCS—a variant of the order-up-to policy for CLSCs— to mitigate the bullwhip effect 

in these systems. Hosoda et al. (2015) studied the value of advance notice of returns in reducing 

the bullwhip effect of CLSCs. They found that this value was largely dependent on lead time, 

random return yields and other reverse flow parameters. Cannella et al. (2016) investigated the 

behaviour of the CLSC bullwhip effect, identifying that reducing the remanufacturing lead time 

and promoting information transparency could mitigate this phenomenon. Ponte et al. (2020a) 

also studied the influence of information transparency on CLSC dynamics by deriving the order 

and inventory variance amplification ratios of four CLSCs with different information-sharing 

levels. Cannella et al. (2021) examined proportional controllers’ impact on CLSC dynamics 

based on order-up-to policy. Giri and Glock (2022) investigated the bullwhip effect of a CLSC 

with manufacturing and remanufacturing operations that faced a price-dependent demand with 

an autoregressive moving average (ARMA) pricing process. They observed that the bullwhip 

effect of such a supply chain was related to the parameters of ARMA processes. Ponte et al. 



(2022) explored the effect of batching on the bullwhip effect and service level of CLSCs. They 

found that this influence was not linear; the order and inventory variance amplification ratios 

were complex functions of the batch size that often define waveforms. Gao et al. (2022) 

investigated the bullwhip and inventory cost of an online CLSC. They compared the 

performance of the CLSC under different locations of the return inspection system, and 

optimise the return decisions for different cases.  

Methodologically, the existing literature commonly applied three methods when studying 

CLSC dynamics. These are system dynamics simulation (e.g. Cannella et al., 2016), control 

theoretic models (e.g. Tang and Naim, 2004) and stochastic process models (Hosoda et al., 

2015; Giri and Glock, 2022). Among these, system dynamics simulation seems the most 

frequently applied technique, especially when a system is non-linear or the analytical results 

are difficult to derive (e.g. Ponte et al., 2022; Cannella et al., 2021; Turrisi et a., 2013). 

To summarise, the previous literature has adequate studies on the effects of several factors—

such as remanufacturing lead times, return rates, information transparencies and inventory 

control policies—on the dynamics of CLSCs. Specifically, longer remanufacturing lead time 

can lead worse CLSC dynamics (e.g. Tang and Naim, 2004), while different levels of return 

rate and information transparency can pose opposite influence on bullwhip depending on the 

supply chain structure (e.g. Tang and Naim, 2004, Ponte et al., 2020, Zhou and Disney, 2006). 

Inventory control policies, if properly designed, can facilitate the reduction of bullwhip and 

thus the improvement of the CLSC dynamic performance (e.g. Cannella et al., 2021).  

Although there are many factors studied in the previous literature, one of the important factors 

that studies have largely ignored is the effect of capacity constraints on CLSC bullwhip. 

Ignoring the influence of capacity constraints may not fully reflect the behaviour of many 

practical CLSCs that operate in a nonlinear capacitated settings (Georgiadis et al., 2006; 

Mohajeri and Fallah, 2016; Lin and Naim, 2019). It has been demonstrated that the capacity 

constraint policy plays a key role in influencing the dynamics of inventory systems (Lin and 

Naim, 2019; Dominguez et al. 2019). Relaxing such constraint may ignores oscillations 

generated internally by the system itself and make it difficult to fully explain the complex 

dynamics of real-world CLSCs. 

 

 



2.2 Capacity constraints in closed-loop supply chains 

Section 2.1 demonstrate the importance of a good dynamic performance of CLSC. The existing 

literature reveals dynamic performance of CLSCs may be strongly associated with capacity 

constraints (Vlachos et al., 2007). There are two types of constraints to consider in the reverse 

flow of CLSCs: return collection and production capacities (Georgiadis et al., 2006; Vlachos 

et al., 2007; Georgiadis and Athanasiou, 2013). The former is the capacity constraint on the 

collection of used products; the latter represents constraints on the recovery process (typically 

remanufacturing). For example, Georgiadis et al. (2006) and Vlachos et al. (2007) considered 

both return collection and remanufacturing capacity constraints in CLSCs. Using a system 

dynamics simulation, they each optimised dynamic capacity plans under different scenarios. 

Although several CLSC studies have considered these capacity constraints (e.g. Zhalechian et 

al., 2016; Bice and Batun et al., 2021), very few papers examined their influence on the 

bullwhip effect. In this direction, only three papers have been identified. Adenso-Díaz et al. 

(2012) examined capacity constraints on the operations of recyclers (among many other 

factors), but the results showed that the different levels of constraints possess no statistical 

influence on the CLSC bullwhip effect. Dominguez et al. (2019) explored manufacturing and 

remanufacturing capacity constraints in CLSCs, finding that remanufacturing capacity 

constraints can present a bullwhip-dampening effect. Tombido et al. (2021) considered both 

return collection and remanufacturing capacities, and by comparing different scenarios, they 

examined how these capacity constraints affect the bullwhip effect depending on the various 

system parameters.  

To summarise, although the previous literature has confirmed that capacity constraint is an 

important factor to influence CLSC performance and studied such an influence on the 

investment decisions, carbon emissions or logistics flows of the CLSC system (e.g. Vlachos et 

al., 2007; Mohammed et al., 2017; Bice and Batun et al., 2021), only the three studies reviewed 

above investigated the influence of capacity constraints on CLSC from a bullwhip perspective. 

In addition, only one paper considered the return collection capacity constraints explicitly, but 

the researchers focused on static constraints only (Tombido et al., 2021). Thisignored the fact 

that the capacity constraints of return collection may be changed over time due to uncertainties 

in the collection process, such as timing, quantity, and quality (Goltsos et al., 2019). For 

example, the return collection capacity in recycling sectors became unreliable and exhibited 

high levels of fluctuation driven by COVID-19 (Staub, 2021). Therefore, by reviewing 



previous literature, it shows there should be deeper investigation on the influence of stochastic 

rather than deterministic return collection capacity constraints on CLSC bullwhip, which 

justifies the theoretic and practical values of this paper. 

2.3 Partial backlog in supply chains 

In this paper, we also explore the PBRC phenomenon, which is a customer behaviour that is 

associated with SCCC. Partial backlogs in a forward supply chain generally refer to a situation 

in which, after experiencing stock-outs, only a fraction of unfulfilled customers are willing to 

wait until the product is available. In contrast, other unfulfilled customers are not willing to 

postpone their purchase, and therefore stock-outs will become lost sales (Hu et al., 2009).  

There are multiple reasons for partial backlogs in real-world supply chains. For example, 

Chang and Dye (2001) indicated that a long waiting time is a main factor that triggers partial 

backlogs in supply chains. They showed that the backlog proportion is negatively related to the 

waiting time before order satisfaction. Lin (2013) argued that the attractiveness of products and 

the level of promotion determine the rate of partial backlog. Importantly, they concluded that 

the rate of partial backlog might be increased by investing in strengthening the factors that 

attract customers. Feng et al. (2018) revealed that, compared with assuming a full backlog or 

complete lost-sales setting when stock-out occurs, the assumption of partial backlog is more 

realistic. Adak and Mahapatra (2020) investigated the partial backlog phenomenon in multi-

item supply systems where demand is dependent on multiple factors, such as advertising and 

reliability. 

The existing literature has mainly examined partial backlogs related to customer demand for 

new products. However, we argue here that a similar phenomenon can occur in the reverse 

flow of materials, particularly in the return process of used products. When customers want to 

recycle or remanufacture used products, they may return them to collection facilities. However, 

when the product return collection capacity is constrained, and the used products cannot be 

collected instantly, customers may behave differently. Some customers will wait for future 

return collection, and will send the product to collection facilities at a later opportunity. This is 

known as a return collection backlog (Tombido et al., 2021). In contrast, other customers will 

not wait and will simply dispose of used products in other ways. In other words, uncollected 

returns that result from a limited return collection capacity will only be partially collected in 

the future.  



In some industries, customers can take products they want to recycle to collection stations 

(Ahmadzadeh and Vahdani, 2017). In others, customers can book collection services online, 

and workers from collection stations will collect used products from customers’ homes. 

However, unexpected events, such as bad weather or pandemic lockdown policies, can 

constrain the return collection capacity. For example, collection stations can be temporarily 

closed, or home collection services may be temporarily unavailable. In these cases, customers 

must keep used products on hand and wait for future collections. However, it is not likely that 

all customers unable to return products will be willing to wait. Some may consider disposing 

of the used products. Therefore, it is reasonable to argue that the phenomenon of PBRC is 

common. 

To summarise, previous studies thoroughly examined the impacts of partial backlog rate in 

forward supply chains and confirm its impact on overall supply chain performance. This is 

because different partial backlog rate will determine the ordering policies, transportation plans, 

and the design of inventory control strategies (e.g. Lin et al., 2013; Feng et al., 2018). However, 

to the best of our knowledge, no research has examined the partial backlog in the CLSCs. The 

previous literature has either assumed that uncollected used products would be completely lost 

and disposed of (Vlachos et al., 2007), or that all customers would be willing to wait until they 

could return them (Tombido et al., 2021) in the CLSCs. Considering the importance of PBRC 

regarding its great economic and environmental significance, it is necessary to model and exam 

the dynamics of PBRC in CLSCs, Therefore, this paper will address this gap and contributes 

to the existing research. 

2.4. Summary of research gaps 

Table 1 summarises the most relevant previous literature and positions our paper within 

existing studies. 

Table 1. Previous literature and positioning of the current paper 

 
Bullwhip in 

CLSCs 

Return collection 

capacity constraints in 

CLSCs 

Stochastic 

capacity 

constraints 

Partial 

backlog in 

supply chain 

Chang and Dye 

(2001) 
    

Tang and Naim 

(2004)     

Georgiadis et al. 

(2006) 
    



 
Bullwhip in 

CLSCs 

Return collection 

capacity constraints in 

CLSCs 

Stochastic 

capacity 

constraints 

Partial 

backlog in 

supply chain 

Zanoni et al. 

(2006) 
    

Zhou and Disney 

(2006) 
    

Vlachos et al. 

(2007) 
    

Hu et al. (2009)     

Georgiadis and 

Athanasiou (2010) 
    

Adenso-Díaz et al. 

(2012) 
     

Chatfield and 

Pritchard (2013) 
    

Georgiadis and 

Athanasiou (2013) 
    

Lin (2013)     

Turrisi et al. 

(2013) 
    

Hosoda et al. 

(2015) 
    

Cannella et al. 

(2016) 
    

Zhalechian et al. 

(2016) 
    

Ahmadzadeh and 

Vahdani (2017) 
    

Mohammed et al. 

(2017) 
    

Feng et al. (2018)     

Dominguez et al. 

(2019) 
    

Adak and 

Mahapatra (2020) 
    

Ponte et al. 

(2020a) 
    

Bice and Batun 

(2021) 
    

Cannella et al. 

(2021) 
    



 
Bullwhip in 

CLSCs 

Return collection 

capacity constraints in 

CLSCs 

Stochastic 

capacity 

constraints 

Partial 

backlog in 

supply chain 

Tombido et al. 

(2021) 
    

Gao et al. (2022)     

Giri and Glock 

(2022) 
    

Ponte et al. (2022)     

This paper ✓ ✓ ✓ ✓ 

From the Table 1, the research gaps can be summarised as follows. On the one hand, the 

existing CLSC bullwhip literature has not fully considered the effect of SCCC on the dynamic 

behaviour of CLSCs, but model constraints in the real-world collection process as a fixed value. 

On the other hand, no research has investigated the phenomenon of PBRC in the reverse flow 

of CLSCs. This phenomenon is associated with SCCC and is driven by customers who want to 

return used products behaving in different ways when they cannot do this because of capacity 

restrictions. Some may be willing to wait for the next opportunity to return the product 

(Tombido et al., 2021), while others may simply dispose of it (Georgiadis and Athanasiou, 

2013). By filling these research gaps, we ensure that our model is more realistic and thus can 

offer a deeper understanding of how collection affects the bullwhip effect of CLSCs. We also 

provide valuable managerial insights on the capacity planning of collection centres to improve 

customer service and reduce supply chain costs. 

3. Model 

3.1 Preliminaries 

In this section, we build a stylised model of CLSCs with SCCC and PBRC. The supply chain 

structures, operation processes, and information and material flows are largely based on 

previous studies (e.g. Dominguez et al., 2019; Georgiadis and Athanasiou, 2010; Georgiadis et 

al., 2006). They are visualised in Figure 1. In this system, mixed manufacturing–

remanufacturing operations are assumed. This structure is commonly observed in different 

businesses, such as the spare parts industry (e.g. van der Laan and Teunter, 2006; Souza, 2013) 

and the printing industry (e.g. Zuidwijk et al. 2005; Zhou et al., 2017). As Figure 1 indicates, 

in this CLSC, retailers will receive newly manufactured and remanufactured products to 

replenish on-hand inventories from suppliers and remanufacturers, respectively. When 



customers in the market purchase retailer’s products, the retailer will use on-hand inventory to 

satisfy customer demand. The quantity of new products delivered in each period is based on 

retailers’ orders; retailers will consider the work-in-process (WIP) information of suppliers and 

remanufacturers simultaneously when making order-placement decisions (Ponte et al., 2021). 

In addition, the quantity of remanufactured products received is determined by the number of 

returned products first collected by the collection station and then processed by the 

remanufacturer in each period. The collection process is the key novelty in our modelling work. 

Specifically, after a consumption delay, customers will generate the used products to be 

collected by the collection station and delivered to the remanufacturer, but only a fraction of 

the returned products will be collected because of the station’s SCCC. The remaining 

customers who fail to return products will either choose to wait for future collections as a result 

of PBRC or dispose of the used products. 

 

Figure 1 Caption: Stochastically capacitated closed-loop supply chains with partial 

backlog in the return collection 

Figure 1 Alt Text: A CLSC model with customer, supplier, retailer, remanufacturer and 

collection station involved, where customers in this supply chain have PBRC when their 

returns are not collected because of SCCC 

3.2 Assumptions 



Before explaining the technical details in Section 3.3, we introduce several general assumptions 

made in our CLSC model, as follows: 

• Customer return process: Following Zhou et al. (2017) and Ponte et al. (2020a), we 

assume that a fixed proportion of customers will attempt to return their products through 

collection stations after a consumption delay. However, some products will not be 

collected given limited return collection capacity. To reflect such uncertainty, we 

assume that this constraint is stochastic (Zhalechian et al., 2016). To embed the PBRC 

into our model, we assume that not all customers who fail to return used products are 

willing to wait for future return collection (see the technical details in Section 3.3). 

• Remanufacturing process: The returned products collected at a collection station are 

assumed to be delivered to the remanufacturer for processing. Following Cannella et al. 

(2016), we assume that all collected returns can be remanufactured. Once completed, 

the remanufactured products are assumed to have the same properties and price as 

newly manufactured products; that is, remanufactured products are as good as new. In 

this fashion, both products can be used to fulfil customer demand (Tang and Naim, 

2004). A perfect substitution of remanufactured and manufactured products is a 

common assumption for exploring the dynamics of CLSCs (e.g. Hosoda and Disney 

2018; Ponte et al. 2019; Hosoda et al. 2020), as well as in other CLSC studies (e.g. van 

der Laan and Teunter, 2006; Atasu et al., 2013). Indeed, this is frequently observed, as 

with spare parts (e.g. van der Laan and Teunter, 2006) or toner cartridges (e.g. Nichols, 

2014). Additionally, because we focus on the capacity constraint of the return collection 

process, we assume there are no capacity limitations in the remanufacturing process. 

• Manufacturing process: The manufacturing process, which provides newly 

manufactured products to the retailer, operates according to the needs of the on-hand 

inventory. This is controlled through a periodic review replenishment policy, which 

also depends on the remanufacturing process. In line with previous research, we assume 

that the supplier always has enough capacity to manufacture all required products 

(Cannella et al., 2021; Lin et al., 2021). 

• Inventory process, customer demand fulfilment and retailer order placement: the 

retailer’s inventory capacity is assumed as infinite. The retailer will use on-hand 

inventory to fulfil customer demand, and unfulfilled demand will be fully backlogged 

(Tang and Naim, 2004). For retailer order placement, we assume a non-negative 



ordering policy; this means that products cannot be returned from the retailer to the 

supplier (Wang et al., 2012). 

3.3 Formulation 

We develop our system dynamics model on the basis of previous studies of CLSC dynamics 

(e.g. Tang and Naim, 2004; Cannella et al., 2021). Using the model settings and assumptions 

described above, we present a causal loop diagram in Figure 2.  System dynamics simulation 

has great advantage of modelling and exploring complex system structures including feedback 

loop, delay and nonlinearities (Sterman 2000). In particular, comparing other methods such as 

control theoretic and stochastic analysis, system dynamics simulations gain deeper 

understanding of system nonlinearities present in the supply chains. In our CLSC model, the 

nonlinearity is generated from two sources; namely, the stochastic capacity constraints of return 

collection, as well as PBRC. Either can make the analytical results of the system difficult to 

obtain. Therefore, compared with previous publications that use stochastic process models 

(Giri and Glock, 2022) or control theoretic models (Lin et al., 2021), we regard system 

dynamics as an appropriate option to effectively investigate the relationship between return 

collection and the bullwhip effect. We model the capacity constraints as a random variable in 

the system dynamics models and add the partial backlog property in the return process to make 

the model more realistic. Figure 2 provides an overview of our model by highlighting the 

relationship between the different variables and parameters. The causal relationship between 

uncollected customer returns and other factors, such as capacity, return rate and the percentage 

of partial backlog in the return process, is observable here. The details of this diagram will be 

explained in the following paragraphs of this section. 



 

Figure 2 Caption: Causal loop diagram of closed-loop supply chains with collection 

dynamics considering stochastic capacity constraints of a collection station and partial 

backlog in return collection 

Figure 2 Alt Text: A graph describing the causal relationships of variables related to CLSCs. 

The notations of the model are listed in Table 2, and the sequences of the different activities in 

period 𝑡 are described in Figure 3. 

Table 2. Notations of the variables and parameters of the closed-loop supply chain 

model 

Notation Explanation 

𝐷𝑡 Customer demand in period 𝑡 

𝑃𝑀𝑡 Received newly manufactured products in period 𝑡 

𝑅𝑀𝑡 Received remanufactured products in period 𝑡 

𝐼𝑡 On-hand inventory in period 𝑡, after satisfying customer demand 

𝑅𝑡 Customer returns in period 𝑡 

𝑅𝐶𝑡 The collected returned products in period 𝑡 

𝑊𝐼𝑃𝑡 WIP in period 𝑡 

𝑈𝐶𝑡 Uncollected customer returns in period 𝑡 

𝐶𝐶𝑡 The realisation of SCCC in period 𝑡 

𝜀𝑡 Stochastic component of SCCC in period 𝑡 
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Figure 3 Caption: Sequences of activities in closed-loop supply chains 

Figure 3 Alt Text: A graph describing the activities of closed-loop supply chains, including 

receiving products, fulfilling customer demand, collecting returns, update of demand 

forecasting and placing orders. 

Specifically, in each period 𝑡 ∈ {1,2,3, … , 𝑇}, the customer demand for products is 𝐷𝑡, which 

is assumed to follow a normal distribution 𝐷𝑡~𝑁(𝜇, 𝜎2) (Ponte et al. 2020a). For the retailer, 

as depicted in Figure 2, the in-flow of inventory consists of two sources, namely, manufactured 



and remanufactured products, while the out-flow of inventory is the customer demand in each 

period. This means that at the beginning of period 𝑡 , the retailer will receive the newly 

manufactured and remanufactured products from the supplier—as well as the 

remanufacturer—to replenish its on-hand inventory. The on-hand inventory is then used to 

fulfil customer demand. We notate in period 𝑡 the received manufactured products as 𝑃𝑀𝑡, 

remanufactured products as 𝑅𝑀𝑡 and on-hand inventory after fulfilment as 𝐼𝑡; hence, for 𝑡 ∈

{1,2,3, … 𝑇}, the following relationship holds: 

  𝐼𝑡 = 𝐼𝑡−1 + 𝑃𝑀𝑡 + 𝑅𝑀𝑡 − 𝐷𝑡 (1) 

To eliminate trivial cases, we set 𝐼0 = 0, reflecting that the retailer is not open to working until 

Period 1. 

We assume a constant lead time for manufacturing and remanufacturing, denoted by 𝑇𝑚 and 

𝑇𝑟, respectively. As illustrated in Figure 2, there will be a delay between a retailer placing an 

order and receiving manufactured products because the supplier needs time to complete the 

order. To model this relationship, 𝑃𝑀𝑡  is equal to the order placed from the retailer to the 

supplier 𝑇𝑚 + 1 period ago (the one period here is the order reviewing period; see Cannella et 

al., 2021; Dejonckheere et al., 2003). Notating the order in period 𝑡 as 𝑂𝑡, for 𝑡 ∈ {1,2,3, … , 𝑇} 

we have the following: 

  𝑃𝑀𝑡 = 𝑂𝑡−𝑇𝑚−1 (2) 

To eliminate trivial cases, we set 𝑃𝑀𝑡 = 0 for all 𝑡 ≤ 𝑇𝑚 + 1, reflecting that the retailer is not 

open to fulfilling customers and placing an order until Period 1. 

In contrast, as observed in Figure 2, there will also be a delay between return reception and 

retailers receiving remanufactured products. To model this, 𝑅𝑀𝑡  is equal to the returns 

collected 𝑇𝑟 + 1 period ago where the 𝑇𝑟 is called the remanufacturing lead time. The one extra 

period here is consistent with the previous literature (Cannella et al., 2021), meaning that 

returned products (after collection in the current period) will not enter the remanufacturing 

process until the beginning of the next period. This reflects that the activities between return 

collection and remanufacturing, such as the counting and inspection of returned products, take 

time to complete. Additionally, this one extra period makes the notation of remanufacturing 

compatible with that of manufacturing processes. Denoting the returns collected in period 𝑡 as 

𝑅𝐶𝑡, for 𝑡 ∈ {1,2,3, … , 𝑇} we have the following: 



  𝑅𝑀𝑡 = 𝑅𝐶𝑡−𝑇𝑟−1 (3) 

To eliminate trivial cases, we set 𝑅𝑀𝑡 = 0 for all 𝑡 ≤ 𝑇𝑟 + 𝐿𝑐 + 1, and set 𝑅𝐶𝑡 = 0 for all 𝑡 ≤

𝐿𝑐 (see below for more details). 

After receiving products from the supplier and remanufacturer and fulfilling customer demand, 

retailers update the WIP volume (𝑊𝐼𝑃𝑡) to support their order decisions. Observed in Figure 2, 

the retailer has information on both manufacturing and remanufacturing activities (Dominguez 

et al., 2019; Lin et al., 2021), and for 𝑡 ∈ {1,2,3, … , 𝑇}, the following relationship holds: 

 𝑊𝐼𝑃𝑡 = 𝑊𝐼𝑃𝑡−1 + (𝑂𝑡−1 − 𝑂𝑡−𝑇𝑚−1) + (𝑅𝐶𝑡−1 − 𝑅𝐶𝑡−𝑇𝑟−1) (4) 

We set 𝑊𝐼𝑃0 = 0 because the supplier has not received an order from a retailer until the end 

of first period. Equation 4 essentially indicates that the 𝑊𝐼𝑃 in period 𝑡 considers two elements. 

First, it includes all orders placed for the manufacturing lines but not delivered to the retailer. 

It also includes all the collected returns that have been pushed to the remanufacturing lines but 

not yet received by the retailer. 𝑇𝑚  and 𝑇𝑟  are the lead time for manufacturing and 

remanufacturing, although they may also represent the time spent on transporting new and 

remanufactured products, respectively. Because our model is rooted in a periodic review 

system, the 𝑊𝐼𝑃 level is updated in every period, given that the relevant decision-making takes 

place at this frequency. 

After the retailer updates 𝑊𝐼𝑃𝑡, the remanufacturer will collect the returned products. In each 

period, customers need to return used products to the collection station, and the station will 

deliver the collected returns to the remanufacturer. Consistently with previous studies (Zhou et 

al., 2017; Ponte et al., 2020a), the customer returns of products in period 𝑡, called 𝑅𝑡, are equal 

to a proportional demand 𝐿𝑐 period ago, where 𝐿𝑐 is the consumption lead time (Ponte et al., 

2021). Therefore, for 𝑡 ∈ {1,2,3, … , 𝑇}, we have: 

  𝑅𝑡 = 𝑘 ∙ 𝐷𝑡−𝐿𝑐
 (5) 

𝑅𝑡 is set as 0 when 𝑡 ≤ 𝐿𝑐, to eliminate trivial cases, since there are no customers finishing 

consumption of the products. This leads to the above setting in Equation 4 that for 𝑡 ≤ 𝐿𝑐 +

𝑇𝑟 + 1, 𝑅𝑀𝑡 is set as 0 because no remanufactured products have been completed. Here, 𝑘 is 

the return rate, and 0 ≤ 𝑘 ≤ 1. The return rate is assumed as a constant, which is consistent 

with previous literature (e.g. Tang and Naim, 2004; Ponte et al., 2020a). 



However, because a collection station is capacitated in its collection capacity, it is possible that 

not all returned products in period 𝑡 will be collected for remanufacturing (Tombido et al., 

2021). Therefore, PBRC leads to an assumption that some uncollected returns will be 

accumulated for the next period if customers are willing to wait, while other returns will be 

disposed of if customers cannot wait. To model the property of PBRC, we notate the 

uncollected products in period 𝑡 − 1 as 𝑈𝐶𝑡−1 and the percentage of partial backlog in the 

return collection as 𝑝  (0 ≤ 𝑝 ≤ 1) . Thus, 𝑝  is the percentage of PBRC, representing the 

percentage of customers who have uncollected products in period 𝑡 − 1 and will wait to return 

products in period 𝑡. This means that a portion of 1 − 𝑝 impatient customers with uncollected 

products in period 𝑡 − 1 will dispose of returns. Linking this to practice, 𝑝 can represent the 

attributes of customers with uncollected returns. For example, 𝑝 can mean the average degree 

of customer environmental awareness. Previous empirical research indicates that customers 

with a higher degree of environmental awareness are more likely to return products (Ramayah 

et al., 2012). Therefore, it can be reasonably inferred that the higher the average degree of 

customer environmental awareness, the higher the portion of customers (i.e. higher 𝑝) who are 

willing to wait for future collection will be. Additionally, as reflected in previous research (e.g. 

Jena et al., 2017), 𝑝 can measure the incentives (e.g. money, coupon) that a collection station 

offers to customers returning products, so a higher 𝑝 can mean stronger incentives which 

stimulate a higher portion of customers to wait for return collection. From the property of 𝑝, 

we further notate that the capacity constraint of a collection station in period 𝑡 is 𝐶𝐶𝑡 and the 

following relationship holds for 𝑡 ∈ {1,2,3, … , 𝑇}: 

  𝑅𝐶𝑡 = 𝑚𝑖𝑛{𝐶𝐶𝑡, 𝑝 ∙ 𝑈𝐶𝑡−1 + 𝑅𝑡} (6) 

  𝑈𝐶𝑡 = 𝑝 ∙ 𝑈𝐶𝑡−1 + 𝑅𝑡 − 𝑅𝐶𝑡 (7) 

To eliminate trivial cases, we set 𝑈𝐶0 = 0, reflecting that there are no returns uncollected for 

periods when customers have not generated returns. 

Essentially, Equations 6 and 7 reflect two scenarios. On the one hand, if in period 𝑡 the sum of 

accumulated previous customer returns (i.e. 𝑝 ∙ 𝑈𝐶𝑡−1) and current customer returns (i.e. 𝑅𝑡) is 

not greater than the capacity constraint of collection station (i.e. 𝐶𝐶𝑡), then all returns will be 

collected, leading to the relationship that 𝑅𝐶𝑡 = 𝑝 ∙ 𝑈𝐶𝑡−1 + 𝑅𝑡. Here, 𝑈𝐶𝑡 is essentially equal 

to zero, meaning that in period 𝑡, no returns are uncollected. On the other hand, if in period 𝑡 

the sum of accumulated previous customer returns (i.e. 𝑝 ∙ 𝑈𝐶𝑡−1) and current customer returns 



(i.e. 𝑅𝑡) is greater than 𝐶𝐶𝑡, the returns collected are only constrained to 𝐶𝐶𝑡. This results in a 

positive 𝑈𝐶𝑡, indicating that some returns will remain uncollected. 

It can be observed the PBRC modelled by Equations 6 and 7 is essentially a first-order 

relationship. This reflects that a larger volume of the total uncollected returns will lead to a 

greater disposal of used products in each period. This is justifiable because it suggests that a 

longer waiting time will lead to a higher probability of lost returns, which aligns with the 

literature on partial backlog (e.g. Lin, 2013), as well as industrial practice. Moreover, for 𝐶𝐶𝑡 

in Equation 6, extending the literature (Dominguez et al., 2019; Tombido et al., 2021), we 

model it as a stochastic, rather than deterministic, value to capture the uncertainty of collection 

capacity (Zhalechian et al., 2016; Ahmadzadeh and Vahdani, 2017). We assume 𝐶𝐶𝑡 is the 

realisation of random variable, thereby SCCC, and for 𝑡 ∈ {1,2,3, … , 𝑇}: 

  𝐶𝐶𝑡 = 𝜇𝑐𝑐 + 𝜀𝑡 (8) 

where 𝜇𝑐𝑐 is the mean value of 𝐶𝐶𝑡, while 𝜀𝑡 is a random variable with a mean equal to 0 (we 

model 𝜀𝑡 in the next paragraph). To quantify 𝜇𝑐𝑐, we adopt Dominguez et al.’s (2019) and Zhao 

et al.’s (2002) approach, and define a capacity index (𝐶𝐼). Specifically, 𝐶𝐼 is assumed to be 

equal to 𝜇𝑐𝑐 over the mean of the product return. In the current paper, because the mean value 

of customer demand is 𝜇 and the return rate is 𝑘, the mean value of the product return is 𝜇 ∙ 𝑘, 

leading to the 𝐶𝐼  being equal to 
𝜇𝑐𝑐

𝜇𝑘
. Therefore, for a given 𝐶𝐼 , 𝜇𝑐𝑐 = 𝜇 ∙ 𝑘 ∙ 𝐶𝐼 . From its 

mathematical expression, a lower 𝐶𝐼 means a tighter capacity constraint, while a higher 𝐶𝐼 

means a looser capacity constraint. In practice, a higher 𝐶𝐼 represents the scenario where the 

company has higher spare capacity, including, for instance, a higher level of workforce, a larger 

storage space, a longer working hour and/or a higher transportation capacity of the return 

collection station (Katami et al., 2015; Tombido et al., 2022). Additionally, we emphasise that 

𝐶𝐼 should always be greater than 1, meaning that the mean value of SCCC should be larger 

than the mean of the returned cores; otherwise, the system can be non-convergent (Dominguez 

et al., 2019).  

Further, to model the stochastic element of SCCC, 𝜀𝑡  is assumed to follow a uniform 

distribution (Zhalechian et al., 2016; Ahmadzadeh and Vahdani, 2017; Wang et al., 2010). To 

measure the stochasticity of 𝜀𝑡, we assume 𝜀𝑡~𝑈(−𝛽 ∙ 𝜇𝑐𝑐, 𝛽 ∙ 𝜇𝑐𝑐), where 0 ≤ 𝛽 ≤ 1. Here, 

extending the literature, we define 𝛽 as the volatility level of SCCC. From its formulation, a 



higher 𝛽 indicates a more volatile SCCC. If 𝛽 = 0, the assumption of capacity constraints 

returns to that noted by Dominguez et al. (2019) and Tombido et al. (2021). In practice, 𝛽 

indicates the degree of fluctuations of SCCC (Pishvaee et al., 2011). It considers the probability 

and severity of the disruptions that affect collection centres, including natural disasters, human-

induced disasters, political crises, and epidemics and pandemics, among other things. In this 

sense, 𝛽 can also capture some influences on capacity caused by the COVID-19 pandemic. For 

instance, employees of collection stations were asked to undergo quarantine and leave work 

when they caught the virus, which may have led to a change in capacity. However, we note 

that 𝛽 might also be influenced by internal factors, such as strikes or the hiring and firing of 

staff. 

At the end of each period, retailers must update their demand forecast (i.e. 𝐷̂𝑡) for the future 

and place an order with suppliers. Simple exponential smoothing is selected as the forecasting 

method; this a popular method that does not require significant real data storage for forecasting 

(Disney et al. 2000; Cannella et al. 2016). Also, unlike other methods such as ARIMA, which 

is very sensitive to parameter selection, exponential smoothing is a robust method (Udenio et 

al., 2022). Its simplicity, intuition, small computational effort and ease of application are well 

recognised in the literature (Disney et al. 2006; Li et al. 2014). 

  𝐷̂𝑡 = 𝛼 ∙ 𝐷𝑡 + (1 − 𝛼) ∙ 𝐷̂𝑡−1 (9) 

𝛼 is the exponential smoothing parameter (Syntetos et al., 2011), and we have 𝑡 ∈ {1,2,3, … , 𝑇}. 

Following Potter and Lalwani (2008), we set 𝐷̂0 = 𝜇 to initiate forecasting, as it can effectively 

eliminate possible initialisation bias (Law, 2015). 

According to 𝐼𝑡, 𝑊𝐼𝑃𝑡 and 𝐷̂𝑡, retailers will place their orders with suppliers according to the 

rule of the automated pipeline, various inventory and order-based production systems 

(APVIOBPCS) (Lin et al., 2017; Lin et al., 2020): 

  𝑂𝑡 = max{0, (𝐷̂𝑡 − 𝑅𝐶𝑡−𝑇𝑟−1) +
𝑇𝐼𝑡−𝐼𝑡

𝑇𝑖
+

𝑇𝑊𝐼𝑃𝑡−𝑊𝐼𝑃𝑡

𝑇𝑤𝑖𝑝
} (10) 

In Equation 10, 𝑇𝐼𝑡 is the safety stock inventory and 𝑇𝑊𝐼𝑃𝑡 is the targeted WIP level. 𝑇𝑖 and 

𝑇𝑤𝑖𝑝 are two proportional controllers for the gaps of inventory and WIP (Dejonckheere et al., 

2004). An explanation for Equation 10, according to Zhou et al., (2017) and Cannella et al. 

(2019), is that the order quantity is equal to three components. The first component, 𝐷̂𝑡 −



𝑅𝐶𝑡−𝑇𝑟−1 , is the difference between forecasted demand and the remanufactured products 

received. The second (i.e. 
𝑇𝐼𝑡−𝐼𝑡

𝑇𝑖
) and third components (i.e. 

𝑇𝑊𝐼𝑃𝑡−𝑊𝐼𝑃𝑡

𝑇𝑤𝑖𝑝
) are the proportional 

discrepancy between target inventory and actual inventory, as well as the proportional 

discrepancy between target WIP and actual WIP, respectively. We refer interested readers to 

Zhou et al (2017) and Sterman (1989) for a detailed justification and explanation of the 

suitability of adopting this ordering rule. In line with Dejonckheere et al. (2003; 2004), the 

safety stock inventory is set as the forecasted demand. 𝑇𝑊𝐼𝑃𝑡  is determined by forecasted 

demand during manufacturing and remanufacturing lead times (Tang and Naim, 2004): 

  𝑇𝐼𝑡 = 𝐷̂𝑡 (11) 

  𝑇𝑊𝐼𝑃𝑡 = [(1 − 𝑘) ∙ 𝑇𝑚 + 𝑘 ∙ 𝑇𝑟] ∙ 𝐷̂𝑡 (12) 

As reflected in Figure 2, the ordering rule receives negative feedback from 𝐼𝑡  and 𝑊𝐼𝑃𝑡 , 

leading to two balanced loops. APVIOBPCS generalises the well-known proportional order-

up-to policy, which simplifies to the traditional order-up-to policy when 𝑇𝑖 = 𝑇𝑤𝑖𝑝 = 1. Both 

policies are widely adopted by industry (Disney et al., 2021). For Equations 10, 11 and 12, we 

have 𝑡 ∈ {1,2,3, … , 𝑇}. According to the above settings from Equations 1 to 7, the trivial cases 

of state variables (e.g. 𝑅𝐶𝑡−𝑇𝑟−1) in Equations 10 to 12 have already been eliminated. 

3.4 Experimental design 

In this section, we explain and justify the experimental design we have developed. The 

descriptions of the performance measures, experimental factors and fixed parameters are 

presented in Table 3. 

Table 3. Experimental design 

Performance Measures Values 

𝑂𝑉𝐴: order variance amplification ratio  

𝐼𝑉𝐴: inventory variance amplification ratio  

Experimental factors  

𝑘: return rate {0, 0.4, 0.7} 

𝐶𝐼: capacity index {1.1, 2.1, 3.1} 

𝛽: volatility level of SCCC {0, 0.2, 0.4} 



𝑝: percentage of PBRC {0, 50%, 100%} 

Fixed Parameters  

𝜇: mean value of customer demand 100 

𝜎: standard deviation of customer demand 10 

𝐿𝑐: consumption lead time 32 

𝑇𝑚: supplier production lead time 8 

𝑇𝑟: remanufacturing lead time 4 

𝑇𝑖: inventory proportional controller 8 

𝑇𝑤𝑖𝑝: WIP proportional controller 8 

𝛼: exponential smoothing parameter 0.2 

First, the order variance amplification (OVA) ratio and inventory variance amplification (IVA) 

ratio are adopted as the key performance metrics of our CLSC system. These two measures can 

indicate a system bullwhip effect (Huang et al., 2021; Turrisi et al., 2013; Ponte et al., 2020b), 

which directly links the cost efficiency and operations performance of the supply chain 

(Cannella et al., 2021; Chen and Disney, 2007). Specifically, OVA is defined as the variance 

of a retailer’s order over the variance of the retailer’s demand. IVA is equal to the variance of 

the retailer’s finished good inventory over the variance of the retailer’s demand (Zhou and 

Disney, 2006; Cannella et al., 2018): 

  𝑂𝑉𝐴 =
𝑣𝑎𝑟(𝑂𝑡)

𝑣𝑎𝑟(𝐷𝑡)
 (13) 

  𝐼𝑉𝐴 =
𝑣𝑎𝑟(𝐼𝑡)

𝑣𝑎𝑟(𝐷𝑡)
 (14) 

Second, from the research question we posed in the introduction, we consider the influence of 

four experimental factors that are related to the collection process: capacity index (𝐶𝐼 ), 

volatility level of SCCC (𝛽), the percentage of PBRC (𝑝), and return rate (𝑘). For 𝐶𝐼, three 

levels are considered: {1.1, 2.1, 3.1}, which a higher 𝐶𝐼 means a looser capacity constraint 

(Dominguez et al. 2019). Setting the value of 𝐶𝐼 greater than 1 is of both theoretic and practical 

implications. Specifically, assuming 𝐶𝐼 greater than 1 can theoretically guarantees a stable 

system. Also, 𝐶𝐼 should be greater than 1 to fit the practical supply chains that the utilisation 

rate of capacity is less than 100% (Zhao et al. 2002; Lau et al., 2008). The minimum CI = 1.1 

is chosen because it is a good value to approximate the situation that the system operates closed 

to its maximum capacity (Dominguez et al., 2019). Also, by following Dominguez et al. (2019), 



maximum CI =3.1 is determined to represent the scenario where the system has sufficient spare 

capacity. We also incorporate CI=2.1 as the middle value between 1.1 and 3.1 to obtain deep 

insights about how the change of CI may impact on the system dynamics performance. For the 

return rate, we use three levels: {0, 0.4, 0.7}, following Cannella et al. (2016). Here, we 

investigate a traditional forward supply chain without collection and remanufacturing (𝑘 = 0) 

along with a CLSC with a considerable volume of returns (𝑘 = 0.4) and a highly circular CLSC 

(𝑘 = 0.7). Considering a wide parameter space allows us to study the implications of CLSCs 

with different degrees of maturity. 

For the volatility levels of SCCC, 𝛽 , three levels are adopted: {0, 0.2, 0.4}. A higher 𝛽 

represents a more volatile constraint. When 𝛽 = 0, this means that the remanufacturer has 

constant return collection capacity constraints, making our model return to the assumptions 

stated in Tombido et al. (2021). Furthermore, a stochastic collection station capacity of ±20% 

fluctuation around the mean capacity is assumed, in line with Mohammed et al. (2017) and 

Ahmadzadeh and Vahdani (2017). Note that we double the magnitude of fluctuation and adopt 

𝛽 = 0.4  to ensure that our model is more realistic in current post-pandemic business 

circumstances. The operations environment after COVID-19 has become more uncertain and 

unstable, and this means that stronger fluctuations in collection station operations are also 

likely. Finally, for the percentage of PBRC, three levels are assumed: {0%, 50%, 100%}. Here, 

𝑝 = 0 means that it is possible that customers can dispose of all uncollected returns (Vlachos 

et al., 2007; Georgiadis et al., 2006). Conversely, customers whose returns are not collected 

are all willing to wait for future collection, meaning that 𝑝 = 100% (Tombido et al., 2021). As 

both cases can be witnessed in practice, we thus adopt 𝑝 = 0 and 100%, respectively. Also, to 

capture the properties of a partial backlog in the return collection, we further assume that 𝑝 =

50%, which is in the middle point of 𝑝 = 0 and 100% to make our model fit practice. 

Finally, for simulation parameters, following Tang and Naim (2004), Zhou et al. (2017) and 

Cannella et al. (2016), 𝐿𝑐 is assumed as 32 periods, 𝑇𝑀 as eight periods, 𝑇𝑅 as four periods, and 

𝑇𝑖 and 𝑇𝑤𝑖𝑝 as eight. According to Dejonckheere et al. (2004), customer demand is assumed as 

𝐷𝑡~𝑁(100,102), which means that 𝜇 = 100 and 𝜎 = 10. For demand forecasting, 𝛼 is equal 

to 0.2, which is consistent with Syntetos et al. (2011). We perform full factorial experiments 

using computer simulation in R programming language. Because we have four experimental 

factors, and each of these has three levels, the total number of experiments is 34 = 81. To 

mitigate the effect of the randomness of our experiments, we conduct five replications for each, 

https://www.sciencedirect.com/science/article/pii/S0098135417300911#!
https://www.sciencedirect.com/science/article/pii/S0098135417300911#!


yielding 81 ∗ 5 = 405 simulation runs in total. For each run, 100,000 periods are simulated, 

with the first 20,000 as the ‘warm-up’ periods to fully eliminate possible initialisation bias. 

Analysis of variance (ANOVA) is used to analyse the simulation results (Cannella et al., 2021). 

The assumptions of homogeneity and normality are reviewed using Levene’s test and the 

Shapiro-Wilk test. No violation of either is detected, which illustrates that the ANOVA results 

are valid (Huang et al., 2021). 

4. Analysis of results 

The ANOVA results for OVA and IVA are presented in Table 4, which indicates that all 

experimental factors and their interactions significantly influence both OVA and IVA at a 99% 

confidence level. On the one hand, the four main effects of the experimental factors are all 

statistically significant. As suggested by their F-value (Cannella et al., 2018), of the four 

factors, factor 𝑘 (i.e. return rate) can have the most significant influence on OVA and IVA, 

followed by 𝛽 (i.e. volatility level of SCCC), while 𝑝 (i.e. the percentage of PBRC) has the 

least significant effect on both metrics. On the other hand, for interaction effects, on average 

the first-order interaction effects can have a more significant influence on OVA and IVA than 

higher order interactions. Among all the interaction effects, Table 4 shows that the interaction 

between 𝛽 and 𝐶𝐼 can have the most significant influence on OVA and IVA. This section will 

analyse the main and interaction effects. 

Table 4. Analysis of variance results 

 
OVA 

 
IVA 

Experimental Factor Df F-value P-value 
 

Df F-value P-value 

𝛽 2 33849 < 0.001 
 

2 427.54 < 0.001 

𝑘 2 405846 < 0.001 
 

2 7194.32 < 0.001 

𝑝 2 5485 < 0.001 
 

2 87.41 < 0.001 

𝐶𝐼 
 

2 13796 < 0.001 
 

2 112.69 < 0.001 

𝛽 ∙ 𝑘 4 14095 < 0.001 
 

4 182.41 < 0.001 

𝛽 ∙ 𝑝 4 3636 < 0.001 
 

4 40.42 < 0.001 

𝑘 ∙ 𝑝 4 2203 < 0.001 
 

4 45.91 < 0.001 

𝛽 ∙ 𝐶𝐼 4 33729 < 0.001 
 

4 380.2 < 0.001 

𝑘 ∙ 𝐶𝐼 4 5608 < 0.001 
 

4 52.98 < 0.001 

𝑝 ∙ 𝐶𝐼 4 5732 < 0.001 
 

4 118.62 < 0.001 

𝛽 ∙ 𝑘 ∙ 𝑝 8 1364 < 0.001 
 

8 16.28 < 0.001 

𝛽 ∙ 𝑘 ∙ 𝐶𝐼 8 14161 < 0.001 
 

8 179.9 < 0.001 



𝛽 ∙ 𝑝 ∙ 𝐶𝐼 8 3646 < 0.001 
 

8 31.48 < 0.001 

𝑘 ∙ 𝑝 ∙ 𝐶𝐼 8 2160 < 0.001 
 

8 44.24 < 0.001 

𝛽 ∙ 𝑘 ∙ 𝑝 ∙ 𝐶𝐼 16 1369 < 0.001 
 

16 15.52 < 0.001 

4.1 Main effects 

Figure 4 provides a general view of the effects of four experimental factors—𝐶𝐼, 𝛽 and 𝑝 and 

𝑘—on OVA and IVA. 

 

Figure 4a. Effects of 𝐶𝐼 on order and inventory variance amplification 

 

Figure 4b. Effects of 𝛽 on order and inventory variance amplification 
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Figure 4c. Effects of 𝑝 on order and inventory variance amplification

 

Figure 4d. Effects of 𝑘 on order and inventory variance amplification 

Figure 4 Caption: Main effects of the experimental factors on order and inventory 

variance amplification 

Figure 4 Alt Text: 4 graphs examining the main effects of 𝐶𝐼, 𝛽, 𝑝 and 𝑘 on order variance 

amplification ratio and inventory variance amplification ratio, respectively 
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effectively reduce the order and inventory variance amplification when the capacity constraint 

is tight. However, capacity expansion may bring a limited improvement to system dynamics 

performance if the constraint is loose. These findings contrast with those in the literature (e.g. 

Dominguez et al., 2019; Ponte et al., 2017) which find that production-based capacity 

constraints, such as remanufacturing capacity constraints, may act as a ‘filter’ to reduce order 

variance while simultaneously increasing inventory variance. This can be due to the 

phenomenon of PBRC, where the returned product can be accumulated for the next period. Our 

findings show that supply chain managers should treat production and return collection 

capacities in different ways by choosing appropriate policies (e.g. capacity expansion or 

capacity limitation) for improving system dynamics performance. 

In addition, Figure 4b presents the effect of 𝛽 on OVA and IVA. It can be observed that when 

𝛽 is low (i.e. 𝛽 = 0), the increase of 𝛽 from 0 to 0.2 results in a relatively small increase of 

OVA (1.3%) but has little effect on IVA, with a difference less than 0.2%. After that, when 𝛽 

is increased from 0.2 to 0.4, a much more significant increase in OVA and IVA can be 

identified, with the percentage of increase 16.3% and 4.1%, respectively. This means that a 

highly volatile SCCC damages the dynamic performance of CLSCs. Our findings not only 

support the literature (e.g. Hosoda et al., 2015) that suggests unstable reverse logistics and 

remanufacturing operations may have negative effects on the system, but also highlight the 

effect of volatility of SCCC on system dynamics performance and the necessity of stabilising 

return collection processes. 

Figure 4c depicts the effect of 𝑝 on OVA and IVA. It suggests that when 𝑝 is low (i.e. 𝑝 = 0), 

the increase of 𝑝 from 0 to 50% only brings a relatively small increase (1.8%) on OVA, and 

has little effect on IVA with a difference less than 0.3%. However, when 𝑝 is increased from 

50% to 100%, this can more significantly increase both measures, with a 5.5% increase in OVA 

and a 2% increase in IVA. Finally, in Figure 4d, the effects of the return rate (i.e. 𝑘) on supply 

chain bullwhip are visualised. An increase in the return rate 𝑘 leads to an increase of both OVA 

and IVA. Numerically, an increase of 𝑘 from 0 to 0.4 brings a 22.7% increase in OVA and a 

3.4% increase in IVA, while an increase of 𝑘 from 0.4 to 0.7 leads to a 50.6% increase in OVA 

and a 15.8% increase on IVA. This result is consistent with the literature. For example, in their 

first two analytical models, Ponte et al. (2020a) found that the OVA and IVA of CLSCs are 

increasing functions of 𝑘. Hosoda et al. (2015) and Hosoda and Disney (2018) also found that 

the order and inventory variance of CLSCs will be higher with an increase of average product 



return. Thus, companies may have incentives to consider not remanufacturing all returned 

products. It should be noted that our results are different from other studies that determine an 

increase of 𝑘 can decrease OVA (e.g. Tang and Naim, 2004; Zhou and Disney, 2006). An 

explanation for this may be that our CLSC system structure differs from these studies, and we 

consider PBRC and capacity stochasticity. To further discuss how 𝑘 can increase OVA and 

IVA, we conducted a thorough sensitivity analysis (Section 4.3) by adjusting the CLSCs’ 

structure parameters under the PBRC and SCCC. 

4.2 Interaction effect 

Consistent with the literature (e.g. Dominguez et al., 2019; Huang et al., 2021), we only analyse 

the first-order interaction effects in this section because these are highly interpretable and 

enable us to obtain valuable insights. Compared with previous literature (Dominguez et al., 

2019; Tombido et al., 2021; Adenso-Díaz et al., 2012), the newly explored factors here are 𝛽 

and 𝑝 . We focus on analysing those interaction effects containing 𝛽  and 𝑝 . These effects 

include 𝛽 ∙ 𝑝, 𝛽 ∙ 𝑘, 𝛽 ∙ 𝐶𝐼, 𝑝 ∙ 𝑘, and 𝑝 ∙ 𝐶𝐼. 

First, we consider the interaction effect between 𝛽 and 𝑝. In Figure 5, the 𝛽 ∙ 𝑝 interaction 

effects are visualised, with similar patterns for OVA and IVA observed. Specifically, when the 

𝛽 is small or moderate (i.e. 𝛽 = 0 or 0.2), the different 𝑝 has a similar influence on both OVA 

and IVA. However, when 𝛽 is large (i.e. 𝛽 = 0.4), increasing 𝑝 results in a significant increase 

in OVA and IVA. This means that when the SCCC is highly volatile and unstable, the increase 

of the percentage of PBRC can more strongly lead to a rise of the CLSC bullwhip effect. 

 

Figure 5 Caption: Interaction effect between 𝛽 and 𝑝 
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Figure 5 Alt Text: A graph examining the interaction effect between different levels of 𝛽 and 

𝑝 

Figure 6 visualises the interaction effects between 𝛽 and 𝑘, and between 𝛽 and 𝐶𝐼, on OVA 

and IVA. On the one hand, a higher 𝑘 can always lead to an increase in both OVA and IVA, 

especially when 𝛽 is high. Specifically, although an increase of 𝑘 can lead to an increase of 

both measures when 𝛽 is 0 and 0.2, this effect from 𝑘 looks stronger when 𝛽 is 0.4. This means 

that when the volatility of SCCC is high, the return rate plays a more important role in 

influencing supply chain dynamics than when low SCCC volatility is present. On the other 

hand, the interaction effects between 𝛽 and 𝐶𝐼 on OVA and IVA present a non-linear pattern. 

When 𝐶𝐼 is 2.1 and 3.1, 𝛽 poses little influence on both measures. However, when 𝐶𝐼 is 1.1, in 

which case the capacity is quite tight, the increase of 𝛽 can significantly increase OVA and 

IVA when 𝛽  is moderate or high (i.e. 𝛽 = 0.2 or 𝛽 = 0.4). This suggests that companies 

should focus on the effect of an increasing 𝛽 on dynamic performance reduction when the 

capacity constraint of return collection is tight. 



 

Figure 6 Caption: Interaction effect between 𝛽 and 𝑘 as well as 𝛽 and 𝐶𝐼 

Figure 6 Alt Text: A graph examining the interaction effect between different levels of 𝛽 and 

𝑘 as well as between different levels of 𝛽 and 𝐶𝐼 

Finally, in Figure 7, the interaction effects between 𝑝 and 𝑘, as well as 𝑝 and 𝐶𝐼, are presented. 

The interaction effects between 𝑝 and 𝑘  on OVA and IVA share similar patterns, and the 
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measures. When 𝐶𝐼 is low (i.e. 𝐶𝐼=1.1), however, 𝑝 has a positive influence on OVA, while an 
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increase of 𝑝 can lead to a significant increase in IVA when the value of 𝑝 changes from 0.5 to 

1. 

 

Figure 7 Caption: Interaction effects between 𝑝 and 𝑘 as well as 𝑝 and 𝐶𝐼 

Figure 7 Alt Text: A graph examining the interaction effect between different levels of 𝑝 and 

𝑘 as well as between different levels of 𝑝 and 𝐶𝐼 
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indicates that the simulation results are generally robust to the change in system parameters, 

including manufacturing ( 𝑇𝑚 ), remanufacturing lead time ( 𝑇𝑟 ), inventory proportional 

controller (𝑇𝑖) and WIP proportional controller (𝑇𝑤𝑖𝑝). However, the results may be sensitive 

to the change in the standard deviation of customer demand (𝜎) under certain situations. 

Table 5. Sensitivity analysis 

4.3.1 Sensitivity analysis of 𝝈 

Following Cannella et al. (2016), Cannella et al. (2019) and Dejonckheere et al. (2004), we 

perform the sensitivity analysis using 𝜎 = 5, 10, 15, 20. Figure 8 reports the effect of demand 

standard deviation on OVA and IVA under different 𝐶𝐼, 𝛽, 𝑝, and 𝑘. Here, the influences of 𝑘 

and 𝛽 on OVA and IVA are generally robust under different values of 𝜎, although the influence 

of 𝐶𝐼 is sensitive to a change of 𝜎. In addition, the influence of 𝑝 on both measures is robust 

under different 𝜎 except when 𝜎 is very low (i.e. 𝜎 = 5). 

 

Figure 8a. The effect of 𝐶𝐼 under different 𝝈 
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Figure 8b. The effect of 𝜷 under different 𝝈 

 

Figure 8c. The effect of 𝒑 under different 𝝈 
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Figure 8d. The effect of 𝒌 under different 𝝈 

Figure 8 Caption: Sensitivity analysis of 𝝈 

Figure 8 Alt Text: 4 graphs examining the relationships between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and order 

variance amplification ratio as well as between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and inventory variance 

amplification ratio under different demand standard deviation. 
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1.1 to 2.1, opposite effects on OVA and IVA are observed under high and low standard 
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dynamics performance because the return process is no longer significantly constrained by 

collection capacity. 

These findings extend the results of previous studies on the effects of the capacity constraints 

of return collection on CLSCs dynamic performance. For example, Dominguez et al. (2019) 

found that when 𝐶𝐼 is low, an increase of 𝐶𝐼 can lead to an increase in OVA but a decrease in 

IVA. Tombido et al. (2021) found that an increase of 𝐶𝐼 can either increase or decrease OVA 

across different types of products, but they failed to explain the reason behind this. Therefore, 
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our results provide a new angle of demand deviation to understand the effect 𝐶𝐼 on CLSC 

dynamics. Specifically, when demand deviation is low—meaning that demand is stable—

managers are encouraged to invest in return collection capacity expansion to obtain good CLSC 

dynamic performance. This aligns with the original simulation results in Section 4.1. However, 

when the standard deviation of customer demand is high, managers may consider adopting a 

regulated capacity policy (Dominguez et al., 2019) and keep capacity at a relatively low level 

to improve CLSC dynamic performance. 

Figure 8b shows the influence of 𝛽 on OVA and IVA under different 𝜎. The results indicate 

that the increase of 𝛽 has only a small effect on increasing OVA and limited effect on IVA 

when it is low (i.e. 𝛽 shifts from 0 to 0.2). However, it has a significant influence on increasing 

OVA and IVA when it becomes higher (i.e. 𝛽 shifts from 0.2 to 0.4). 

The effects of 𝑝 are visualised in Figure 8c. The increase of 𝑝 (from 0 to 50%) leads to a small 

increase in OVA when 𝜎 = 10 and 15, but has a limited effect when 𝜎 = 20. In addition, 𝑝 

has a limited effect on IVA with its change from 0 to 50%, when the demand standard deviation 

is relatively high. When 𝑝  changes from 50% to 100%, this results in a more significant 

increase in OVA and IVA than from 0 to 50% when 𝜎 = 10, 15, 20 . This indicates the 

robustness of the original simulation results under these scenarios. However, when the demand 

standard deviation is low (i.e. 𝜎 = 5), an increase of 𝑝 can lead to an increase of OVA (6.4%) 

but a decrease in IVA (1.4%) when 𝑝 changes from 0 to 50%. When 𝑝 changes from 50% to 

100% under the scenario of 𝜎 = 5, OVA and IVA both increase more significantly, which is 

similar to the pattern observed with a higher demand standard deviation. 

Interestingly, a trade-off between OVA and IVA is identified as the change of 𝑝 from 0 to 50% 

under the scenario of 𝜎 = 5 . That is, OVA is an increasing function of 𝑝 , but IVA is a 

decreasing function of 𝑝. Given that OVA reflects the capacity-related cost of production, 

while IVA reflects the cost of holding and backlogging (Cannella et al. 2021; Shaban and 

Shalaby 2018), an opposite change of OVA and IVA means that there can be an equilibrium 

point of 𝑝. This point can minimise the total cost of CLSC operations induced by order and 

inventory variance. Finally, Figure 8d indicates that OVA and IVA increase with an increase 

of 𝑘, meaning that the effects of 𝑘 are robust to the change of 𝜎. This aligns with Hosoda and 

Disney (2018) and Ponte et al. (2020a). 

4.3.2 Sensitivity analysis of 𝑻𝒓 



Following Cannella et al. (2021) and Zhou et al. (2017), we use 𝑇𝑟 = 2, 4, 6, and 8 to conduct 

sensitivity analysis. The sensitivity analysis of 𝑇𝑟 , as shown in Figure 8, indicates that the 

results obtained from the original simulation are robust. 

 

Figure 9a. The effect of 𝐶𝐼 under different 𝑻𝒓 

 

Figure 9b. The effect of 𝛽 under different 𝑻𝒓 
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Figure 9c. The effect of 𝑝 under different 𝑻𝒓 

 

Figure 9d. The effect of 𝑘 under different 𝑻𝒓 

Figure 9 Caption: Sensitivity analysis of 𝑻𝒓 

Figure 9 Alt Text: 4 graphs examining the relationships between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and order 

variance amplification ratio as well as between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and inventory variance 

amplification ratio under different remanufacturing lead time. 
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a small effect on increasing OVA and limited influence on IVA when 𝛽 shifts from 0 to 0.2, 
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while 𝛽 has a stronger influence on increasing OVA and IVA when it changes from 0.2 to 0.4 

under different values of 𝑇𝑟. Third, under any value of 𝑇𝑟, 𝑝 slightly increases OVA but has a 

very limited effect on IVA when it changes from 0 to 50% (Figure 9c). However, the increase 

of 𝑝 50% to 100% leads to significant increase of OVA and IVA. 

4.3.3 Sensitivity analysis of 𝑻𝒊 and 𝑻𝒘𝒊𝒑 

Following Ponte et al. (2020), we use 𝑇𝑖 = 𝑇𝑤𝑖𝑝 = 4, 8, 12 𝑎𝑛𝑑 16 to conduct the sensitivity 

analysis. The sensitivity analysis of 𝑇𝑖 and 𝑇𝑤𝑖𝑝 shows that the original simulation results are 

robust to different values of 𝑇𝑖 and 𝑇𝑤𝑖𝑝, except for the influence of the return rate (i.e. 𝑘) on 

IVA. 

 

Figure 10a. The effect of 𝐶𝐼 under different 𝑻𝒊 and 𝑻𝒘𝒊𝒑 
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Figure 10b. The effect of 𝛽 under different 𝑻𝒊 and 𝑻𝒘𝒊𝒑 

 

Figure 10c. The effect of 𝑝 under different 𝑻𝒊 and 𝑻𝒘𝒊𝒑 

 

Figure 10d. The effect of 𝑘 under different 𝑻𝒊 and 𝑻𝒘𝒊𝒑 

Figure 10 Caption: Sensitivity analysis of 𝑻𝒊 and 𝑻𝒘𝒊𝒑 

Figure 10 Alt Text: 4 graphs examining the relationships between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and order 

variance amplification ratio as well as between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and inventory variance 

amplification ratio under different proportional controllers. 

Specifically, Figure 10a reveals that for all values of 𝑇𝑖 and 𝑇𝑤𝑖𝑝, increasing 𝐶𝐼 can lead to a 

significant reduction of OVA and IVA only when 𝐶𝐼 is low (i.e. 𝐶𝐼 = 1.1). Figure 10b shows 

that, for the low value of 𝛽 (between 0 and 0.2), an increase in  𝛽 has limited impact on OVA 
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and IVA. However, 𝛽 has a significant influence on increasing OVA and IVA when it becomes 

higher (i.e. from 𝛽 = 0.2 to 𝛽 = 0.4). In addition, in Figure 10c, the influence of 𝑝 on both 

OVA and IVA remains robust to 𝑇𝑖 and 𝑇𝑤𝑖𝑝, since the increase of 𝑝 from 0 to 50% leads to a 

small increase in OVA but has a very limited influence on IVA. A more significant increase of 

OVA and IVA can be observed when 𝑝 shifts from 50% to 100%. Finally, Figure 10d shows 

the effects on OVA of 𝑘 is robust to the values of 𝑇𝑖 and 𝑇𝑤𝑖𝑝, but the effects of 𝑘 on IVA are 

sensitive to a change of 𝑇𝑖 and 𝑇𝑤𝑖𝑝. Specifically, for 𝑇𝑖 = 𝑇𝑤𝑖𝑝 = 8,12,16, IVA remains an 

increasing function of 𝑘. However, when the values of 𝑇𝑖 and 𝑇𝑤𝑖𝑝 are small (i.e. 𝑇𝑖 = 𝑇𝑤𝑖𝑝 =

4), 𝑘 has a non-linear effect on IVA. i.e. the IVA is a decreasing function of 𝑘 for 𝑘=0 and 0.4, 

but an increasing function of 𝑘 from 𝑘 = 0.4 to 𝑘 = 0.7.  

4.3.4 Sensitivity analysis of 𝑻𝒎 

Following Turrisi et al. (2013), Zhou et al. (2017) and Lin et al. (2021), we adopt 𝑇𝑚 = 4, 8, 12 

and 16 to perform the sensitivity analysis. The results of the sensitivity analysis of 𝑇𝑚 show 

similar patterns to the results of the sensitivity analysis of 𝑇𝑖  and 𝑇𝑤𝑖𝑝. In other words, the 

original simulation findings on the effects of 𝐶𝐼, 𝛽 and 𝑝 on the OVA and IVA are qualitatively 

held and robust under different values of 𝑇𝑚, while the effects of 𝑘 on OVA and IVA can be 

sensitive to a change of 𝑇𝑚 under certain situations. 

 

Figure 11a. The effect of 𝐶𝐼 under different 𝑻𝒎 
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Figure 11b. The effect of 𝛽 under different 𝑻𝒎 

 

Figure 11c. The effect of 𝑝 under different 𝑻𝒎 
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Figure 11d. The effect of 𝑘 under different 𝑻𝒎 

Figure 11 Caption: Sensitivity analysis of 𝑻𝒎 

Figure 11 Alt Text: 4 graphs examining the relationships between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and order 

variance amplification ratio as well as between 𝐶𝐼, 𝛽, 𝑝, 𝑘 and inventory variance 

amplification ratio under different manufacturing lead time. 

Specifically, under different values of 𝑇𝑚, Figure 11a shows that an increase of 𝐶𝐼 can always 

reduce OVA and IVA when 𝐶𝐼 is low (i.e. 𝐶𝐼 = 1.1). In Figure 11b, the increase of 𝛽 can lead 

to more significant increases in OVA and IVA when it is moderately high (i.e. 𝛽 = 0.2), no 

matter how long 𝑇𝑚  is. In Figure 11c, the influence of 𝑝 on both measures under different 

values of 𝑇𝑚 presents very similar patterns with the original simulation. These results mean 

that the effects from three independent factors—𝐶𝐼, 𝛽 and 𝑝—on OVA and IVA are robust to 

a change of 𝑇𝑚. Interestingly, the influence of 𝑘 on OVA and IVA looks sensitive to the values 

of 𝑇𝑚. Figure 11d shows that when 𝑇𝑚 is not very long, an increase of 𝑘 can always lead to an 

increase in OVA and IVA. Specifically, OVA is an increasing function of 𝑘 when 𝑇𝑚 = 4, 8 

and 12, while IVA is when 𝑇𝑚 = 4 and 8. With an increase of 𝑇𝑚, the influence of 𝑘 on OVA 

and IVA presents a non-linear trend, in which an increase of 𝑘 can cause a reduction of OVA 

and IVA when 𝑘 is small, but can lead to an increase of both measures when 𝑘 becomes larger. 

As seen in the previous literature, the non-linear effect of 𝑘 may explain why the simulation 

results in Section 4.1 differ from those of Tang and Naim (2004) and Zhou and Disney (2006) 

which find that an increase of 𝑘 reduces OVA and IVA. This is because our original model 

adopts different system structures and parameters (e.g. 𝑇𝑚), even though the negative effects 

of 𝑘 on OVA and IVA are also observed in the sensitivity analysis. 

5. Discussion 

In general, our results show that the complexity of capacitated return collection affects the 

system dynamics performance of CLSCs in several ways. In particular, our main effects 

analysis has led to the following findings: 

• According to Figure 4a, increasing 𝐶𝐼 leads to a lower OVA and IVA, and this pattern 

is especially significant when its value is low. This means that increasing the mean level 

of SCCC tends to reduce the bullwhip effect, particularly when SCCC is tight. 



• Figure 4b demonstrates that once 𝛽 is relatively high, increasing the value of 𝛽 can 

result in stronger OVA and IVA. This suggests that as SCCC becomes more volatile, 

the bullwhip effect tends to increase. In this sense, highly fluctuated SCCC not only 

results in difficulties in a production schedule, but also increases the operational costs 

of CLSCs. Nonetheless, as indicated in Figure 4b, we note that the performance of these 

systems is moderately robust to low variations of SCCC. 

• Based on Figure 4c, if 𝑝 is relatively high, increasing 𝑝 can lead to an increase in both 

OVA and IVA. The results indicate that when customers cannot return used products 

because of capacity limitations, if they become more willing to wait for the next 

opportunity to return them (i.e. the increase of the percentage of PBRC), the bullwhip 

effect tends to grow. 

• Figure 4d reports that OVA and IVA are both increasing functions of 𝑘. This means 

that when the volume of customer returns grows, the bullwhip effect of CLSCs tends 

to increase and higher levels of inventory are required to meet customer demand, 

impairing the economic performance of these systems. 

We note that the last finding aligns with some prior research, such as Hosoda et al. (2018) and 

Ponte et al. (2019). We also note that we have used ‘tend to’ in the previous relationships, as 

the impact of every single factor on each performance metric is considerably moderated by the 

other factors. This is observable in the interaction analysis, which offers further insights into 

the dynamics of CLSCs. Interestingly, we observed, from the interaction effect plots between 

𝛽 and 𝑘 in Figure 6, that the key trade-off mentioned before is particularly relevant when 

SCCC is highly volatile because this exacerbates the negative effects of increasing the return 

rate. In addition, our results of the interaction effects of 𝛽 and 𝐶𝐼 in Figure 6 reveal that the 

influence of the volatility of SCCC on the dynamics of CLSCs is only strong when SCCC is 

tightly constrained. Indeed, it is interesting to highlight that the above interaction plots between 

𝛽 and 𝐶𝐼 also show when the volatility is very small, reducing the (mean) capacity of SCCC 

may enhance the dynamics of CLSCs. That is, the effect of SCCC’s mean capacity is different 

depending on the level of volatility. 

In addition, the interaction analysis in Figure 5 also reveals that the effect of the volatility of 

SCCC in the collection system is more significant when the percentage of PBRC is large. In 

this sense, volatility has a more significant effect on performance metrics (i.e. OVA and IVA) 

when all customers are willing to wait until they can return used products. Finally, for the 



interaction effects between 𝑝 and 𝑘  in Figure 7, a high percentage of PBRC amplifies the 

negative effect of the return rate on CLSC performance. Similarly, the interaction effects 

between 𝑝 and 𝐶𝐼 in Figure 7 depicts a high percentage of PBRC amplifies the negative effects 

of reducing the capacity level of SCCC. In this sense, and considering that an increased 

percentage of PBRC (i) reduces the performance of CLSCs, and (ii) leads to a higher level of 

circularity and thus contributes to the reduction of raw material use and waste, a second trade-

off emerges between the sustainability and economics of CLSCs. 

The sensitivity analysis showed that our results are robust to changes in the system parameters. 

Also, some new findings have also been identified. First, as the orange lines in both graphs of 

Figure 8a show, if the variability of demand is high, the increase of the mean capacity level of 

SCCC can lead to a reduction in CLSC performance (i.e. higher OVA and IVA). This influence 

of capacity is the opposite of that for stable demand, which is indicated by the blue and black 

lines in the two graphs of Figure 8a. Second, we observed that, while both metrics (i.e. OVA 

and IVA) are often minimised when the return rate is 0, there is a chance that they can be 

minimised for intermediate values of the return rate when manufacturing lead times are very 

long (i.e. the oranges lines in two graphs of Figure 11d). Third, we found that varying some 

factors has opposite effects on both performance metrics, such as with the increasing return 

rate from 0 to 0.4 when the proportional controllers are low (i.e. the blue lines in two graphs in 

Figure 10d). Given that OVA is representative of capacity-related production costs and IVA is 

indicative of inventory-related costs (Cannella et al., 2021), there should be equilibrium points 

that minimise the total costs induced by order and inventory variances. 

From our main findings, we derive three key managerial implications: 

• Companies can enhance the operational performance of their CLSCs by simultaneously 

reducing the mean and volatility of the capacity of a return collection system. This 

means that managers should first invest in stabilising their collection capacity. For 

example, they can build flexible delivery and warehousing practices to hedge disruption 

risks. Alternatively, they may consider outsourcing the collection process to a third 

party with a stable capacity, if their own capacity is highly volatile. In this sense, if an 

organisation can significantly reduce the risks of a collection system, it may be 

reasonable to establish a tight collection capacity (as long as it can cope with the mean 

return rate). This may be done by reducing the opening hours of collection stations. 

However, for exceptional scenario such as unavoidable disruptions risks, it may be 



reasonable to increase collection capacity by, for instance, increasing the number of 

collection centres, because this ‘safety capacity’ protects the CLSC against uncertainty 

and improves its operational performance. 

• Establishing the right capacity for a collection system requires a solid understanding 

of not only the willingness of customers to return the product, but also the nature of 

customer demand. Specifically, the variability of customer demand plays a key role in 

determining the appropriate capacity level of a collection system. If demand is 

relatively stable, companies should establish a higher collection capacity to both reduce 

the bullwhip effect and improve customer satisfaction. In contrast, companies would 

benefit from using a lower collection capacity when demand variability is high. In this 

way, analysing the trend and seasonality of demand time series is key to improving the 

effect of a collection system on the economic performance of CLSCs. 

• Constraints on the collection process uncover new trade-offs between the 

environmental sustainability and economic performance of CLSCs. Previous studies 

(e.g. Hosoda and Disney, 2018; Ponte et al., 2019) have already shown that an increase 

in the return rate often provokes a decrease in the operational performance of CLSCs, 

the first key trade-off discussed earlier. In addition, our results reveal that the dynamics 

of CLSCs can be worse when the percentage of PBRC increases, i.e. more customers 

are willing to wait when they cannot return the used products. This responsible 

customer behaviour reduces the environmental effects of economic activities, but 

makes CLSCs more difficult to manage. Policymakers need to identify these trade-offs 

carefully because they slow down the transition towards a circular economy. Given that 

increasing the circularity of CLSCs becomes costly to many organisations, appropriate 

incentives should be established. 

The model we have developed is highly motivated by CLSC operations under the COVID-19 

pandemic, given that restrictions and lockdown policies led to continuous fluctuations in the 

return collection capacities of CLSCs (Staub, 2021). However, the results and implications are 

also applicable to other capacity constraint scenarios. For example, the result can be applied to 

other constraint scenarios where capacity can be temporarily lost because of natural disasters 

(Jabbarzadeh et al., 2018), transportation disruptions (Wilson, 2007) or strikes. Capacity can 

be boosted as a result of an effective schedule of activities related to return collection, an 

appropriate arrangement of workforces in collection stations, as well as efficient transportation. 

This means that, as long as the CLSC faces an SCCC, managers can benefit from our results 



related to the effect of the collection system when they make decisions about return collection 

capacity investment, capacity stabilisation or customer return policy implementation. 

6. Conclusion 

The collection of used products is an integral part of CLSCs. In practice, it is a complex process 

that is significantly affected by the location and size of collection centres. However, collection 

has frequently been oversimplified in the academic literature, and its effect on the dynamic 

behaviour of CLSCs is not yet well understood. From this perspective, this paper has addressed 

the following research question: How do stochastic capacity constraint of a collection station 

(SCCC) and its associated PBRC influence CLSC bullwhip effect? Our study contributes to the 

supply chain dynamics literature by providing novel findings that enable a deep understanding 

of the implications of collection.  

Through modelling and simulation, together with the design of our experiments, we have seen 

that the SCCC has an enormous effect on the efficiency and profitability of CLSCs. Specifically, 

the operational performance of these systems is considerably influenced by: (1) the percentage 

of products that are collected after their use; (2) the overall mean capacity of SCCC; (3) the 

volatility of SCCC; and (4) the attitude of customers when they cannot return used products 

because of capacity limitations. Moreover, the effect of the different factors is not simple. 

Instead, we have perceived complex interplays between them. 

In this sense, a looser SCCC tends to reduce the bullwhip effect and improve customer service 

in relation to CLSCs. However, the volatility of SCCC significantly moderates this relationship. 

Indeed, reducing collection capacity may yield operational benefits for CLSCs when return 

collection processes function in highly stable environments. Also, the effect of the collection 

capacity depends on the attitude of customers under the PBRC phenomenon. In particular, the 

effect of SCCC is small when most customers dispose of goods that cannot be returned, and 

this effect increases as customers become more willing to wait for the next opportunity to return 

them. As the result, a high percentage of PBRC may induce a higher bullwhip effect and the 

overall level of operational cost in the CLSC. 

Based on the result, this study can guide managers’ efforts to craft effective capacity 

management strategies for these systems. First, they should develop initiatives to stabilise 

collection capacity because its volatility greatly diminishes CLSC efficiency. However, this 

volatility cannot always be notably reduced, particularly in those CLSCs that are more 



vulnerable to disruptions. Therefore, managers should analyse the disruption risks of their 

CLSCs, which will help them understand whether they should tailor policies for expanding or 

limiting the capacity of their collection centres. This study has also identified important trade-

offs between sustainability and CLSC performance. This finding may encourage managers to 

establish a target return rate, given that a high volume of returns may deteriorate the dynamics 

of CLSCs because of uncertainty in the reverse flow of materials. 

Taking this into consideration, this study also has important implications for policymakers. 

Because high volumes of returns and tight capacity constraints in the collection of used 

products may greatly reduce the operational performance of CLSCs, decision-making bodies 

must establish the right incentives for organisations to increase their circularity levels. This 

would speed up the much-desired transition towards a circular economy. One way to establish 

such incentives is based on providing stronger financial support for companies that are involved 

in reverse logistics activities. For instance, tax advantages would help them hedge the potential 

negative effects of the reverse flow of materials. Nonetheless, it is also essential to facilitate 

the implementation of efficient and resilient CLSCs, which places a premium on research. In 

this sense, policymakers should also allow for research of sufficient scale and depth as a key 

accelerator of the circular economy. 

There are several limitations and corresponding future research directions. First, our results 

have been obtained by analysing a CLSC based on a supplier of new goods and a 

remanufacturer of used products. It would be interesting to study the implications of collection 

in longer and wider supply chain structures (e.g. Dominguez et al., 2021). Second, we have 

assumed that the return rate and consumption lead time are fixed. While these assumptions may 

hold in certain industrial settings, the impact of stochastic return rates and lead times on 

bullwhip and customer service can be further explored. Furthermore, future studies may 

explore in more detail (e.g. optimization) about the implications of collection on the well-

known equilibrium between OVA and IVA in CLSCs. Finally, advance analytical approaches 

such as non-linear control theory can be applied to gain better understanding of the variable 

relationship based on our model. 
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