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Automated scene interpretation has benefited from advances
in machine learning, and restricted tasks, such as face detection,
have been solved with sufficient accuracy for restricted settings.
However, the performance of machines in providing rich semantic
descriptions of natural scenes from digital images remains highly
limited and hugely inferior to that of humans. Here we quantify
this “semantic gap” in a particular setting: We compare the effi-
ciency of human and machine learning in assigning an image to
one of two categories determined by the spatial arrangement of
constituent parts. The images are not real, but the category-defin-
ing rules reflect the compositional structure of real images and
the type of “reasoning” that appears to be necessary for semantic
parsing. Experiments demonstrate that human subjects grasp the
separating principles from a handful of examples, whereas the
error rates of computer programs fluctuate wildly and remain far
behind that of humans even after exposure to thousands of exam-
ples. These observations lend support to current trends in compu-
ter vision such as integrating machine learning with parts-based
modeling.

abstract reasoning ∣ human learning ∣ pattern recognition

Image interpretation, effortless and instantaneous for people,
remains a fundamental challenge for artificial intelligence.

The goal is to build a “description machine” that automatically
annotates a scene from image data, detecting and describing ob-
jects, relationships, and context. It is generally acknowledged that
building such a machine is not possible with current methodology,
at least when measuring success against human performance.

Some well-circumscribed problems have been solved with
sufficient speed and accuracy for real-world applications. Almost
every digital camera on the market today carries a face detection
algorithm that allows one to adjust the focus according to the
presence of humans in the scene; and machine vision systems rou-
tinely recognize flaws in manufacturing, handwritten characters,
and other visual patterns in controlled industrial settings.

However, such cases usually involve a single quasi-rigid object
or an arrangement of a few discernible parts and thus do not dis-
play many of the complications of full-scale “scene understand-
ing.” Moreover, achieving high accuracy usually requires intense
“training” with gigantic amounts of data. Systems that attempt to
deal with multiple object categories, high intraclass variability,
occlusion, context, and unanticipated arrangements, all of which
are easily handled by people, typically perform poorly. Such
visual complexity seems to require a form of global reasoning that
uncovers patterns and generates high-level hypotheses from local
measurements and prior world knowledge.

In order to go beyond general observation and speculation, we
have designed a controlled experiment to measure the difference
in performance between computer programs and human subjects.
The Synthetic Visual Reasoning Test (SVRT) is a series of 23
classification problems involving images of randomly generated
shapes; see Fig. 1. Whereas many factors affect the performance
of both machines and people in analyzing real images, the SVRT
is designed to focus on one in particular—abstract reasoning. As

a result, we have purposely removed many of the subtasks and
complications encountered in parsing images acquired from
natural scenes: There is no need to recognize natural objects or
to account for volume, illumination, texture, shadow, or noise.
Moreover, being planar and randomly generated, the shapes are
“unknown” to humans, which ameliorates our advantage over
machines due to extensive experience with everyday objects and
a three-dimensional world.

For each problem there are two disjoint “categories” of
images. Fig. 1 displays one example from each category for eight
of the 23 problems. Classification is at the level of relationships,
not individual shapes; the difference between the two categories
boils down to a compositional “rule.” Several of these rules are
illustrated in Fig. 1, including “inside,” “in between,” and “same.”
For each category in each problem we can generate as many ex-
amples of images as desired. Formally, in fact, each category is
defined by a probability distribution over images (see Methods),
and generating an image from the category means calling a com-
puter program to sample from the corresponding distribution.

Assessing how well machines can perform is less straightfor-
ward than with people. Computer vision supports a wide variety
of competing paradigms (see Discussion). One approach is super-
vised and unstructured machine learning: a computer program
whose input is a given set of images together with their true labels
and whose output is a decision rule for labeling a new image
(see Methods). This approach accounts for many of the success
stories in computer vision (e.g., cell phone face detectors). Other
prominent strategies for building image interpretation machines
include constructing stochastic, generative image models, likeli-
hood-based statistical inference, and designing biologically-
inspired hierarchical models, as well as many hybrids of such
models and machine learning (see Discussion).

Our goal here is to see what “off-the-shelf” machine learning
technology can do—namely, methods that do not require custo-
mized tuning for the SVRT. We are interested in both accuracy
and learning efficiency, meaning the number of training examples
necessary to either “grasp the rule” (for humans) or reach a given
level of accuracy (machines).

SVRT
For each of the 23 problems the objective is to assign an observed
128 × 128 binary image I to one of two categories. From a human
perspective, the SVRT is designed so that the two categories can
be perfectly separated once the underlying rule is understood.
See Methods for the technical definitions of the categories in
the context of statistical learning.
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In each case, what distinguishes the two categories is some
gestalt-like property of the global spatial arrangement of parts,
which are randomly generated, highly irregular closed contours
(see Fig. 1). The number of possible parts is very large, and
brute-force memorization of those already seen serves no pur-
pose. Indeed, the categories cannot be separated based on the
appearance, spatial positioning, or any other geometric or topo-
logical property of individual parts. Separation must be “holistic”
in the sense of discovering the principles that determine how the
parts are combined into a global pattern. A complete description
of the SVRT, including illustrations and an expanded discussion
of the correspondences between problems and concepts, appears
in SI Appendix.

Needless to say, these parts and arrangements represent a
gross oversimplification of the natural world. In addition to the
absence of intensity variations, pixel-level noise and other proper-
ties of natural images, real physical components such as limbs,
leaves, handles, and windows are individually recognizable and
help us to identify the categories to which they belong. Here,
by design, the individual shapes are not meaningful. Nonetheless,
parsing visual data also involves detecting organizational princi-
ples similar to those underlying the SVRT (proximity, similarity,
symmetry, etc.); indeed, the same “part”may appear in many dif-
ferent objects, and parts themselves are typically composed of
subparts that may not be so easy to recognize except in the con-
text of other parts. Many would argue (see Discussion) that the
ability of humans to annotate scenes with words derives at least
partially from the ability to evaluate the plausibility of arrange-
ments of parts at many scales and levels of semantic resolution
(1–4).

Hence the simplicity of the images in the SVRT, and the fact
that the parts are very weakly informative about the category,
necessitates that whatever “reasoning” is to occur must take into
account the types of rules listed above, which are involved in most
challenging computer vision problems.

Results
Human Experiments. Each participant completed the same 23
problems in a random order. For each problem, they were shown
one instance at a time selected randomly with equal probability
from either a set of instances that satisfied the current rule (i.e.,
one category) or a set that did not satisfy the rule (i.e., from the
other category). See Fig. 1 for examples and Methods for a more
detailed description of the stimuli. The participant assigned the
instance to one of the two categories. Feedback was provided
after each response, and all instances viewed so far for that pro-
blem remained on the screen, clustered according to their correct

categorization, so they could be used as the problem progressed
to help learn the rule (see Fig. 2 and Methods for more details).

Fig. 3 summarizes human performance on this task. The mean
number of instances required to learn each rule (see Methods) is
plotted in Fig. 3A against the number of subjects (out of 20) who
failed to learn that rule; these two measures were highly corre-
lated (r ¼ 0.929, p < 001). Performance on four of the problems
was categorically poorer than on the rest; these “hard” problems
correspond to the four points clustered in the upper right of
Fig. 3A and are identified in SI Appendix. Participants viewed
an average of 6.27� 0.85 instances before successfully learning
each rule. Fig. 3B shows the frequency of number of instances
viewed before learning the rule for the 397 successfully learned
rules (23 rules × 20 subjects—63 failures). Seventeen of the 20
participants successfully learned 19 or more of the 23 problems.

Machine Experiments.We have used two popular machine learning
algorithms in our experiments: boosting with the standard
Adaboost procedure (5) and a support vector machine with a
Gaussian kernel (6). See Methods for the experimental settings,
including parameter choices and image preprocessing (feature
design). We observed lower error rates with boosting, and the

#21#18#12#11#1 #4 #9 #10

Fig. 1. A selection of visual categorization problems. One instance from Category 1 (top) and one instance from Category 2 (bottom) is shown for each of eight
different problems. Each instance is a binary image of resolution 128 × 128 pixels. In problem #1 both categories are represented by two randomly generated
and randomly positioned shapes; the difference is that the two shapes are identical in Category 1. The underlying differentiating “rule” in problem #4 is
“outside vs. inside,” whereas in problem #9 the largest of the three shapes is “in between” the two smaller ones in Category 1 but not in Category 2
and in problem #21 one of the shapes in category one can bemade to coincide with the other one by translating, scaling, and rotating. The difference between
the two categories in each of the other four problems can also be “explained” in terms of concepts such as distance, symmetry, and reflection. Multiple
instances of each of the 23 problems can be found in the SI Appendix.

Fig. 2. Example screen shot of the interface for the human experiments. This
participant is working on problem #13, has already classified six training
instances (whether right or wrong), and is considering the seventh one, dis-
played at the top center. The previous instances are shown correctly classified
on the left (Category 1) and right (Category 2). Responses were unspeeded.
A session for a given problem and individual terminates following either a
success (7 correct responses in a row) or failure (35 instances categorized
without success).
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results reported in this section were obtained with this algorithm;
additional results with the support vector machine are given in
SI Appendix.

Performance varies considerably depending on the problem
and the number of training examples, with prediction rates span-
ning the full range from 0% to 50%, as shown in Fig. 4. However,
some trends are evident. Performance strictly increases with both
the number of training samples (Fig. 4A) and the complexity
of the image processing in terms of the richness of the features
extracted from the raw binary images prior to machine learning
(Fig. 4B).

With only 10 examples of each category for training, the error
remains virtually at 50% for every problem. Some problems could
not be solved with even 10,000 training examples, with the error
rate remaining above 25% for six problems (Fig. 4A). This is in
sharp contrast with human performance (see Discussion). As for
the effect of the choice of features, for multiple problems the
error rate dropped from values above 30% to values below 5%
when moving from the simplest image processing scheme to the
most complex one, in some cases because adding Fourier features
exposed symmetries (see Fig. 4B and problems #1, #16, and #22
in SI Appendix).

Discussion
The SVRTexhibits patterns that are easy to spot and characterize
for humans and extremely difficult to learn for generic machine

learning systems. Humans solved the problems after seeing fewer
than 20 examples in most cases. After seeing at most a few tens
of examples, and usually many fewer, more than 90% of the par-
ticipants solved 14 of the 23 problems, and another group of five
problems was solved by 75%. In contrast, even with 10,000 exam-
ples for training and complex image preprocessing, the boosting
machine learning algorithm was only able to solve 11 of the pro-
blems at an error rate below 10% and another five with an error
rate below 25% (see Fig. 5 for comparison with human perfor-
mance). If the number of training examples is of the same order
as for human learning, the machine performance amounts to ran-
dom guessing.

Still, it has been well-known for a long time from the theory
of nonparametric inference that even naive machine learning
techniques, such as nearest-neighbor classification, can achieve
optimal performance in the large-sample limit (7, 8). And we
do observe a marked improvement as the number of training ex-
amples increases, albeit on a log scale. However, the results are
still far from optimal (zero error rate) even after 10,000 examples.

People tend to characterize a category in phrases such as: “the
two shapes are in contact,” “the two halves of the picture are
symmetric,” “the shapes are aligned with the large one between
two small ones.” Many of the rules that distinguish instances in
each category of a given problem instantiate one or more of
the Gestalt principles of perceptual organization (9, 10), includ-
ing proximity, similarity, symmetry, inclusion, collinearity, and
others. They are higher-order (nonlocal) configural properties of
the displays that biological visual systems have evolved to per-
ceive effortlessly as part of scene understanding. However, we
are not drawing conclusions about natural visual recognition from
the performance of humans on the SVRT. In addition to the fact
that the SVRT images are nothing like natural images, it is
not clear whether the observed performance of humans on the
SVRTwould be maintained by young children, under brief time
exposures, or without batch learning or any training in logical
reasoning.

Due to the black box nature of the computer algorithms, which
learn very high-dimensional decision boundaries, it is difficult to
measure the extent to which the resulting classifiers “understand”
the categories. In particular, the machine learning methods we
have used cannot directly extract and process information about
the overall geometry of the scene. They must “learn” solely from
elementary, statistical local measurements (see Methods). They
only have direct access to information of the sort “there is an
elongated dark area,” “the black pixels are spread out,” “there
is a patch with edges all in the same direction.” In particular,
there is no platform for learning concepts like “symmetric” or
“aligned”—i.e., no hard-wired mechanism for constructing an
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Fig. 3. Summary of human performance. There were 20 participants and
23 problems for a total of 460 attempts. Of these, 63 were not successful.
(A) Given successful learning, the mean number of trials required to learn the
rule plotted against the number of participants who failed to learn the rule.
Each point is a problem. (B) Distribution of the number of instances required
for participants to successfully learn the rule (i.e., correctly categorize seven
subsequent instances without error) over the 397 successful attempts.
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Fig. 4. Summary of machine performance. Both graphs show error rates on
the 23 problems, organized in three arbitrary subgroups ranked by difficulty.
The blue group contains all the problems for which the machine learning
reached a final error rate greater than 25%, the red group contains the pro-
blems for which the best error rate was lower than 6%. The graph (A) shows
the error rate as a function of the number of examples available for training,
using all the image features. The error rate fluctuates around 50%when only
10 examples are used, and for almost all problems, the error rate decreases
sharply when the number of samples increases. Graph B shows the error rates
with 10,000 training examples as a function of the complexity of the image
features used. The features in group 1 compute the number of black pixels
over rectangular areas of varying sizes, those in group 2 are based on edge
statistics, and those of group 3 are related to the spectral properties of the
image (Fourier and wavelet coefficients).
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Fig. 5. Comparison of human and machine performance in terms of learn-
ing efficiency and error rate. In both plots, the horizontal axis is the error rate
of the predictor trained with boosting and 10,000 instances per problem and
the most complete feature set. The vertical axis in A is the average number of
samples necessary for human participants to learn the rule, and the vertical
axis in B is number of participants (out of 20) failing to learn the concept after
35 examples.
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abstract, category-specific model of the arrangements of shapes.
Instead, such methods rely on observing a great many sample
configurations in each category in order to reach even modest
error rates.

There is one aspect of the machine learning that can be decon-
structed by observing the features selected by the boosting algo-
rithm: an exploitation of statistical cues that may at first seem
irrelevant to the actual structure of the problem. Whereas we
attempted to eliminate gross intensity differences between the
categories (e.g., equalizing the average number of black pixels),
many “tells” slipped through. For instance, samples of problem
#8 are composed of two closed shapes of different size, with the
small one enclosed by the large one in the first category but not in
the second category. As a result, the categories can be separated
with a very crude test on the variance of the black pixel locations,
these being more “spread out” in category two. In fact, simply
thresholding the standard statistical measure of variance yields
an error rate of only 9%. The same “trick” applies to several
other problems, and similar tells can be used to detect symmetry
with respect to a centered axis, because the distribution of black
pixels is more dispersed horizontally and more peaked vertically.
In the end, a few global, exact geometrical properties are per-
ceived through a multitude of cues reflecting small statistical dif-
ferences between the distribution of mass in the two categories.

In computer vision there is a long history of variations on the
intuitive strategy of decomposing complex entities into their con-
stituent parts in order to facilitate recognizing common objects
in complex natural scenes (11). For instance, a car is composed
of wheels, doors, windows, and other components that are indi-
vidually recognizable and that come together with a preferred
geometry. Whereas there has been considerable progress in ob-
ject recognition based on explicitly compositional models (1, 2,
4), as well as some biologically inspired ones (12), the most pop-
ular techniques until recently (13–15) were surprisingly closer to
pure machine learning without explicitly introducing either com-
positions or invariance to geometric deformations. Such methods
do not accommodate variability other than changes in illumina-
tion and local deformations. Only multilayer neural networks
have been leveraging more complex models, which can be seen
as parts and composition of parts (16).

More recently, machine learning methods have evolved pro-
gressively toward the part-based techniques, either by combining
simple part characterizations with absolute constraints on their
locations (17) or by introducing latent variables related to the
location of parts (3, 18, 19). In fact, methods currently considered
state-of-the-art on canonical benchmarks belong to this family
and combine discriminative part detectors with simple models
of arrangements of parts (20). Also, training procedures for mul-
tilayer neural networks have been improved to leverage large sets
of unsupervised data, which allows one to discover richer latent
structures (21).

In summary, we have demonstrated the poor performance of
model-free machine learning, both in absolute terms and relative
to humans, on visual tasks designed to require abstract reasoning
about scene constituents. People learn far faster and perform far
better than machines on the SVRT, and machines appear to lack
the proper representations to handle abstract reasoning. Whereas
these observations lend support to current trends in computer
vision to merge tabula rasa machine learning with hierarchical
image models, it is still doubtful that any current method could
match human performance on the SVRT, namely near-perfect
categorization with at most tens of examples.

Methods
Human Experiments. Twenty members of the Johns Hopkins University com-
munity (14 women and 6 men, ages 18–21) each participated in a one-hour
session and received partial course credit. All participants had either normal
or corrected-to-normal vision. Each participant signed an informed consent

form and participated under a protocol that was approved by the JHU Home-
wood Institutional Review Board.

For each pattern classification problem, binary images containing config-
urations of shapes (see Fig. 1 for examples) were displayed one at a time
and classified as one of two categories. Images from category one were con-
sidered to satisfy some discriminating rule. Participants had to learn the pro-
blem-dependent classification rule by trial and error. Stimuli were presented
and responses collected using a custom script written with the PsychToolbox
extension of MATLAB on a PC.

For each problem, the participant first saw an instance subtending 6.7 ° of
visual angle in the upper center of the screen (Fig. 2); it remained on the
screen until the participant responded. The participant pressed one key to
indicate that the exemplar belonged to category one (satisfied the rule)
and another key to indicate that it did not—i.e., belonged to category
two (did not satisfy the rule). The responses were unspeeded. Following their
response, feedback text appeared (either “Correct!” or “Incorrect”), and the
current instance then appeared (along with previous instances from that
problem) within a box on the lower left of the computer screen if it was
in fact an instance that satisfied the current rule, or lower right if not. These
previously seen stimuli (subtending 3.4 ° of visual angle) remained on the
screen throughout the rest of the current problem, so the participant could
refer to them as they worked on the current problem. The feedback text
remained on the screen for 0.9 sec before the next instance appeared.

Participants continued classifying images until they made seven correct
responses in a row (counted as a “success”) or until they had seen a total
of 35 instances without success (counted as a “failure”). They received feed-
back for the problem (“Good job!” or “Nice try”) and were then prompted
to press the space bar on the keyboard when they were ready to move on to
the next problem.

Each participant completed the same 23 classification problems. Partici-
pant 1 completed the problems in a random order, and participant 2 com-
pleted the problems in the reverse order; participant 3 completed the
problems in a new random order, and participant 4 in the reverse order;
and so forth. A large pool of instances from each category was randomly
generated for each problem using the algorithm described in the text. Each
instance was shown only once in the entire experiment.

Machine Experiments. Each problem is represented by two probability distri-
butions P1 and P2 over binary images. These distributions define the two
categories: If P1ðIÞ > 0 (resp., P2ðIÞ > 0) then image I belongs to category
one (resp., category two), and no image satisfies both positivity conditions.
In the language of statistical learning, the Bayes error rate is zero. Sampling
from P1 and P2 is very simple, and consequently one can generate as many
independent instances as desired in order to assess the effect of the number
of training examples—previously seen correctly labeled instances—on the
ability of either a human or machine to correctly classify a new sample.

Machine learning techniques combine two modules addressing comple-
mentary aspects of the problem. The first module is called a feature extractor.
It is hand-designed and remains unmodified during learning. The purpose is
to compute numerical properties of the raw image data that may be useful
in discriminating between the two categories. A useful property is then one
whose typical values are appreciably different from one subpopulation of
images to another in a statistical sense.

The second module is the machine learning algorithm per se. The input is
the list of numerical values computed by the feature extractor (the “feature
vector”), and the output is the predicted category for the feature vector. The
decision rule is characterized by a very large number of parameters (weights,
synaptic coefficients, etc.), and training consists in optimizing these para-
meters so that predictions on the training data are as consistent as possible
with the known labels of the images. As a result, the nature of decision-mak-
ing is usually difficult to describe in ordinary language (“black boxes”).

We used two standard learning methods: boosting of stumps and SVM
with a Gaussian kernel. Each method was trained with three different groups
of features of increasing complexity. We did not use features that require
training. The features of group 1 compute the number of black pixels in a
rectangular subregion of the image for a large number of such regions; those
in group 2 also gather information about the distribution of edges (sharp
local transitions) in the image; and those of group 3 add spectral properties
of the image (Fourier and wavelet coefficients). All of these features are
generic and are not dedicated or tuned to the types of images or category
differences.

The boosting method is standard Adaboost with feature sampling. During
training, it iteratively selects 1,000 “stumps,” each defined by a feature, a
threshold, and a signed weight. For each stump, we sample 100 features
and compute for each the optimal threshold and weight. Because the fea-
tures are organized into families, we sample each feature by first picking
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a family at random uniformly, and then a feature at random in this family,
also uniformly. This procedure ensures a uniform sampling among families of
features, despite their strong difference of cardinality. During testing, each
stump votes for one of the two categories depending on the observed value
of feature relative to the learned threshold. Hence, for instance, if a parti-
cular feature usually has higher values for images in the first category,
the boosting algorithm may select it and assign it a positive weight.

The second technique we used is a support vector machine with a Gaus-
sian kernel. It associates a weight with each training example and classifies a
test image depending on its similarity to the training samples and their
weights. The measure of similarity between images depends on the features.
For computational reason, we do not work with all the features but randomly

sample 10,000 of them. In addition to the choice of features, the SVM de-
pends critically on two parameters: the penalty constant C and the variance
σ of the Gaussian kernel. Both choices were optimized through fivefold
cross-validation. No prefiltering of the features was performed for the SVMs.
This may explain in part the limited improvement in performance with more
complex feature groups when compared with boosting.
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