
ar
X

iv
:2

20
7.

05
30

5v
1

 [
m

at
h.

O
C

]
 1

2
Ju

l 2
02

2

ORIGINAL ARTICLE

Improved formulations of the joint order batching and picker routing

problem

Kai Zhanga and Chuanhou Gaoa

aSchool of Mathematical Sciences, Zhejiang University, Hangzhou, China

ARTICLE HISTORY

Compiled July 13, 2022

ABSTRACT

Order picking is the process of retrieving ordered products from storage locations in
warehouses. In picker-to-parts order picking systems, two or more customer orders
may be grouped and assigned to a single picker. Then routing decision regarding
the visiting sequence of items during a picking tour must be made. (J.Won and
S.Olafsson 2005) found that solving the integrated problem of batching and routing
enables warehouse managers to organize order picking operations more efficiently
compared with solving the two problems separately and sequentially. We therefore
investigate the mathematical programming formulation of this integrated problem.

We present several improved formulations for the problem based on the findings
of (Valle, Beasley, and da Cunha 2017), that can significantly improve computational
results. More specifically, we reconstruct the connectivity constraints and generate
new cutting planes in our branch-and-cut framework. We also discuss some problem
properties by studying the structure of the graphical representation, and we present
two types of additional constraints. We also consider the no-reversal case of this
problem. We present efficient formulations by building different auxiliary graphs.
Finally, we present computational results for publicly available test problems for
single-block and multiple-block warehouse configurations.

KEYWORDS

Integer programming; inventory management; order batching; order picking; picker
routing

1. Introduction

In modern business environments, warehousing and relative order picking processes
are essential components of any supply chain (Manzini 2012). Order picking is the
process of retrieving ordered products from storage locations in warehouses, and it
typically accounts for 55% of the total warehouse operating expense and has long been
recognized as the most labor-intensive and costly activity for warehouses. Therefore,
the order picking process should be robustly designed and optimally controlled to
handle requirements efficiently (de Koster, Le-Duc, and Roodbergen 2007; Tompkins
et al. 2010).

The order picking process should be investigated within a system context. In picker-
to-parts systems, pickers walk or ride through the picking area to collect the requested
items. In parts-to-picker systems, automated cranes move along the aisle, retrieve unit

CONTACT C.H. Gao. Author. Email: gaochou@zju.edu.cn

http://arxiv.org/abs/2207.05305v1

loads, and bring them to a pick position. This study focuses on order picking opera-
tions in picker-to-parts systems, which still account for the large majority of all order
picking systems (de Koster, Le-Duc, and Roodbergen 2007; Marchet, Melacini, and
Perotti 2015; van Gils et al. 2018).

According to (van Gils et al. 2018), decisions to manage order picking in picker-to-
parts systems can be classified into strategic, tactical or operational decisions. In this
paper we focus on the operational planning problems that typically concern daily oper-
ations. Operational planning problems include (1) how batches of orders are generated
(batching), (2) how each picker is routed (routing), (3) how the daily required number
of order pickers is determined (workforce level), (4) how a given workforce is allocated
to the picking and sorting operations (workforce allocation), and (5) how the picking
orders are sequenced (job assignment). Some researchers focus on individual planning
problems, have developed many efficient algorithms, and have successfully applied the-
ses algorithms to suboptimal problems. However, simultaneously optimizing multiple
order picking planning problems can result in even more efficient picking operations.
(van Gils et al. 2018) presented a comprehensive review of research on combination
problems in order picking systems. According to their study, the joint order batching
and picker routing problem (JOBPRP), which is also the focus of attention in this
study, has received more attention than other combination problems (for example,
the integrated problem of order batching and job assignment). One of the first works
that considers this integrated problem was (J.Won and S.Olafsson 2005). The crucial
observation from their simulation experiment is that a simultaneous solution yields
significantly better performance benefits than a sequential solution. More recently,
(Scholz and Wäscher 2017) integrated different routing algorithms into a heuristic
approach for the batching problem. Their numerical experiments demonstrated the
benefits from solving the joint problem.

We now introduce the JOBPRP from practical application viewpoints. In picker-
to-parts systems, an order picker is guided by a pick list that comprises one or more
customer orders on his/her picking tour. A customer order typically requires a list of
distinct products, and customer orders can be converted into a pick list until the ca-
pacity of the picking device is exhausted. To minimize the total travel distance, order
pickers have to decide how the orders should be assigned to picking tours, which give
rise to the so-called order batching problem. For each picking tour, the shortest path
to visit a set of picking locations should be determined, which give rise to the so-called
picker routing problem. Those two problems are thought to be strongly linked, because
solving the routing problem is dependent on the solution of the batching problem. Ob-
viously, solving the integrated problem, the JOBPRP, can improve the efficiency of
order pickers.

Although there are many heuristic-solving frameworks, very few exact algorithms
for the JOBPRP have been proposed in the literature. (Valle, Beasley, and da Cunha
2017) proposed a novel exact algorithm that incorporates a non-compact integer pro-
gramming formulation and a branch-and-cut procedure. The original model proposed
by (Valle, Beasley, and Cunha 2016) can be significantly improved by adding valid
inequalities based on the standard layout of warehouses. Inspired by (Valle, Beasley,
and da Cunha 2017), we analyze existing models for the JOBPRP and propose modi-
fied solution approaches to improve computational performance. The following are the
main contributions of our study:

(1) We reconstruct the connectivity constraints by making full use of the properties
of a rectangular warehouse with multiple blocks. The improved formulations achieve
computational efficiency.

2

(2) We also discuss some problem properties by studying the structure of a graphical
representation, and we present two types of additional constraints.

(3) We also consider the no-reversal JOBPRP. We propose a traveling salesman
problem (TSP) formulation for single-block and 2-block warehouses by introducing
two auxiliary graphs.

(4) We conduct a series of numerical experiments to evaluate our formulations. The
test instances used here are generated using the method provided by (Valle, Beasley,
and Cunha 2016).

The remainder of this paper is organized as follows. Section 2 comprises a literature
review regarding the JOBPRP and some closely related problems. Section 3 briefly
introduces the JOBPRP and presents a graph-based formulation for this problem.
Section 4 presents two improved formulations, and Section 5 introduces two types of
additional constraints to improve solution quality. Section 6 discusses the no-reversal
JOBPRP in detail. Section 7 reports on some computational results and observations,
and Section 8 concludes the study.

2. Literature review

Picker routing and order batching problems have received considerable interest since
the 1980s (Elsayed 1981; Vannelli and Kumar 1986; Ratliff and Rosenthal 1983;
Cornuéjols, Fonlupt, and Naddef 1985). In this section, we provide a summary of
some previous studies on order batching and picker routing problems.

2.1. Picker routing problem

This problem can be solved to optimality using any exact approach to the TSP. How-
ever, more efficient solution approaches can be obtained using a particular warehouse
layout. The first attempt to provide a problem-specific exact approach to picker rout-
ing problems was proposed by (Ratliff and Rosenthal 1983). They constructed a sparse
graph representation for a rectangular warehouse containing a single block and pre-
sented a polynomial-time dynamic programming algorithm. Researchers then devel-
oped two generalized algorithms based on the work of (Ratliff and Rosenthal 1983).
(Cornuéjols, Fonlupt, and Naddef 1985) interpreted the routing problem as a Steiner
travelling salesman problem (STSP) and extended the Ratliff-Rosenthal algorithm to
all series-parallel graphs; (Roodbergen and Koster 2001) modified the Ratliff-Rosen-
thal algorithm and introduced routing heuristics for 2-block and more complex layouts.
Recently, (Scholz et al. 2016) proposed an exact approach regarding the unique struc-
ture of a single-block warehouse. They introduced integer programming whose size is
independent of the number of picking locations and demonstrated that this formulation
can significantly improve computational performance.

Because the TSP is NP-hard, optimal routing is often regarded as difficult to de-
termine. Many heuristics have been proposed for the problem from a practical stand-
point based on different routing strategies, including S-shape (Goetschalckx and Ratliff
1988), midpoint(Hall 1993), largest gap (Hall 1993), combined (Petersen 1997) and
aisle-by-aisle (Vaughan 1999). TSP heuristics can also be used to solve the picker
routing problem. (Theys et al. 2010) discovered that the Lin–Kernighan–Helsgaun
heuristic (Helsgaun 2000) outperforms the S-shape heuristic when there are two or
more blocks in the warehouse. (Cambazard and Catusse 2018) developed a dynamic
programming approach for a rectilinear TSP, and the algorithm is also applicable to

3

the picker routing problem. However, the complexity grows exponentially with the
number of blocks. Other heuristics are created from metaheuristics. For example, (Ho
and Tseng 2006b) proposed a simulating annealing heuristic which is integrated with
the largest gap routing strategy. The reader interested in the picker routing problem
may refer to (Masae, Glock, and Grosse 2020) for a comprehensive review.

2.2. Order batching problem

The order batching problem can be formally defined as follows: How, given the capac-
ity of the picking device and the adopted routing strategy, can a given set of customer
orders with known storage locations be grouped into picking orders such that the total
lengths of all picker tours is minimized? (Wäscher 2004; Manzini 2012)

Because the order batching problem is known to be NP-hard (Gademann, Berg,
and Hoff 2001), exact approaches are typically impractical for instances with rela-
tively large sizes. As a result, many scholars consider heuristics and metaheuristics.
According to (Manzini 2012), batching heuristics can be distinguished into savings,
seed, or priority rule-based algorithms as well as other algorithms. Savings algorithms
are based on the algorithm of (Clarke and Wright 1964) for the vehicle routing prob-
lem. The initial version of the savings algorithm for the batching problem can be
described as follows: savings are computed in terms of reducing the travel distance by
collecting items for two customer orders on a single picking tour instead of collecting
them separately, and then, orders are sequentially assigned to batches based on the
savings (e.g., see (Elsayed and Unal 1989; Bozer and Kile 2008)). Meanwhile, the seed
algorithm introduced by (Elsayed 1981) generates batches by means of a two-phase
procedure: a seed order is first selected and added to a new batch according to a seed
selection rule, and then, unassigned orders are added to this batch according to an
order addition rule (e.g., see (Gibson and Sharp 1992; ROSENWEIN 1996; Ho and
Tseng 2006a)). The priority rule-based algorithm also consists of a two-step proce-
dure: first, priorities are assigned to the customer orders, and then, customer orders
are assigned successively to batches in the sequence given by the priorities (e.g., see
(Pan and Liu 1995; Ruben and Jacobs 1999)). There are also some metaheuristics for
the order batching problem. The interested reader may refer to (Manzini 2012; van
Gils et al. 2018; Cergibozan and Taşan 2019) for further details.

2.3. Joint order batching and picker routing problem

Considering the strong relationship between batching and routing, solving these plan-
ning problems in a detailed manner would be beneficial. In recent decades, many effi-
cient heuristic and metaheuristic methods have been proposed to solve the JOBPRP.

(J.Won and S.Olafsson 2005) was one of the first to formulate the batching and
routing problem jointly as a combinatorial optimization problem. Their proposed two-
step heuristic first constructs batches sequentially and then solves the subsequent
routing problem. (Hong, Johnson, and Peters 2012) presented a route-selection based
formulation that enumerates all possible routes and compared their heuristic solution
with a lower bound developed by a relaxation model. (Kulak, Şahin, and Taner 2012)
proposed a tabu search algorithm integrated with a clustering algorithm that gener-
ates an initial solution. They also proposed two constructive heuristics to solve the
picker routing problem. (Grosse, Glock, and Ballester-Ripoll 2014) developed a sim-
ulated annealing algorithm to determine order batches and picker routes and applied

4

four different heuristics to form initial order batches. (Cheng et al. 2015) proposed
a hybrid approach consisting of a particle swarm optimization for batching, whereas
(Li, Huang, and Dai 2017) proposed a constructive heuristic based on similarity co-
efficient for batching; both used an ant colony optimization algorithm in the routing
procedure. (Scholz and Wäscher 2017) introduced an iterated local search algorithm,
which allows for integrating different routing algorithms. (Arbex Valle and Beasley
2020) presented an approximate formulation for this problem. They also proposed a
partial integer optimization heuristic based on their formulation. (Briant et al. 2020)
proposed a heuristic based on column generation to deal with an exponential linear
programming formulation of the JOBPRP. (Aerts, Cornelissens, and Sörensen 2021)
modeled the JOBPRP as a clustered vehicle routing problem and applied a two-level
variable neighborhood search algorithm developed by (Defryn and Sörensen 2017).
(Attari et al. 2021) presented a model of JOBRPR under uncertainty; metaheuristics,
such as genetic, particle swarm optimization, and artificial honeybee colony algorithms
are used as approaches to solve the formulated model.

To enhance efficiency and customer service, some researchers also take the due dates
of the customer orders into account, which initiates the picking sequencing problem.
(Tsai, Liou, and Huang 2008) considered earliness and tardiness penalties and sug-
gested a genetic algorithm under the assumption that splitting customer orders is
allowed. (Chen et al. 2015) developed a genetic algorithm for the order batching and
sequencing processes. For the routing decision for each batch, they adopted an ant
colony algorithm. (Scholz, Schubert, and Wäscher 2017) introduced a mixed-integer
linear formulation whose size increases polynomially with the number of orders. They
also proposed a variable neighborhood descent algorithm that could work with very
large problems. Meanwhile, (van Gils et al. 2019) proposed an iterated local search
algorithm to solve the problem effectively and efficiently. They also showed the substan-
tial performance benefits gained from integrating planning problems using a real-life
case study.

Apart from these heuristic and metaheuristic methods, only a few exact approaches
have been proposed in the literature. (Valle, Beasley, and Cunha 2016) presented
three basic formulations of the JOBPRP; one of them involves exponentially many
constraints and the remaining two are based on network flows. They used the branch-
and-cut algorithm presented by (Padberg and Rinaldi 1991) for the first formula-
tion. A JOBPRP-test instance generator based on publicly available real-world data
was also introduced. The non-compact formulations proposed by (Valle, Beasley, and
Cunha 2016) was improved by (Valle, Beasley, and da Cunha 2017). They introduced
a significant number of valid inequalities to strengthen the linear relaxation of their
formulation.

3. Problem description and basic formulation

In this section, we provide more background information regarding the warehouse
layout. We then introduce a basic formulation of the JOBPRP.

3.1. Background information

We consider a rectangular warehouse with a manual picker-to-parts order-picking sys-
tem. The warehouse is composed of one origin, several vertical picking aisles, and
several horizontal cross-aisles. We call the part between two adjacent cross-aisles a

5

Figure 1. Example of a 2-block warehouse layout

block, and the section of a picking aisle within a block a subaisle. If a warehouse has
q blocks, any picking aisle in the warehouse can be partitioned into q subaisles. We
illustrate these concepts in Figure 1.

Each vertical aisle contains a set of picking locations on both sides and a picking
location contains several storage slots. We assume that each slot holds one type of
product and each product type is assigned to only one slot. In addition, products
are divided into several classes, and products belonging to the same class are placed
in consecutive slots. As a result, most items in a subaisle belong to the same class.
The adopted storage assignment policy is actually a variant of the class-based storage
policy (Manzini 2012).

Before a shift starts, the number of order pickers available for carrying out the pick-
ing operations has been determined. Pickers start at the origin, visit a set of picking
locations to retrieve the order products and return to the origin. During a picking
tour, a picker is equipped with a trolley that accommodates a limited number of bas-
kets. The necessary number of baskets to carry each customer order is assumed to be
known. A customer order typically requires a list of distinct products, and we assume
that a customer order cannot be split over various batches. The reason is that mixing
and dividing orders can result in an unacceptable consolidation effort (Valle, Beasley,
and Cunha 2016; Scholz and Wäscher 2017).

3.2. Model formulation

The basic formulation of the JOBPRP that we discuss in this section is based on the
STSP. Thus we first introduce a formulation for the STSP in the context of the sin-
gle-picker routing problem. Then, we provide the basic formulation for the JOBPRP.

Let VL denote a set of picking locations, each of which is on a subaisle and contains
one or more requested products. Let VI denote a set of endpoints of each subaisle, and
we call these points ’artificial locations’. For simplicity, we assume that the origin s is
located at the top left corner of the warehouse, and it just overlaps the first artificial

6

Figure 2. The related graph optimization problem

location. We define a sparse graph using the vertex set V and the edge set E. Edges in
E connect the following pair of vertices: (1) two neighboring locations within a picking
aisle and (2) two neighboring artificial locations within a cross-aisle. The length de of
any edge e ∈ E is equal to the direct distance between two locations. The graphical
representation of a warehouse is shown in Figure 2.

Now we present a non-compact formulation, inspired by the work of (Letchford,
Nasiri, and Theis 2013), for the single-picker routing problem. Before a picker enters
the warehouse, the graphical representation G = (V,E) is already known. The task
is to find a closed walk by which every v ∈ VL is visited. Note that the walk need
not be Hamiltonian or Euler circuits, that is, a vertex or an edge can be visited more
than once by the walk. Let [u, v] denote the unordered pair of location u and location
v, i.e., [u, v] is the edge connecting u and v. For any node set S ⊂ V , δ(S) denotes
the set of edges with exactly one end-node inside S. For a single vertex v ∈ V , let
δ(v) = δ({v}). We introduce a nonnegative decision variable xe ∈ Z to represent the
number of times edge e is traversed. We also use a binary decision variable yv to
indicate whether vertex v ∈ V \{s} is visited by the walk. The single-picker routing
problem can be easily described by the following program.

min
∑

e∈E

dexe (1)

s.t.
∑

e∈δ(v)

xe ≥ 1, ∀v ∈ {s} ∪ VL (2)

yv ≥ min{xe, 1}, ∀v ∈ V \{s}, e ∈ δ(v) (3)
∑

e∈δ(S)

xe ≥ yv, ∀v ∈ S, S ⊂ V \{s}, |S| ≥ 2 (4)

∑

e∈δ(v)

xe is an even integer , ∀v ∈ V (5)

xe ∈ {0, 1, 2, ...}, ∀e ∈ E (6)

yv ∈ {0, 1}, ∀v ∈ V (7)

7

Constraints (2) ensure that each picking location is visited by the picker. Con-
straints (3) define the y variables for each vertex. Constraints (4) guarantee that the
multigraph induced by the walk is connected. In the TSP, constraints (4) are also
known as subtour elimination constraints. Constraints (3), (4), and (5) ensure that
Euler circuit exists in the multigraph induced by the walk.

The abovementioned formulation is treated as a starting point for the JOBPRP.
The basic formulation for the JOBPRP is constructed by including the assignment
of orders to batches as additional constraints. We start by creating a directed graph

G̃ = (V, Ẽ) from graph G = (V,E): any edge e = [u, v] ∈ E is replaced with two di-

rected arcs e1 = (u, v) and e2 = (v, u). A formulation based on graph G̃ for the sin-
gle-picker routing problem can be formulated similarly. Constraints (5) will then be
replaced by flow constraints, which are known to be totally unimodular constraints.
Furthermore, a very useful theorem proposed in (Valle, Beasley, and Cunha 2016) is
as follows.

Theorem 3.1. Each directed arc in Ẽ can only be traversed once by any optimal walk.

When multiple pickers and pick capacity are considered, we should assign orders
to pickers. Assume that a picker has a capacity of B units, the set of all orders is
denoted by O, and any order o ∈ O has a capacity of bo units. Two or more customer
orders can be batched together if the total capacity of customer orders assigned to a
picker does not exceed its available capacity. After the order batching process, O will
be partitioned into several subsets, and each subset of orders will be assigned to one
picker. Each order o contains a subset of picking locations Lo ⊂ V . Let Ot ⊂ O denote
the subset of orders assigned to picker t, then picker t must visit all nodes in ∪o∈Ot

Lo

to collect a set of items for orders in Ot.
Now we present a basic formulation of the JOBPRP based on formulation (1)-(7)

and Theorem 3.1. For any node set S ⊂ V , let δ+(S) = {(u, v) ∈ Ẽ : u ∈ S, v /∈ S} and
δ−(S) = {(u, v) ∈ Ẽ : u /∈ S, v ∈ S}. For a single vertex v ∈ V , let δ+(v) = δ+({v}) and
δ−(v) = δ−({v}). Let T be the number of available pickers, and let T = {1, 2, ..., T}.
We introduce the binary variables xtuv to indicate whether arc (u, v) is traversed by
picker t, ytv to indicate whether vertex v is visited by picker t and zot to indicate

8

whether picker t picks order o. The basic formulation is formally given as follows.

min

T∑

t=1

∑

(u,v)∈Ẽ

duvxtuv (8)

s.t.
∑

(s,v)∈δ+(s)

xtsv ≥ 1, ∀t ∈ T (9)

∑

(u,v)∈δ+(u)

xtuv ≥ zot, ∀t ∈ T , o ∈ O,u ∈ Lo (10)

ytu ≥ xtuv , ∀t ∈ T , u ∈ V \{s}, (u, v) ∈ δ+(u) (11)
∑

(u,v)∈δ+(S)

xtuv ≥ ytu0
, ∀t ∈ T , S ⊂ V \{s}, |S| ≥ 2, u0 ∈ S

(12)
∑

(v,u)∈δ+(v)

xtvu =
∑

(u,v)∈δ−(v)

xtuv, ∀t ∈ T , v ∈ V (13)

∑

t∈T

zot = 1, ∀o ∈ O (14)

∑

o∈O

bozot ≤ B, ∀t ∈ T (15)

xtuv ∈ {0, 1}, ∀t ∈ T , (u, v) ∈ Ẽ (16)

ytv ∈ {0, 1}, ∀t ∈ T , v ∈ V (17)

zot ∈ {0, 1}, ∀t ∈ T , o ∈ O (18)

Constraints (9)-(13) are similar to constraints (2)-(5); each of them describes a
picker routing process. Constraints (14) ensure that each order is assigned to precisely
one picker. Constraints (15) are capacity constraints. Constraints (14)-(15) describe
the order batching process. The feasible region of the basic formulation is denoted by
Pbasic, i.e., Pbasic = {(x, y, z) : constraints (9) − (18)}. This formulations is non-com-
pact because it involves exponentially many constraints (12) to enforce connectivity.
A branch-and-cut algorithm that separates these constraints should be implemented
when this formulation is adopted.

The basic formulation is a slightly different version of the original formulation (Valle,
Beasley, and Cunha 2016). The original formulation assumes that it is unnecessary for
a picker to depart from the origin when no order is assigned to it, but constraints (9)
force all pickers to depart from the origin. The main reasons for this assumption are
the following:

(1) We do not tackle the workforce level planning problem in this paper, and this
assumption helps in simplifying the formulation.

(2) This is not a critical assumption because constraints (9) can easily be modified
to deal with the previous assumption.

In the rest of the paper, we simply let |T | be the necessary number of pickers to carry
all products, which can be obtained by solving a bin-packing problem.

9

4. Improved formulations

In this section, we propose two improved formulations PG and PF for the JOBPRP
by reformulating the connectivity constraints (12). The key idea of reformulation is
to enforce connectivity using the subaisle cuts (Valle, Beasley, and da Cunha 2017).
To improve readability, we present two tables that summarize the most important
notations and formulations in the appendix.

We first introduce the subaisle cuts and discuss the relationships between these
cuts and the basic formulation. Let the number of subaisles be Wsub. Subaisles are
indexed by the elements in set [Wsub] = {1, 2, ...,Wsub}. Let the set of picking locations
within subaisle i be Vsub(i). The northern artificial location is denoted by f(i) and the
southern artificial location is denoted by l(i). For any picking location v ∈ Vsub(i), the
adjacent northern location is denoted by n(v) and the adjacent southern location is
denoted by s(v). s(f(i)) and n(l(i)) are defined similarly. By using auxiliary binary
variables α and β, we consider the following feasible region Psub containing only sub-
aisle cuts:

αtv ≥ αts(v), ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i)\{n(l(i))} (19)

xtn(v)v ≥ αtv, ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i) (20)

βtv ≥ βtn(v), ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i)\{s(f(i))} (21)

xts(v)v ≥ βtv , ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i) (22)

αtv + βtv ≥ zot, ∀t ∈ T , o ∈ O, v ∈ Lo (23)

αtv ∈ {0, 1}, ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i) (24)

βtv ∈ {0, 1}, ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i) (25)

Those additional constraints work as follows: we suppose that there exists a feasible
solution (x∗, α∗, β∗) ∈ Psub. For any picking location v in subaisle i, if α∗

tv = 1 then
there exists a straight path connecting f(i) and v in walk t, and the same holds when
β∗
tv = 1. If walk t pass through picking location v, then there must exist a path con-

necting v and the northern or southern artificial location. Therefore, constraints (23)
are valid constraints. Remark that αtv + βtv may not be 2 when there exist two paths
in walk t, one of them connects picking location v and the northern artificial location,
and others connect v and the southern artificial location. In other words, there is no
surjection from Pbasic to PA = {(x, y, z, α, β) : (x, y, z) ∈ Pbasic, (x, z, α, β) ∈ Psub}.

Subaisle cuts can be regarded as a class of connectivity constraints Therefore, those
cuts can partially replace constraints (12). To illustrate the relationship between Psub

and constraints (12), consider the following example.

Example 4.1. Consider the warehouse illustrated in Figure 3. Suppose that there is
an order o with Lo = {v22, v31}. We provide feasible solutions for various relaxations
of PA in Figure 3:

(1) When we remove all connectivity constraints, a feasible solution could only con-
sist of several cycles.

(2) When we remove constraints (12), v22 and v31 are forced to be connected with
neighboring artificial locations.

(3) When all connectivity constraints are used, we are able to generate a Eulerian
tour from a feasible solution.

10

(a) warehouse layout (b) PA without constraints (12) and Psub

(c) PA without constraints (12) (d) PA

Figure 3. Warehouse layout and feasible solutions for different formulations

11

It is possible to observe that we only need to focus on the connectivity of the graph
induced by artificial locations when subaisle cuts have been added to the formula-
tion (Figure 3(c)). In the remainder of this section, we reconstruct constraints (12)
using this observation. For any artificial location v, we let QW (v) be the adjacent
artificial location u lying to the west of v; we let QE(v) be the adjacent artificial
location u lying to the east of v. For any subaisle i, we let QN (l(i)) = f(i) and
QS(f(i)) = l(i). We illustrate all of these concepts in the reduced graph in Figure 4.

Let Ẽ′ be the arc set of the reduced graph, that is, Ẽ is a set of edges connecting neigh-
boring artificial locations while ignoring picking locations within subaisles. For each

arc (u, v) ∈ Ẽ′, we introduce an auxiliary binary variable γtuv. For any node set S ⊂ VI ,
let η+(S) = {(u, v) ∈ Ẽ′ : u ∈ S, v /∈ S} and η−(S) = {(u, v) ∈ Ẽ′ : u /∈ S, v ∈ S}. We
have the following feasible region Pg:

∑

(s,v)∈δ+(s)

xtsv ≥ 1, ∀t ∈ T (26)

∑

(u,v)∈δ+(u)

xtuv ≥ zot, ∀t ∈ T , o ∈ O,u ∈ Lo (27)

ytu ≥ xtuv, ∀t ∈ T , u ∈ VI\{s}, (u, v) ∈ δ+(u) (28)

xtvQW (v) = γtvQW (v), ∀t ∈ T , v ∈ VI , (v,QW (v)) ∈ Ẽ′ (29)

xtvQE(v) = γtvQE(v), ∀t ∈ T , v ∈ VI , (v,QE(v)) ∈ Ẽ′ (30)

αtn(l(i)) ≥ γtf(i)l(i), ∀t ∈ T , i ∈ [Wsub] (31)

xtn(l(i))l(i) ≥ γtf(i)l(i), ∀t ∈ T , i ∈ [Wsub] (32)

βts(f(i)) ≥ γtl(i)f(i), ∀t ∈ T , i ∈ [Wsub] (33)

xts(f(i))f(i) ≥ γtl(i)f(i), ∀t ∈ T , i ∈ [Wsub] (34)
∑

(u,v)∈η+(S)

γtuv ≥ ytu0
, ∀t ∈ T , S ⊂ VI\{s}, |S| ≥ 2, u0 ∈ S (35)

∑

(v,u)∈δ+(v)

xtvu =
∑

(u,v)∈δ−(v)

xtuv, ∀t ∈ T , v ∈ V (36)

∑

t∈T

zot = 1, ∀o ∈ O (37)

∑

o∈O

bozot ≤ B, ∀t ∈ T (38)

xtuv ∈ {0, 1}, ∀t ∈ T , (u, v) ∈ Ẽ (39)

ytv ∈ {0, 1}, ∀t ∈ T , v ∈ V (40)

zot ∈ {0, 1}, ∀t ∈ T , o ∈ O (41)

γtuv ∈ {0, 1}, ∀t ∈ T , (u, v) ∈ Ẽ′ (42)

The auxiliary binary variable γtuv tries to indicate whether (u, v) ∈ Ẽ′ is traversed
by walk t. Consider a feasible solution (x∗, y∗, z∗, α∗, β∗, γ∗) ∈ Pg. If γ

∗
tuv = 1, artifi-

cial locations u,v are in the same connected component in walk t according to con-
straints (29)-(34). If at most the subaisle between u and v is partially traversed in
the direction u → v by walk t, then we have γ∗tuv = 0. Thus, it suffices to add the
connectivity constraints (35) rather than constraints (12) to ensure that all artificial

12

Figure 4. The related reduced graph

locations are in the same connected component. Let f(x) =
∑T

t=1

∑
(u,v)∈Ẽ duvxtuv and

PG = {(x, y, z, α, β, γ) : (x, y, z, γ) ∈ Pg, (x, z, α, β) ∈ Psub}. As shown in the following
theorem, it suffices to compute an optimal solution that satisfies PG.

Theorem 4.2. min{f(x) : (x, y, z, α, β, γ) ∈ PG} = min{f(x) : (x, y, z) ∈ Pbasic}

Proof. For some (x∗, y∗, z∗) ∈ Pbasic, (α
∗, β∗, γ∗) are defined as follows:

(1) For any picking location v within subaisle i, we set α∗
tv = 1 if x∗

tus(u) = 1 for

u ∈ {f(i), s(f(i)), s(s(f(i))), ..., n(v)}; otherwise, we set α∗
tv = 0.

(2) For any picking location v within subaisle i, we set β∗
tv = 1 if x∗

tun(u) = 1 for

u ∈ {l(i), n(l(i)), n(n(l(i))), ..., s(v)}; otherwise, we set β∗
tv = 0.

(3) For any aritificial location v, we set γ∗
tvQW (v) = x∗

tvQW (v) and γ∗
tvQE(v) = x∗

tvQE(v).

We set γ∗
tvQN (v) = 1 if v = l(i) and x∗

tun(u) = 1 for u ∈ {l(i), n(l(i)), ..., s(f(i))};

otherwise, we set γ∗
tvQN (v) = 0. We define γ∗

tvQS(v)
similarly.

It is easy to check that (x∗, y∗, z∗, α∗, β∗, γ∗) ∈ PG, therefore the following holds:

min{f(x) : (x, y, z, α, β, γ) ∈ PG} ≤ min{f(x) : (x, y, z) ∈ Pbasic}

Let us now consider an optimal solution (x∗, y∗, z∗, α∗, β∗, γ∗) ∈ PG. For picker t ∈ T ,
the graph indicated by x∗ is denoted by H. The connected component of H that
contains the origin is denoted by H0. We are able to generate a feasible picking tour
from H0 because any picking location v, which belongs to a location set Lo with
z∗ot = 1, also belongs to the vertex set of H0. This gives us the following result.

min{f(x) : (x, y, z, α, β, γ) ∈ PG} ≥ min{f(x) : (x, y, z) ∈ Pbasic}

Similar to Pbasic, the improved formulation PG involves exponentially many con-
straints to enforce connectivity. The connectivity constraints should be added to the
model via a separation procedure when using a branch-and-cut algorithm. For any

13

candidate integral solution in the branch-and-cut tree, we verify via a depth-first
search whether the graph is connected and we add connectivity constraints for ev-
ery connected component except the one containing the origin when the graph is not
connected. Note that because a subset of constraints (12) is actually dominated by a
single constraint (35) according to constraints (29)-(34), constraints (35) seem to be
more suitable for a branch-and-cut procedure.

We also provide a compact formulation of this problem, i.e., a formulation with
a polynomial number of variables and constraints. The main trick is introducing an
auxiliary multicommodity flow problem. Assume that there is a salesman in each
selected artificial location. The salesmen must determine feasible paths to the origin.
Once all salesmen can get to the origin, the origin and all selected artificial locations
are in the same connected component. We introduce flow variables σv0

tuv to indicate
the amount of commodity from artificial location v0 passing through arc (u, v) ∈ Ẽ′

in walk t. Pf is given by constraints (26)-(34), (36)-(42) and the following:

∑

(v0,v)∈η+(v0)

σv0
tv0v

−
∑

(v,v0)∈η−(v0)

σv0
tvv0

= ytv0 , ∀t ∈ T , v0 ∈ VI (43)

∑

(u,v)∈η+(u)

σv0
tuv −

∑

(v,u)∈η−(u)

σv0
tvu = 0, ∀t ∈ T , v0 ∈ VI , u ∈ VI\{s, v0}

(44)
∑

(s,v)∈η+(u)

σv0
tsv −

∑

(v,s)∈η−(s)

σv0
tvs = −ytv0 , ∀t ∈ T , v0 ∈ VI (45)

0 ≤ σv0
tuv ≤ γtuv, ∀t ∈ T , v0 ∈ VI , (u, v) ∈ Ẽ′ (46)

Let PF = {(x, y, z, α, β, γ, σ) : (x, y, z, γ, σ) ∈ Pf , (x, z, α, β) ∈ Psub}. We immedi-
ately obtain the following.

Theorem 4.3. min{f(x) : (x, y, z, α, β, γ, σ) ∈ PF } = min{f(x) : (x, y, z) ∈ Pbasic}

Proof. For some (x∗, y∗, z∗) ∈ Pbasic, (α
∗, β∗, γ∗) are defined as in the proof of Theo-

rem 4.2 and σ∗ is defined as follows.
For picker t ∈ T , the graph indicated by x∗ is denoted by H. For any artificial

location v0 with y∗tv0 = 1, we consider an arbitrary path in H that goes from v0 to the
origin (because (x∗, y∗, z∗) ∈ Pbasic, such a path exists). We set σv0∗

tuv = 1 if (u, v) is
traversed by this path; otherwise, we set σv0∗

tuv = 0.
It is easy to check that (x∗, y∗, z∗, α∗, β∗, γ∗, σ∗) ∈ PF , and therefore the following

holds:

min{f(x) : (x, y, z, α, β, γ, σ) ∈ PF } ≤ min{f(x) : (x, y, z) ∈ Pbasic}

The rest of the proof is similar to that of Theorem 4.2.

We finish this section by showing the relationship between the LP relaxations of
PG and PF . Formally, let PLP denote the LP relaxation of P , let projx(P) denote the
projection of P onto the x− space and we prove the following theorem:

Theorem 4.4. proj(x,y,z,α,β,γ)((PF)LP) = (PG)LP

Proof. According to [Theorem 2. (Letchford, Nasiri, and Theis 2013)], there exists a

14

feasible flow σu0

t satisfying constraints (43)-(46) if and only if

∑

(u,v)∈η+(S)

γtuv ≥ ytu0
∀S ∈ {S : u0 ∈ S, S ⊂ VI\{s}}

Because there should be a feasible flow σu0

t for any u0 ∈ VI\{s} according to our
construction, the proof is ended.

5. Additional constraints

In this section, we introduce two types of additional constraints, called strengthened
connectivity constraints and single traversing constraints. Strengthened connectivity
constraints link the routing decisions and the batching decisions where classical con-
nectivity constraints cannot take batching decisions into account. Single traversing
constraints mainly focus on the problem property of a rectangular warehouse and can
cut off some non-optimal solutions.

5.1. Strengthened connectivity constraints and basic cuts

Considering the relationship between routing decisions and batching decisions, it would
be interesting to investigate the constraints that jointly deal with both decisions.

We first introduce the concept of the strengthened connectivity constraints. Let us
have a look at connectivity constraints (12): a constraint of type (12) can be generated
by fixing a proper vertex set S. For any picking location u0 ∈ S, we know that ytu0

is
actually dominated by any zot satisfying u0 ∈ Lo according to constraints (10)-(11).
Therefore, we have the following strengthened connectivity constraints:

∑

(u,v)∈δ+(S)

xtuv ≥ zot, ∀t ∈ T , S ⊂ V \{s}, |S| ≥ 2, o ∈ {o : S ∩ Lo 6= ∅} (47)

Notice that there are an exponential number of connectivity constraints (12). Thus,
constraints (47) cannot be added directly to a formulation. To make use of these con-
straints, we intend to find a family S of a polynomial number of vertex sets S. All
constraints induced by S will be added directly to a formulation. A carefully selected
S leads to powerful constraints. For instance, if S ∈ S is composed of locations on the
right side of some aisle (as shown in Figure 5), constraints (47) are reduced to aisle
cuts proposed by (Valle, Beasley, and da Cunha 2017).

Here, we present another type of strengthened connectivity constraints, which we

call basic cuts. S can be obtained by the following operations. For any order o, let Ẽ0

denote a set of e ∈ Ẽ′ (which represents a subaisle) that contains at least one picking

location u ∈ Lo. Let Ṽ0 be a set of vertices associated with Ẽ0. Then, any e ∈ Ẽ′ with

both ends in Ṽ0 will be added to Ẽ0. By executing a depth-first search algorithm, we

can discover all connected components of the graph (Ṽ0, Ẽ0). Figure 5 shows an ex-
ample of the two connected components induced by an order. Let S be a vertex set of
a connected component that does not contain the origin. All picking locations within
the subaisle that has both ends in S will then be added to S. Then S will be added
to S. We call the strengthened connectivity constraints induced by S basic cuts.

15

(a) Aisle cut (b) Basic cut

Figure 5. Strengthened connectivity constraints

5.2. Single traversing constraints

In this subsection, we derive additional constraints by investigating the graph prop-
erty of the warehouse. We first restrict our attention to a single-block warehouse. By
’traversing’, we mean going from the north artificial vertex to the south artificial vertex
or vice-versa.

Theorem 5.1. For a single-block warehouse, each subaisle will be traversed at most
once by any optimal walk.

Corollary 5.2. (Single traversing constraints) For a single-block warehouse, no opti-
mal solution will be cut off by the following constraints:

αtv + βtv ≤ 1, ∀t ∈ T , o ∈ O, v ∈ Lo (48)

We remark that a subset of feasible solutions may not satisfy Theorem 5.1; there-
fore, the inequalities it yields might not be strictly valid inequalities. Furthermore,
Theorem 5.1 can induce different constraints other than (48) and it is still unclear
whether (48) is the most proper formulation.

Corollary 5.2 can be obtained as a direct consequence of Theorem 5.1, and thus, it
suffices to prove Theorem 5.1. For a single-block warehouse, let the artificial locations
in the first cross-aisle be u1, u2, ..., un, and the artificial locations in the second cross-
aisle be d1, d2, ..., dn. Let picking locations in the path north to south in aisle i be
vi1, vi2, ..., visi . We illustrate all of these concepts in Figure 6. A Eulerian tour can be
specified using a sequence of vertices, such as

r = (u1v11v12...d1d2...u2u1)

Let V (r) denotes the set of the vertices in r. We say that Eulerian tour r′ is better
than Eulerian tour r if r, r′ satisfy

(1) {V (r) ∩ VL} ⊆ {V (r′) ∩ VL}

16

Figure 6. notations that we used in subsection 5.2

(2) r′ is shorter than r

Now, we introduce three lemmas to prove Theorem 5.1.

Lemma 5.3. For any tour r, if there exists an aisle i such that tour r contains subpath
(uivi1vi2...visidivisivi(si−1)...vi1ui), then there exists a tour r′ better than r.

Proof. We simply assume that r = (r1r2...rpuivi1vi2...visidivisivi(si−1)...vi1uirq...rR).
Then r′ = (r1r2...rpuivi1vi2...vi(si−1)visivi(si−1)...vi1uirq...rR) is a better tour.

The reader may find a different application of Lemma 5.3 in (Valle, Beasley, and da
Cunha 2017), in which it also induced the artificial vertex reversal cuts.

Lemma 5.4. For any tour r, if there exists an aisle i such that tour r contains subpath
(ui−1uivi1vi2...visididi+1) and (divisivi(si−1)...vi1ui), then there exists a tour r′ better
than r.

Proof. We simply assume that r = (r1r2...rputut+1...ui−1uivi1vi2...visididi+1...dkvkskrq...rR).
Then r′ = (r1r2...rputut+1...ui−1ui...ukvk1vk2...vkskrq...rR) is a better tour.

Lemma 5.5. For any tour r, if there exists an aisle i such that tour r contains subpath
(ui−1uivi1vi2...visididi−1) and (divisivi(si−1)...vi1ui), then there exists a tour r′ better
than r.

Proof. We simply assume that r = (r1r2...rputut+1...ui−1uivi1vi2...visididi−1...dkvkskrq...rR)
with k ≥ t. Then r′ = (r1r2...rputut+1...ui−1ui...ukvk1vk2...vkskrq...rR) is a better
tour.

Now, we can give the proof for Theorem 5.1.

Proof. We assume by contradiction that there exists an optimal tour r =
(r1r2...rpui−1uivi1...visidirq...rR) and r contains subpath (divisivi(si−1)...vi1ui). Then

(1) If (rqrq+1...rq+si) = (visivi(si−1)...vi1ui), lemma 5.3 provides a better tour.
(2) If rq = di+1, lemma 5.4 provides a better tour.
(3) If rq = di−1, lemma 5.5 provides a better tour.

Thus, no such optimal tour exists.

17

Figure 7. The partition of the walk r

In the remainder of this subsection, we extend the result for a 2-block warehouse.
Let 1 be the index of the topmost left subaisle, and we have the following theorem.

Theorem 5.6. For a 2-block warehouse, there exists an optimal walk that traverses
any subaisle i ∈ {2, 3, ...,Wsub} at most once.

Proof. Let r be an optimal walk. We can partition this tour into several parts
r1, r2, ..., rR, r0 and each part is located in the first block or the second block (see
Figure 7). As shown in the proof of Theorem 5.1, a subaisle cannot be traversed
twice by any subtour rk, k ∈ {0, 1, ..., R}. Furthermore, there always exists an optimal
solution such that a subaisle will not be traversed by different subtours rk, rt where
k, t ∈ {1, 2, ..., R}. The construction of such an optimal solution is similar to the proofs
of Lemma 5.4-5.5. Thus, there exists an optimal walk r such that any subaisle is tra-
versed at most once by r′ = (r1, r2, ..., rR). If a picker needs to pick some products in
r0, then any subaisle is traversed at most once by r; otherwise, the picker needs to
return to the origin immediately, and we can assume that the picker first goes to the
south artificial vertex of subaisle 1 and then goes to the origin. This completes the
proof.

Corollary 5.7. (Single traversing constraints) For a 2-block warehouse, there exists
an optimal solution satisfying the following constraints:

αtv + βtv ≤ 1, ∀t ∈ T , o ∈ O, v ∈ Lo\Vsub(1) (49)

Proof. This follows immediately from Theorem 5.6.

6. No-reversal case

In this section, we introduce the no-reversal case of the JOBPRP and present new
formulations that are less influenced by symmetric solutions.

We note that it would be impractical to search for an optimal solution when there are
a vast number of orders. By assuming that routing is conducted in a no-reversal fash-
ion, (Valle, Beasley, and da Cunha 2017) obtained an efficiently solvable formulation.

18

Figure 8. Symmetry routes

The no-reversal constraints are described as follows.

xtn(v)v = xtv, ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i) ∪ {l(i)} (50)

xts(v)v = xtv, ∀t ∈ T , i ∈ [Wsub], v ∈ Vsub(i) ∪ {f(i)} (51)

In the case of no-reversal constraints, a picker is not allowed to reverse in a subaisle.
Many feasible solutions, including some or all optimal solutions, will be cut off by these
constraints. Note that the no-reversal JOBPRP can also be regarded as an approximate
problem, and by solving this problem, we can quickly make order batching decisions.
Then each picker can be rerouted by applying other methods such as a classical TSP
model.

Although these constraints can greatly simplify the decision problem, this problem
still suffers severely from the presence of symmetry. A large amount of equivalence
of solutions induced by symmetry routes might confound the branch-and-bound (or
branch-and-cut) process, as illustrated in Figure 8. In other words, there is also a
substantial room for the further improvement of the no-reversal formulation.

6.1. TSP formulation for a single-block warehouse

A single-block warehouse is first considered. We start with an undirected graph G+ =
(VI , E

+), which is constructed as follows: Recall that e = [u, v] denote the unordered
pair of location u and location v. E+ is defined as E+

1 ∪ E+
2 where E+

1 = {[u, v] :

(u, v) ∈ Ẽ′} and E+
2 = {[s, v] : v ∈ VI\{s}}. For any subaisle i, let e(i) denote

the edge [f(i), l(i)]. The resulting feasible region P 1
U then consists of the following

19

Figure 9. The only path back to the origin

constraints.

xt[s,l(1)] + xt[s,f(2)] ≥ 1, ∀t ∈ T (52)
∑

[s,v]∈δ(s)

xt[s,v] + x̃t = 2, ∀t ∈ T (53)

xt[u,v] ≥ zot, ∀t ∈ T , i ∈ [Wsub], [u, v] = e(i), o ∈ {o : Vsub(i) ∩ Lo 6= ∅}

(54)
∑

[l(1),v]∈δ(l(1))

xt[l(1),v] + x̃t = 2ytu, ∀t ∈ T (55)

∑

[u,v]∈δ(u)

xt[u,v] = 2ytu, ∀t ∈ T , u ∈ VI\{s, l(1)} (56)

∑

[u,v]∈δ(S)

xt[u,v] ≥ 2ytu0
, ∀t ∈ T , S ⊂ VI\{s}, |S| ≥ 2, u0 ∈ S (57)

∑

t∈T

zot = 1, ∀o ∈ O (58)

∑

o∈O

bozot ≤ B, ∀t ∈ T (59)

xt[u,v] ∈ {0, 1}, ∀t ∈ T , [u, v] ∈ E+ (60)

x̃t ∈ {0, 1}, ∀t ∈ T (61)

ytv ∈ {0, 1}, ∀t ∈ T , v ∈ VI (62)

zot ∈ {0, 1}, ∀t ∈ T , o ∈ O (63)

Here, xt[u,v] is a binary variable, which takes the value 1 if and only if edge [u, v] is
traversed by walk t. We let binary variable x̃ indicate whether a parallel edge between
f(1) and s(1) should be added (note that the origin s = f(1)). We actually formulate
the standard TSP on E+ (possibly with a parallel edge of e(1)) using constraints (52)-
(57). We illustrate how our formulation works in Figure 9.

The TSP-based formulation is highly dependent on the construction of the auxil-
iary graph. Once we define the undirected graphs for other warehouses, we are able to
propose extended formulations. In the next subsection, we discuss the auxiliary graph
for a 2-block warehouse.

20

(a) E+ for a single-block warehouse (b) ∪3
i=1E

+
i

for a 2-block warehouse

Figure 10. Auxiliary graphs

6.2. TSP formulation for a 2-block warehouse

We should propose a more sophisticated auxiliary graph which can induce a TSP
formulation that contains an optimal solution. An optimal route in a 2-block warehouse
may be different from an optimal route in a single-block warehouse such that:

(1) The picker may require to traverse a subaisle twice to enter the other block.
(2) The picker may require to traverse some edge in the second cross-aisle twice

before retrieving all products from storage (after which the picker should go
back to the origin).

From the above observations, we should add more parallel edges to the graph to pre-
serve optimal solutions. In fact, we are describing the problem property when adding
parallel edges. Once the auxiliary graph maintains a subset of optimal solutions, we
obtain a TSP-based formulation.

Now, we show how to construct the auxiliary graph. Let W be a set of artificial
locations in the second cross-aisle. We construct a copy v′ for any v ∈ W and let the
set of copies be W ′. Let E+

1 be the set of edges connecting neighboring vertex. E+
2

and E+
3 are defined as follows.

(1) E+
2 = {[v′, QN (v)] : v ∈ W} ∪ {[v,QS(v

′)] : v ∈ W}
(2) E+

3 = {[s, v] : v ∈ {V ∪W ′}\{s}}

E+
1 enables the picker to reverse direction in the second cross-aisle; E+

2 enables the
picker to traverse a subaisle twice; E+

3 enables the picker to return to the origin after
picking is completed. We compare the two auxiliary graphs in this section, as shown
in Figure 10.

For each picker t ∈ T , let xt[u,v] ∈ {0, 1} be an indicator variable equal to 1 if

[u, v] ∈ E+
1 ∪ E+

2 is traversed, and x̃t[u,v] ∈ {0, 1} be an indicator variable equal to

21

1 if [u, v] ∈ E+
3 is traversed. The TSP-based formulation P 2

U is similar to P 1
U , and is

described by the following constraints.

∑

[s,v]∈δ(s)

xt[s,v] ≥ 1, ∀t ∈ T (64)

∑

[s,v]∈δ(s)

(xt[s,v] + x̃t[s,v]) = 2, ∀t ∈ T (65)

xt[u,v] ≥ zot, ∀t ∈ T , i ∈ [Wsub], [u, v] = e(i), o ∈ {o : Vsub(i) ∩ Lo 6= ∅}

(66)
∑

[u,v]∈δ(u)

(xt[u,v] + x̃t[u,v]) = 2ytu, ∀t ∈ T , u ∈ VI\{s} (67)

∑

[u,v]∈δ(S)

(xt[u,v] + x̃t[u,v]) ≥ 2ytu0
, ∀t ∈ T , S ⊂ VI\{s}, |S| ≥ 2, u0 ∈ S (68)

∑

t∈T

zot = 1, ∀o ∈ O (69)

∑

o∈O

bozot ≤ B, ∀t ∈ T (70)

xt[u,v] ∈ {0, 1}, ∀t ∈ T , [u, v] ∈ E+
1 ∪ E+

2 (71)

x̃t[u,v] ∈ {0, 1}, ∀t ∈ T , [u, v] ∈ E+
3 (72)

ytv ∈ {0, 1}, ∀t ∈ T , v ∈ VI (73)

zot ∈ {0, 1}, ∀t ∈ T , o ∈ O (74)

A question immediately arises: is there always an optimal picking tour that can be
induced by a feasible solution of P 2

U? In the remainder of this section, we reveal the
existence of such a tour.

Assume that we have known the set K1(K2) of subaisles in the first (second) block,
which contains at least one product to be picked. For simplicity, we assume thatK1 6= ∅
and K2 6= ∅. Let i0 be the first subaisle in K1. The following two routes, which we call
S-shape routes, are considered.

(1) r1S will first visit all subaisles in K1\{i0}, then visit all subaisles in K2 and finally
visit subaisle i0 (as shown in Figure 11(a)).

(2) r2S will first visit all subaisles in K1, then visit all subaisles in K2 (as shown in
Figure 11(b)).

Obviously, routes of type r1S or r2S can always be represented by a feasible solution of
P 2
U . Furthermore, the following theorem guarantees the existence of an optimal tour.

Theorem 6.1. There always exists an optimal picking tour which is done in an S-
shape fashion.

Proof. We first consider the case where subaisle 1 ∈ K1. Let the total vertical distance
of route r be lr and the optimal route r∗. Let d denotes the length of a subaisle. It
can be seen that lr∗ ≥ |K1 ∪K2|d. We also have the following results for r1S :

(1) If |K1| and |K2| are odd, we have that lr1
S
− |K1 ∪K2|d = 2d when 1 ∈ K1.

(2) If |K1| and |K2| are even, we have that lr1
S
− |K1 ∪K2|d = 0 when 1 ∈ K1.

(3) If |K1| is odd and |K2| is even, we have that lr1
S
− |K1 ∪K2|d = d when 1 ∈ K1.

22

(a) r1
S

(b) r2
S

Figure 11. The S-shape route

(4) If |K1| is even and |K2| is odd, we have that lr1
S
− |K1 ∪K2|d = d when 1 ∈ K1.

We now show that r1S is an optimal picking tour. We only deal with the case
when |K1| is odd and |K2| is even. Assume by contradiction that lr∗ = |K1 ∪ K2|d,
which means r∗ will traverse each selected subaisle exactly once. r∗ can be described
as a sequence of subaisles i1, i2, ...in. If i1, ik ∈ K1 and i2, ..., ik−1 ∈ K2, we can
find that k is even. i1, i2, ...in can be reformulated as Q1 = {i1, i2, ..., ik1

},Q2 =
{ik1+1, i2, ..., ik2

},...,Q2n+1 = {ik2n+1, ik2n+2, ..., ik2n+1
} where Q2t+1 ⊂ K1 and Q2t ⊂

K2. Note that |Q2|, ..., |Q2n| are even and |K1| is odd, we can assume that |Q1| is even.
This implies that r∗ must traverse ik1

twice, which is a contradiction.
Similarly, we can prove that there exist an optimal picking tour which is of type r1S

or r2S when 1 /∈ K1. This completes the proof.

Note that the second cross-aisle is passed through by r1S or r2S exactly twice, and
thus, we can further tighten the feasible region. Let VS be the set of vertices in the
second block, i.e., VS = {W ′ ∪ {QS(v) : v ∈ W ′}}. We use the following constraint to
ensure that the second cross-aisle can be passed through at most twice by the picker.
This constraint is very effective at reducing solution times.

∑

[u,v]∈δ(VS)

(xt[u,v] + x̃t[u,v]) ≤ 2, ∀t ∈ T (75)

We finish this section with the following corollary.

Corollary 6.2. There always exists an optimal solution satisfying constraints (75).

Proof. This follows immediately from Theorem 6.1.

23

7. Computational results

The experiments were performed on an AMD Ryzen 7 4800H @2.90 GHz processor
and 32 GB of RAM. The code was written in Python and GUROBI 9.1.1 was used as
the mixed-integer solver. The performances of our MIP formulations and additional
constraints are tested by comparing the computational difficulties to find optimal
solutions.

7.1. Test problems

Our formulations are tested over the publicly available benchmark instances at
http://www.dcc.ufmg.br/arbex/orderpicking.html. It comes from a database of
anonymized customer purchases over two years for a chain of supermarkets. A single
order is generated by combing the purchases of a customer over the first ∆ days with
∆ ∈ {5, 10, 20}. The warehouse layouts considered in our experiments are similar to
that of (Valle, Beasley, and da Cunha 2017); the slight difference is that we assume
the origin is right from the first artificial location while they set the distance from the
origin to the first artificial vertex is 4 meters. Our formulations for their warehouse
layout are essentially the same. We set the available capacity of the picking vehicle
B = 8. For every test instance, we define T by solving a bin-packing problem.

7.2. Computational results

In this section, we compare our formulations with that of (Valle, Beasley, and da
Cunha 2017). The formulation for the JOBPRP (resp., for the no-reversal JOBPRP)
presented by (Valle, Beasley, and da Cunha 2017) is denoted as PO (resp., PU). To
further improve our formulation, we take into account existing constraints including
aisles cuts, artificial vertex reversal constraints (Valle, Beasley, and da Cunha 2017)
and column inequalities (Kaibel and Pfetsch 2006). To have a better comparison, we
also use column inequalities to improved PO. We do not present experimental results
to verify the effectiveness of these constraints that existing studies have already illus-
trated. Details regarding test formulations are shown in Table 1.

Table 1.: Details about test formulations

Notation Explanation

PO Pbasic with the valid inequalities defined in (Valle, Beasley, and da
Cunha 2017) and column inequalities

P+
G PG with aisles cuts, artificial vertex reversal constraints and col-

umn inequalities
P+
F PF with artificial vertex reversal constraints and column inequal-

ities
PU the no-reversal formulation in (Valle, Beasley, and da Cunha 2017)

with column inequalities
P 1+
U P 1

U with column inequalities

P 2+
U P 2

U with column inequalities

24

Remark that all formulations except P+
F are non-compact. The exponentially many

constraints are generated sequentially in a branch-and-cut framework. For each can-
didate integral solution, we add constraints when the graph for some picker is discon-
nected. The connectivity condition is verified by a depth-first search. In addition, PF

seems unable to benefit from aisles cuts and therefore P+
F does not include aisles cuts.

In Table 2, we compare formulation PO, P+
G and P+

F on the selected instances
by setting a time limit of 2400 s. Column O corresponds to the number of orders.
Column T corresponds to the total time. Columns UB and LB represent the best
upper and lower bounds obtained at the end of the search, respectively, when either
the instance was solved to prove optimality or the time limit has hit. GAP is defined
as 100% × UB−LB

UB
.

The branch-and-cut algorithm based on P+
G managed to solve most instances

to proven optimality. Furthermore, it obtained the lowest gap or had the short-
est computing time. Thus, we can state that P+

G outperforms the existing for-
mulation PO. However, P+

F is not as strong as P+
G . Although it provided a bet-

ter gap (than PO) for some instances (for example, instance with ∆ = 5, O ∈
[19, 30]), it performs poorly when ∆ = 10. Furthermore, an increasing number
of orders cause a fast increase in the solution time, even for P+

G . One possi-
ble reason is that as the number of order pickers increases, the number of sym-
metry branches in the search tree grows exponentially. In fact, even the relax-
ation min{f(x) : (x, z, α, β) ∈ Psub, constraints (9)− (10), (13) − (16), (18)} (see Fig-
ure 3(c)) is very difficult to solve when there are a large number of orders (and it
cannot figure out the route for each picker).

We also compare our formulations with two commonly used heuristics for or-
der batching problem: the seed algorithm and the Clarke and Wright algorithm(II)
(Koster, der Poort, and Wolters 1999). For each batch, we find an S-shape route to
estimate the traveling distance (see section 6.2). Typically, the Seed and CWII can
provide feasible solutions within several seconds. However, the solutions seem to be
far from optimal. Numerical results are given in Table 3 where the last column shows
the currently best known solution.

We analyze the efficiency of the basic cuts and the single traversing constraints by
adding them to PO, P

+
G and P+

F . Note that the basic cuts are generated by performing
a depth-first search algorithm, and the total running time is typically less than 0.5
seconds (0.03s-0.5s). Therefore we do not need to take into account the processing
time of constructing the basic cuts. The original model and the strengthened model
are compared by counting winning instances. An instance is a winner for model A
compared with model B, if

(1) A finished within the time limit and B did not finish or required a longer CPU
time or

(2) A obtained a lower gap than B.

If the difference between the times or gaps is below 1 s or 0.1%, respectively, the
instance is not counted. For example, we can compare PO and P+

F in Table 2 by only
considering the instances with ∆ = 5. Then we can observe that PO has 3 winners and
P+
F has 10 winners. Table 4,5 show the impacts of adding these additional constraints.

Except the aggregated results, we also provide more detailed results in the appendix.
Table 4 shows the efficiency of the basic cuts. For formulation PO, the basic cuts

can improve at most 69.2% instances (when ∆ = 20). Similarly, the basic cuts can
improve at most 75% instances for P+

G (when ∆ = 5). However, due to being compact
and not requiring an explicit branch-and-cut implementation, P+

F seems to benefit less

25

Table 2. Comparison of the branch-and-cut algorithm based on formulations PO,P+
G

and P+
F
.

PO P+
G

P+
F

∆ O T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%)

5 5 0.2 346 346 0 0.24 346 346 0 0.51 346 346 0
10 2.91 578 578 0 1.5 578 578 0 92 578 578 0
15 15 650 650 0 7.8 650 650 0 41 650 650 0
16 390 766 766 0 37 766 766 0 236 766 766 0
17 90 802 802 0 30 802 802 0 230 802 802 0
18 1821 840 840 0 81 840 840 0 691 840 840 0
19 2400 856 851 0.6 135 856 856 0 690 856 856 0
20 2400 906 758 16.3 86 864 864 0 770 864 864 0
21 2400 892 884 0.9 136 892 892 0 1585 892 892 0
22 2400 902 868 3.8 171 892 892 0 1386 892 892 0
23 2400 912 877 3.8 290 908 908 0 2400 908 901 0.8
24 2400 1118 723 35.3 2400 1059 925 12.7 2400 1056 862 18.3
25 2400 1104 815 26.2 2400 1102 954 13.4 2400 1104 869 21.3
30 2400 1200 843 29.8 2400 1206 961 20.3 2400 1206 864 28.4

10 5 0.06 368 368 0 0.06 368 368 0 0.12 368 368 0
10 40 656 656 0 6.31 656 656 0 34 656 656 0
15 195 874 874 0 59 874 874 0 263 874 874 0
16 178 926 926 0 65 926 926 0 311 926 926 0
17 1188 960 960 0 123 960 960 0 996 960 960 0
18 892 970 970 0 106 970 970 0 1112 970 970 0
19 375 978 978 0 166 978 978 0 607 978 978 0
20 454 984 984 0 209 984 984 0 1145 984 984 0
21 320 990 990 0 143 990 990 0 1462 990 990 0
22 1400 1000 1000 0 180 1000 1000 0 1880 1000 1000 0
23 2400 1162 959 17.5 2400 1140 978 14.2 2400 1132 881 22.2
24 2400 1218 824 32.3 2400 1162 1012 12.9 2400 1188 907 23.7
25 2400 1192 935 21.6 2400 1220 1006 17.5 2400 1182 966 18.3
30 2400 1326 955 28 2400 1320 1083 18 2400 1284 969 24.5

20 5 19 570 570 0 1.03 570 570 0 7.5 570 570 0
10 68 912 912 0 25 912 912 0 119 912 912 0
15 2400 1026 1009 1.7 58 1022 1022 0 255 1022 1022 0
16 2400 1206 1085 10 745 1200 1200 0 1409 1200 1200 0
17 2400 1292 1029 20.4 2059 1250 1250 0 2400 1250 1161 7.1
18 2400 1324 1070 19.2 1166 1288 1288 0 2400 1310 1145 12.6
19 2400 1356 1093 19.4 2400 1326 1146 13.6 2400 1346 1108 17.7
20 2400 1334 1087 18.5 2400 1340 1292 3.6 2400 1340 1189 11.3
21 2400 1554 960 38.2 2400 1542 1145 25.7 2400 1534 1078 29.7
22 2400 1702 909 46.6 2400 1578 1162 26.4 2400 1558 1135 27.2
23 2400 1638 1030 37.1 2400 1624 1130 30.4 2400 1620 1115 31.2
24 2400 1672 968 42.1 2400 1640 1193 27.3 2400 1652 1040 37

25 2400 -* 930 - 2400 1648 1141 30.8 2400 1644 1083 34.1
30 2400 - 987 - 2400 1900 1125 40.8 2400 1944 988 49.2

*The symbol ’-’ shows that GUROBI failed to find a feasible solution.

Table 3. Experimental results for heuristic solution approaches

∆ = 5 ∆ = 10 ∆ = 20

O Seed CWII Best Seed CWII Best Seed CWII Best

5 382 382 346 382 382 368 620 620 570
10 636 636 578 726 726 656 982 982 912
15 724 764 650 922 922 874 1146 1146 1022
16 910 882 766 1058 1058 926 1372 1372 1200
17 902 930 802 1058 1058 960 1488 1450 1250
18 942 980 840 1058 1058 970 1490 1490 1288
19 980 1030 856 1096 1096 978 1490 1490 1326
20 980 1018 864 1096 1096 984 1488 1488 1334
21 1018 1018 892 1146 1146 990 1716 1728 1534
22 1018 1018 892 1146 1146 1000 1754 1766 1558
23 1058 1058 908 1284 1284 1132 1812 1832 1620
24 1186 1158 1056 1332 1332 1162 1872 1872 1640
25 1246 1312 1102 1372 1362 1182 1872 1872 1644
30 1440 1360 1200 1452 1490 1284 2128 2166 1900

26

Table 4. Behavior of the basic cuts

PO PO+ basic cuts

∆ Win Rate(%) Win Rate(%)

5 69.2 30.8
10 46.2 53.8
20 30.8 69.2

P+
G

P+
G
+ basic cuts

∆ Win Rate(%) Win Rate(%)

5 25 75
10 41.7 58.3
20 46.2 53.8

P+
F

P+
F
+ basic cuts

∆ Win Rate(%) Win Rate(%)

5 58.3 41.7
10 53.8 46.2
20 71.4 28.6

Table 5. Behavior of the single traversing constraints

PO PO+ single traversing constraints

∆ Win Rate(%) Win Rate(%)

5 61.5 38.5
10 53.8 46.2
20 58.3 41.7

P+
G

P+
G
+ single traversing constraints

∆ Win Rate(%) Win Rate(%)

5 50 50
10 25 75
20 30.8 69.2

P+
F

P+
F
+ single traversing constraints

∆ Win Rate(%) Win Rate(%)

5 23.1 76.9
10 41.7 58.3
20 58.3 41.7

27

from the basic cuts. Table 5 shows the efficiency of the single traversing constraints.
Although both P+

G (at most 75% instances) and P+
F (at most 76.9 instances) are able

to benefit from the single traversing constraints, more than half of instances PO can-
not be improved by these constraints. We also note that the basic cuts and the single
traversing constraints sometimes increase the solution time, which could be due to the
interaction of these constraints and some built-in general-purpose cuts. Furthermore,
we believe that the single traversing constraints should be given more consideration;
This can lead to a much smaller feasible region and may induce other constraints or
formulations.

In Table 6, we compare formulation PU and P 1+
U for a single-block warehouse set-

ting a time limit of 300 s. We reduce the time limit, mainly because the no-reversal
JOBPRP is much simpler than the JOBPRP. The branch-and-cut algorithm based on

P 1+
U can solve all instances within several seconds. The main reason could be that we

successfully cut many symmetric solutions by designing an auxiliary graph. Similarly,
we compare formulation PU and P 2+

U for a 2-block warehouse in Table 7, and P 2+
U still

outperforms PU for all instances.

8. Conclusions

In this article, we investigate the JOBPRP, which is pivotal for the efficiency of or-
der picking operations. To fully utilize the structure of the warehouse, we reconstruct
the connectivity constraints. The obtained formulations, which consider separately
the graph properties of picking locations and artificial locations, can significantly im-
prove computational performance. We also provide two types of relevant additional
constraints: one aims at dealing with batching decisions and routing decisions in an
integrated way; the other aims at cutting off a subset of feasible solutions by the
property of an optimal routing. Additionally, we consider the optimal routing for the
no-reversal special case of this problem and propose TSP-based formulations. Our ex-
perimental results also show that the TSP-based formulations are very powerful and
can significantly improve solution quality.

There are several potential topics for future research. First, graph-based mathe-
matical formulations should consider the warehouse structure, which implies a need
for polyhedral studies of different warehouses. For example, one might investigate
the graph representation and the associated polytope for the HappyChic warehouse
considered by (Briant et al. 2020), which is slightly different from the rectangular
warehouse considered in this paper. Second, one might improve traditional heuristic
algorithms by analyzing the property of optimal solutions. Third, both the routing
and batching problems suffer severely from the presence of symmetry. If we treat the
batching problem as a partitioning problem, we can find many symmetry breaking
methods (for example, column inequalities (Kaibel and Pfetsch 2006)). One might
make use of these symmetry breaking methods to improve different heuristics or exact
methods. Fourth, as no-reversal routes are easy to implement in practice, it might be
worthwhile to pay more attention to this special case. (Arbex Valle and Beasley 2020)
demonstrated the feasibility of using easy-to-solve approximation programs to obtain
high-quality no-reversal solutions. One might build up an approximation model that
only considers some features of a feasible solution, and might study the accuracy of
the estimation.

28

Table 6. Comparison of the branch-and-cut algorithm based on formulations PU and P 1+
U

for a
single-block warehouse.

PU P 1+
U

∆ O T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%)

5 5 0.02 358 358 0 0.01 358 358 0
10 0.13 634 634 0 0.05 634 634 0
15 0.05 716 716 0 0.01 716 716 0
20 1.72 982 982 0 0.16 982 982 0
21 26 1064 1064 0 0.21 1064 1064 0
22 41 1064 1064 0 0.25 1064 1064 0
23 20 1064 1064 0 0.27 1064 1064 0
24 300 1248 1140 8.7 1.64 1248 1248 0
25 98 1258 1258 0 2.21 1258 1258 0
26 64 1268 1268 0 1.3 1268 1268 0
27 215 1278 1278 0 1.17 1278 1278 0
28 235 1330 1330 0 2.62 1330 1330 0
29 300 1350 1340 0.7 1.2 1350 1350 0
30 300 1350 1304 0.3 1.66 1350 1350 0

10 5 0.01 358 358 0 0.01 358 358 0
10 0.07 716 716 0 0.01 716 716 0
15 1.26 972 972 0 0.19 972 972 0
20 1.27 992 992 0 0.23 992 992 0
21 10 1064 1064 0 0.18 1064 1064 0
22 2.56 1064 1064 0 0.25 1064 1064 0
23 73 1248 1248 0 1.22 1248 1248 0
24 70 1248 1248 0 0.72 1248 1248 0
25 4.53 1268 1268 0 0.65 1268 1268 0
26 35 1268 1268 0 0.66 1268 1268 0
27 214 1330 1330 0 0.63 1330 1330 0
28 119 1340 1340 0 0.52 1340 1340 0
29 77 1340 1340 0 0.7 1340 1340 0
30 82 1340 1340 0 0.6 1340 1340 0

20 5 0.09 706 706 0 0.03 706 706 0
10 0.88 992 992 0 0.1 992 992 0
15 0.88 1074 1074 0 0.12 1074 1074 0
20 31 1422 1422 0 0.34 1422 1422 0
21 300 1698 1675 1.4 1.92 1698 1698 0
22 300 1698 1672 1.5 1.04 1698 1698 0
23 300 1770 1699 4 1.21 1770 1770 0
24 300 1770 1693 4.4 1.13 1770 1770 0
25 300 1780 1736 2.5 0.88 1780 1780 0
26 300 1780 1774 0.3 0.66 1780 1780 0
27 33 1780 1780 0 1.85 1780 1780 0
28 300 2056 1903 7.4 4.66 2056 2056 0
29 300 2056 1652 19.6 5.19 2056 2056 0
30 300 2056 1780 13.4 4.47 2056 2056 0

29

Table 7. Comparison of the branch-and-cut algorithm based on formulations PU and P 2+
U

for a
2-block warehouse.

PU P 2+
U

∆ O T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%)

5 5 0.05 382 382 0 0.02 382 382 0
10 0.51 608 608 0 0.2 608 608 0
15 1.47 696 696 0 0.22 696 696 0
20 20 940 940 0 1.91 940 940 0
21 5.34 940 940 0 1.73 940 940 0
22 7.18 940 940 0 1.2 940 940 0
23 8.2 950 950 0 1.54 950 950 0
24 273 1108 1108 0 31 1108 1108 0
25 152 1146 1146 0 41 1146 1146 0
26 300 1194 1118 6.4 45 1176 1176 0
27 300 1206 1185 1.7 52 1206 1206 0
28 300 1234 1151 6.7 67 1206 1206 0
29 300 1254 1184 5.6 67 1254 1254 0
30 300 1254 1151 8.2 48 1254 1254 0

10 5 0.02 382 382 0 0.02 382 382 0
10 1.29 724 724 0 0.29 724 724 0
15 4.74 922 922 0 3.08 922 922 0
20 8 1020 1020 0 0.97 1020 1020 0
21 132 1058 1058 0 1.42 1058 1058 0
22 26 1058 1058 0 1.13 1058 1058 0
23 237 1214 1214 0 22 1214 1214 0
24 266 1254 1254 0 19 1254 1254 0
25 213 1254 1254 0 14 1254 1254 0
26 300 1302 1283 1.5 17 1302 1302 0
27 300 1342 1302 3 35 1342 1342 0
28 300 1352 1231 8.9 23 1352 1352 0
29 300 1352 1264 6.5 20 1352 1352 0
30 300 1352 1255 7.2 22 1352 1352 0

20 5 0.2 620 620 0 0.09 620 620 0
10 2.68 982 982 0 0.69 982 982 0
15 59 1108 1108 0 0.67 1108 1108 0
20 300 1432 1411 1.5 11 1430 1430 0
21 300 1638 1513 7.6 154 1626 1626 0
22 300 1646 1526 7.3 114 1626 1626 0
23 300 1684 1534 8.9 162 1648 1648 0
24 300 1744 1600 8.2 234 1708 1708 0
25 300 1718 1565 8.9 125 1714 1714 0
26 300 1746 1562 10.5 148 1716 1716 0
27 300 1756 1589 9.5 179 1736 1736 0
28 300 1932 1430 26 300 1894 1538 18.8
29 300 1990 1444 27.4 300 1932 1629 15.7
30 300 2066 1476 28.6 300 1990 1734 12.9

30

Data availability statement

The data that support the findings of this study are available from the corresponding
author, C.H. Gao, upon reasonable request.

References

Aerts, Babiche, Trijntje Cornelissens, and Kenneth Sörensen. 2021. “The joint order batch-
ing and picker routing problem: Modelled and solved as a clustered vehicle routing prob-
lem.” Computers & Operations Research 129: 105168. https://www.sciencedirect.com/
science/article/pii/S0305054820302859.

Arbex Valle, Cristiano, and John E Beasley. 2020. “Order batching using an approximation
for the distance travelled by pickers.” European Journal of Operational Research 284 (2):
460–484. https://www.sciencedirect.com/science/article/pii/S0377221720300436.

Attari, Mahdi Yousefi Nejad, Ali Ebadi Torkayesh, Behnam Malmir, and Ensiyeh Neyshabouri
Jami. 2021. “Robust possibilistic programming for joint order batching and picker routing
problem in warehouse management.” International Journal of Production Research 59 (14):
4434–4452. https://doi.org/10.1080/00207543.2020.1766712.

Bozer, Y. A., and J. W. Kile. 2008. “Order batching in walk-and-pick order picking systems.”
International Journal of Production Research 46 (7): 1887–1909. https://doi.org/10.
1080/00207540600920850.

Briant, Olivier, Hadrien Cambazard, Diego Cattaruzza, Nicolas Catusse, Anne-Laure Ladier,
and Maxime Ogier. 2020. “An efficient and general approach for the joint order batching
and picker routing problem.” European Journal of Operational Research 285 (2): 497–512.
https://www.sciencedirect.com/science/article/pii/S0377221720300977.

Cambazard, Hadrien, and Nicolas Catusse. 2018. “Fixed-parameter algorithms for rectilin-
ear Steiner tree and rectilinear traveling salesman problem in the plane.” European Jour-
nal of Operational Research 270 (2): 419–429. https://www.sciencedirect.com/science/
article/pii/S0377221718302716.

Cergibozan, Çağla, and A. Taşan. 2019. “Order batching operations: an overview of classifi-
cation, solution techniques, and future research.” Journal of Intelligent Manufacturing 30:
335–349.

Chen, Tzu-Li, Chen-Yang Cheng, Yin-Yann Chen, and Li-Kai Chan. 2015. “An efficient hy-
brid algorithm for integrated order batching, sequencing and routing problem.” Interna-
tional Journal of Production Economics 159: 158–167. https://www.sciencedirect.com/
science/article/pii/S0925527314003077.

Cheng, Chen-Yang, Yin-Yann Chen, Tzu-Li Chen, and John Jung-Woon Yoo. 2015. “Using a
hybrid approach based on the particle swarm optimization and ant colony optimization to
solve a joint order batching and picker routing problem.” International Journal of Production
Economics 170: 805–814. Decision models for the design, optimization and management of
warehousing and material handling systems, https://www.sciencedirect.com/science/
article/pii/S0925527315000894.

Clarke, G., and J. W. Wright. 1964. “Scheduling of Vehicles from a Central Depot to a Num-
ber of Delivery Points.” Operations Research 12 (4): 568–581. https://doi.org/10.1287/
opre.12.4.568.

Cornuéjols, Gérard, Jean Fonlupt, and Denis Naddef. 1985. “The traveling salesman problem
on a graph and some related integer polyhedra.” Math Program 33: 1–27.

de Koster, René, Tho Le-Duc, and Kees Jan Roodbergen. 2007. “Design and control of ware-
house order picking: A literature review.” European Journal of Operational Research 182 (2):
481–501. https://www.sciencedirect.com/science/article/pii/S0377221706006473.

Defryn, Christof, and Kenneth Sörensen. 2017. “A fast two-level variable neighborhood search
for the clustered vehicle routing problem.” Computers & Operations Research 83: 78–94.

31

https://www.sciencedirect.com/science/article/pii/S0305054817300369.
Elsayed, E. A. 1981. “Algorithms for optimal material handling in automatic warehousing

systems.” International Journal of Production Research 19 (5): 525–535. https://doi.
org/10.1080/00207548108956683.

Elsayed, E. A., and O. I. Unal. 1989. “Order batching algorithms and travel-time estimation
for automated storage/retrieval systems.” International Journal of Production Research 27
(7): 1097–1114. https://doi.org/10.1080/00207548908942610.

Gademann, A.J.R.M. (NOUD), JEROEN P. VAN DEN Berg, and Hassan H. VAN DER Hoff.
2001. “An order batching algorithm for wave picking in a parallel-aisle warehouse.” IIE
Transactions 33 (5): 385–398. https://doi.org/10.1080/07408170108936837.

Gibson, David R., and Gunter P. Sharp. 1992. “Order batching procedures.” European Jour-
nal of Operational Research 58 (1): 57–67. https://www.sciencedirect.com/science/
article/pii/0377221792902352.

Goetschalckx, MARC, and H. DONALD Ratliff. 1988. “Order Picking In An Aisle.” IIE Trans-
actions 20 (1): 53–62. https://doi.org/10.1080/07408178808966150.

Grosse, E. H., C. H. Glock, and R. Ballester-Ripoll. 2014. A simulated annealing approach
for the joint order batching and order picker routing problem with weight restrictions. Pub-
lications of Darmstadt Technical University, Institute for Business Studies (BWL) 65331.
Darmstadt Technical University, Department of Business Administration, Economics and
Law, Institute for Business Studies (BWL). https://ideas.repec.org/p/dar/wpaper/
65331.html.

Hall, RANDOLPH W. 1993. “DISTANCE APPROXIMATIONS FOR ROUTING MANUAL
PICKERS IN A WAREHOUSE.” IIE Transactions 25 (4): 76–87. https://doi.org/10.
1080/07408179308964306.

Helsgaun, Keld. 2000. “An effective implementation of the Lin–Kernighan traveling sales-
man heuristic.” European Journal of Operational Research 126 (1): 106–130. https://www.
sciencedirect.com/science/article/pii/S0377221799002842.

Ho, Y.-C., and Y.-Y. Tseng. 2006a. “A study on order-batching methods of order-picking in a
distribution centre with two cross-aisles.” International Journal of Production Research 44
(17): 3391–3417. https://doi.org/10.1080/00207540600558015.

Ho, YC, and YY Tseng. 2006b. “A study on order-batching methods of order-picking in a
distribution centre with two cross-aisles.” International Journal of Production Research -
INT J PROD RES 44: 3391–3417.

Hong, Soondo, Andrew L. Johnson, and Brett A. Peters. 2012. “Large-scale order batching
in parallel-aisle picking systems.” IIE Transactions 44 (2): 88–106. https://doi.org/10.
1080/0740817X.2011.588994.

J.Won, and S.Olafsson. 2005. “Joint order batching and order picking in warehouse oper-
ations.” International Journal of Production Research 43 (7): 1427–1442. https://doi.
org/10.1080/00207540410001733896.

Kaibel, Volker, and Marc Pfetsch. 2006. “Packing and Partitioning Orbitopes.” Mathematical
Programming 114.

Koster, M. B. M. De, E.S. Van der Poort, and M. Wolters. 1999. “Efficient orderbatching
methods in warehouses.” International Journal of Production Research 37 (7): 1479–1504.
https://doi.org/10.1080/002075499191094.

Kulak, Osman, Yusuf Şahin, andMustafa Taner. 2012. “Joint order batching and picker routing
in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms.”
Flexible Services and Manufacturing Journal - FLEX SERV MANUF J 24.

Letchford, Adam N., Saeideh D. Nasiri, and Dirk Oliver Theis. 2013. “Compact formulations
of the Steiner Traveling Salesman Problem and related problems.” European Journal of Op-
erational Research 228 (1): 83–92. https://www.sciencedirect.com/science/article/
pii/S037722171300091X.

Li, Jianbin, Rihuan Huang, and James B. Dai. 2017. “Joint optimisation of order batching and
picker routing in the online retailer’s warehouse in China.” International Journal of Pro-
duction Research 55 (2): 447–461. https://doi.org/10.1080/00207543.2016.1187313.

32

Manzini, Riccardo. 2012. Warehousing in the Global Supply Chain. Springer, London.
Marchet, Gino, Marco Melacini, and Sara Perotti. 2015. “Investigating order picking system

adoption: a case-study-based approach.” International Journal of Logistics Research and
Applications 18 (1): 82–98. https://doi.org/10.1080/13675567.2014.945400.

Masae, Makusee, Christoph H. Glock, and Eric H. Grosse. 2020. “Order picker routing in ware-
houses: A systematic literature review.” International Journal of Production Economics 224:
107564. https://www.sciencedirect.com/science/article/pii/S0925527319304050.

Padberg, Manfred, and Giovanni Rinaldi. 1991. “A Branch-and-Cut Algorithm for the Reso-
lution of Large-Scale Symmetric Traveling Salesman Problems.” SIAM Rev. 33 (1): 60–100.
https://doi.org/10.1137/1033004.

Pan, C-H., and S-Y. Liu. 1995. “A comparative study of order batching algo-
rithms.” Omega 23 (6): 691–700. https://www.sciencedirect.com/science/article/
pii/0305048395000380.

Petersen, Charles. 1997. “An Evaluation of Order Picking Routeing Policies,.” International
Journal of Operations & Production Management 17: 1098–1111.

Ratliff, H. Donald, and Arnon S. Rosenthal. 1983. “Order-Picking in a Rectangular Warehouse:
A Solvable Case of the Traveling Salesman Problem.” Oper. Res. 31 (3): 507–521. https:
//doi.org/10.1287/opre.31.3.507.

Roodbergen, Kees Jan, and RenÉde Koster. 2001. “Routing methods for warehouses with
multiple cross aisles.” International Journal of Production Research 39 (9): 1865–1883.
https://doi.org/10.1080/00207540110028128.

ROSENWEIN, M. B. 1996. “A comparison of heuristics for the problem of batching orders
for warehouse selection.” International Journal of Production Research 34 (3): 657–664.
https://doi.org/10.1080/00207549608904926.

Ruben, Robert A., and F. Robert Jacobs. 1999. “Batch Construction Heuristics and Storage
Assignment Strategies for Walk/Ride and Pick Systems.” Management Science 45 (4): 575–
596. https://doi.org/10.1287/mnsc.45.4.575.

Scholz, A., and G. Wäscher. 2017. “Order Batching and Picker Routing in manual order
picking systems: the benefits of integrated routing.” Central European Journal of Operations
Research 25.

Scholz, André, Sebastian Henn, Meike Stuhlmann, and Gerhard Wäscher. 2016. “A new math-
ematical programming formulation for the Single-Picker Routing Problem.” European Jour-
nal of Operational Research 253 (1): 68–84. https://www.sciencedirect.com/science/
article/pii/S0377221716300388.

Scholz, André, Daniel Schubert, and Gerhard Wäscher. 2017. “Order picking with multiple
pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Se-
quencing, and Picker Routing Problems.” European Journal of Operational Research 263 (2):
461–478. https://www.sciencedirect.com/science/article/pii/S0377221717303855.

Theys, Christophe, Olli Bräysy, Wout Dullaert, and Birger Raa. 2010. “Using a TSP heuristic
for routing order pickers in warehouses.” European Journal of Operational Research 200 (3):
755–763. https://www.sciencedirect.com/science/article/pii/S0377221709000514.

Tompkins, J., J. White, Yavuz Bozer, and J. Tanchoco. 2010. Facilities Planning. John Wiley
& Sons: New Jersey.

Tsai, C.-Y., J. J. H. Liou, and T.-M. Huang. 2008. “Using a multiple-GA method to solve
the batch picking problem: considering travel distance and order due time.” Interna-
tional Journal of Production Research 46 (22): 6533–6555. https://doi.org/10.1080/
00207540701441947.

Valle, Cristiano, John Beasley, and Alexandre Cunha. 2016. “Modelling and Solving the Joint
Order Batching and Picker Routing Problem in Inventories.” In International Symposium
on Combinatorial Optimization. ISCO 2016: Combinatorial Optimization, Vol. 9849, 05,
81–97.

Valle, Cristiano Arbex, John E. Beasley, and Alexandre Salles da Cunha. 2017. “Optimally
solving the joint order batching and picker routing problem.” European Journal of Oper-
ational Research 262 (3): 817–834. https://www.sciencedirect.com/science/article/

33

pii/S0377221717303004.
van Gils, Teun, An Caris, Katrien Ramaekers, and Kris Braekers. 2019. “Formulating and

solving the integrated batching, routing, and picker scheduling problem in a real-life spare
parts warehouse.” European Journal of Operational Research 277 (3): 814–830. https://
www.sciencedirect.com/science/article/pii/S0377221719302516.

van Gils, Teun, Katrien Ramaekers, An Caris, and René B.M. de Koster. 2018. “Design-
ing efficient order picking systems by combining planning problems: State-of-the-art clas-
sification and review.” European Journal of Operational Research 267 (1): 1–15. https:
//www.sciencedirect.com/science/article/pii/S0377221717307920.

Vannelli, Anthony, and K. Kumar. 1986. “Clustering analysis: Models and algorithms.” Control
and Cybernetics 15.

Vaughan, T. S. 1999. “The effect of warehouse cross aisles on order picking efficiency.” In-
ternational Journal of Production Research 37 (4): 881–897. https://doi.org/10.1080/
002075499191580.

Wäscher, Gerhard. 2004. “Order Picking: A Survey of Planning Problems and Methods.” In
Supply Chain Management and Reverse Logistics, 01.

34

Appendix

Notation Explanation

Sets
T set of available trolleys
O set of orders
Lo set of picking locations of order o
V set of all locations
VL set of picking locations
VI set of artificial locations
Vsub(i) set of picking locations within subaisle i

Ẽ set of directed edges connecting neighboring locations

Ẽ′ set of directed edges connecting neighboring artificial loca-
tions while ignoring picking locations

δ(S) set of undirected edges with one end in set S

δ+(S)/δ−(S) set of directed edges in Ẽ that leave/enter set S

η+(S)/η−(S) set of directed edges in Ẽ′ that leave/enter set S
Wsub the number of subaisles

Constants
s the origin of the warehouse
(u, v) the ordered pair of location u and location v, which repre-

sents a directed edge
[u, v] the unordered pair of location u and location v, which rep-

resents an undirected edge
f(i)/l(i) the northern/southern artificial location of subaisle i
n(v)/s(v) the adjacent northern/southern location of v
QN (v)/QS(v)/QE(v)/QW (v) the adjacent northern/southern/eastern/western artificial

location of artificial location v
bo size of order o
B available capacity of a trolley

Variables

xtuv Binary variable that takes value 1 if and only if (u, v) (∈ Ẽ)
is traversed by walk t

ytv Binary variable that takes value 1 if and only if trolley t
visits location v

zot Binary variable that takes value 1 if and only if trolley t
picks order o

αtv/βtv Binary variable that takes value 1 only if there exists a
straight path connecting the northern/southern artificial lo-
cation and v in walk t

γtuv Binary variable that takes value 1 only if [u, v] (∈ Ẽ′) is
traversed by walk t

σv0
tuv Continuous variable that indicate the volume of flow from

artificial location v0 passing through arc (u, v) (∈ Ẽ′) in
walk t

35

Formulation Constraints Explanation

For Analysis
Psub (19)-(25) feasible region of subaisle cuts
Pbasic (9)-(18) the basic formulation for the JOBPRP
PA (9)-(25) the basic formulation with subaisle cuts
Pg (26)-(42) a formulation which only force artificial locations to

be in the same connected component
Pf (26)-(34), (36)-(46) a flow-based formulation which only force artificial lo-

cations to be in the same connected component
PG (19)-(42) a non-compact improved formulation for the JOBPRP
PF (19)-(34), (36)-(46) a flow-based improved formulation for the JOBPRP
P 1
U (52)-(63) a TSP-based no-reversal formulation for a single-block

warehouse
P 2
U (64)-(74) a TSP-based no-reversal formulation for a 2-block

warehouse

For Experiment
PO - Pbasic with the valid inequalities defined in (Valle,

Beasley, and da Cunha 2017) and column inequalities
P+
G - PG with aisles cuts, artificial vertex reversal con-

straints and column inequalities
P+
F - PF with artificial vertex reversal constraints and col-

umn inequalities
PU - the no-reversal formulation in (Valle, Beasley, and da

Cunha 2017) with column inequalities
P 1+
U - P 1

U with column inequalities

P 2+
U - P 2

U with column inequalities

36

Table 9. Detailed results for the basic cuts

PO+ basic cuts P+
G
+ basic cuts P+

F
+ basic cuts

∆ O T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%)

5 5 0.34 346 346 0 0.21 346 346 0 0.4 346 346 0
10 6.96 578 578 0 3.23 578 578 0 66 578 578 0
15 26 650 650 0 9.4 650 650 0 46 650 650 0
16 406 766 766 0 37 766 766 0 292 766 766 0
17 239 802 802 0 46 802 802 0 281 802 802 0
18 2400 870 806 7.4 95 840 840 0 830 840 840 0
19 2020 856 856 0 72 856 856 0 605 856 856 0
20 2067 864 864 0 75 864 864 0 745 864 864 0
21 2400 902 846 6.2 270 892 892 0 2400 892 850 4.7
22 2400 892 886 1.1 190 892 892 0 1045 892 892 0
23 2400 918 868 5.5 416 908 908 0 1465 908 908 0
24 2400 - 733 - 2400 1064 934 12.2 2400 1076 820 23.8
25 2400 1112 890 20 2400 1108 944 14.8 2400 1120 839 25.1
30 2400 1232 844 31.5 2400 1212 942 22.3 2400 1202 862 28.3

10 5 0.08 368 368 0 0.12 368 368 0 0.09 368 368 0
10 45 656 656 0 8.67 656 656 0 27 656 656 0
15 122 874 874 0 36 874 874 0 224 874 874 0
16 138 926 926 0 65 926 926 0 430 926 926 0
17 408 960 960 0 97 960 960 0 501 960 960 0
18 410 970 970 0 151 970 970 0 1055 970 970 0
19 300 978 978 0 156 978 978 0 1421 978 978 0
20 524 984 984 0 166 984 984 0 1640 984 984 0
21 1410 990 990 0 281 990 990 0 2192 990 990 0
22 2203 1000 1000 0 125 1000 1000 0 2400 1014 938 7.5
23 2400 1344 743 44.7 2400 1132 1011 10.7 2400 1152 926 19.6
24 2400 1184 911 23.1 2400 1168 1058 9.4 2400 1194 937 21.5
25 2400 1230 945 23.2 2400 1220 991 18.8 2400 1196 962 19.6
30 2400 1306 958 26.6 2400 1286 1052 18.2 2400 1288 954 25.9

20 5 13 570 570 0 1.29 570 570 0 8.7 570 570 0
10 57 912 912 0 47 912 912 0 113 912 912 0
15 2400 1022 1012 1 63 1022 1022 0 385 1022 1022 0
16 2400 1200 1088 9.3 377 1200 1200 0 1607 1200 1200 0
17 2400 1282 1047 18.3 1602 1250 1250 0 2400 1250 1183 5.4
18 2400 1330 1093 17.8 2400 1296 1216 6.2 2400 1302 1160 10.9
19 2400 1342 1188 11.5 1799 1304 1304 0 2400 1322 1187 10.2
20 2400 1352 1115 17.5 2400 1332 1266 5 2400 1352 1121 17.1
21 2400 1620 903 44.3 2400 1520 1193 21.5 2400 1518 1036 31.8
22 2400 1820 966 46.9 2400 1532 1180 23 2400 1536 1107 27.9
23 2400 - 989 - 2400 1598 1175 26.5 2400 1618 1044 35.5
24 2400 - 916 - 2400 1640 1185 27.7 2400 1652 1097 33.6
25 2400 1736 987 43.1 2400 1674 1164 30.5 2400 1654 1086 34.3
30 2400 - 979 - 2400 1934 1104 42.9 2400 1940 970 50

37

Table 10. Detailed results for the single traversing constraints

PO+ single traversing P+
G
+ single traversing P+

F
+ single traversing

∆ O T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%) T(seconds) UB LB GAP(%)

5 5 0.17 346 346 0 0.17 346 346 0 0.38 346 346 0
10 5.3 578 578 0 2.16 578 578 0 27 578 578 0
15 18 650 650 0 17 650 650 0 36 650 650 0
16 223 766 766 0 33 766 766 0 128 766 766 0
17 1460 802 802 0 40 802 802 0 208 802 802 0
18 1681 840 840 0 68 840 840 0 781 840 840 0
19 2400 872 831 4.7 78 856 856 0 363 856 856 0
20 2400 888 755 15 139 864 864 0 701 864 864 0
21 2400 898 871 3 161 892 892 0 1880 892 892 0
22 2400 898 857 4.6 180 892 892 0 735 892 892 0
23 2400 908 887 2.3 251 908 908 0 1385 908 908 0
24 2400 1112 819 26.3 2400 1062 933 12.1 2400 1078 831 22.9
25 2400 1136 764 32.7 2400 1112 941 15.4 2400 1098 894 18.6
30 2400 1234 847 31.4 2400 1194 962 19.4 2400 1198 919 23.3

20 5 0.07 368 368 0 0.13 368 368 0 0.2 368 368 0
10 33 656 656 0 6.44 656 656 0 30 656 656 0
15 162 874 874 0 50 874 874 0 313 874 874 0
16 296 926 926 0 45 926 926 0 253 926 926 0
17 398 960 960 0 168 960 960 0 447 960 960 0
18 1519 970 970 0 91 970 970 0 895 970 970 0
19 742 978 978 0 195 978 978 0 2400 978 958 2
20 297 984 984 0 155 984 984 0 1502 984 984 0
21 1015 990 990 0 125 990 990 0 1515 990 990 0
22 325 1000 1000 0 200 1000 1000 0 1449 1000 1000 0
23 2400 1178 923 21.6 2400 1128 1006 10.8 2400 1150 939 18.3
24 2400 1188 904 23.9 2400 1162 1021 12.1 2400 1182 904 23.5
25 2400 1192 875 26.6 2400 1210 1039 14.1 2400 1196 952 20.4
30 2400 1320 862 34.7 2400 1296 1074 17.1 2400 1268 962 24.1

5 5 8.9 570 570 0 1.1 570 570 0 4.4 570 570 0
10 125 912 912 0 21 912 912 0 157 912 912 0
15 2400 1022 1008 1.4 68 1022 1022 0 315 1022 1022 0
16 2400 1238 1045 15.6 530 1200 1200 0 2394 1200 1200 0
17 2400 1282 938 26.8 1266 1250 1250 0 2400 1250 1190 4.8
18 2400 1318 1187 9.9 1568 1288 1288 0 2400 1308 1076 17.7
19 2400 1350 1114 17.5 2400 1316 1251 4.9 2400 1308 1168 10.7
20 2400 1360 1072 21.2 2400 1332 1264 5.1 2400 1358 1109 18.3
21 2400 1744 1014 41.9 2400 1510 1187 21.4 2400 1542 1094 29.1
22 2400 1590 999 37.2 2400 1534 1206 21.4 2400 1566 1116 28.7
23 2400 1742 1020 41.4 2400 1606 1165 27.5 2400 1618 1117 31
24 2400 1672 940 43.8 2400 1660 1143 31.1 2400 1664 1133 31.9
25 2400 - 917 - 2400 1680 1191 29.1 2400 1672 1060 36.6
30 2400 - 967 - 2400 1896 1134 40.2 2400 1944 987 49.2

38

