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Quantum information science addresses how uniquely quantum
mechanical phenomena such as superposition and entanglement
can enhance communication, information processing, and precision
measurement. Photons are appealing for their low-noise, light-
speed transmission and ease of manipulation using conventional
optical components. However, the lack of highly efficient optical
Kerr nonlinearities at the single photon level was a major obstacle.
In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed
that such an efficient nonlinearity can be achieved using only linear
optical elements, auxiliary photons, and measurement [Knill E,
Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed
a heralded controlled-NOT (CNOT) gate for scalable quantum com-
putation using a photonic quantum circuit to combine two such
nonlinear elements. Here we experimentally demonstrate a KLM
CNOT gate. We developed a stable architecture to realize the
required four-photon network of nested multiple interferometers
based on a displaced-Sagnac interferometer and several partially
polarizing beamsplitters. This result confirms the first step in the
original KLM “recipe” for all-optical quantum computation, and
should be useful for on-demand entanglement generation and pur-
ification. Optical quantum circuits combining giant optical nonli-
nearities may find wide applications in quantum information
processing, communication, and sensing.

nonlinear optics ∣ quantum optics ∣ linear optics ∣ quantum gates

Several physical systems are being pursued for quantum com-
puting (1)—promising candidates include trapped ions,

neutral atoms, nuclear spins, quantum dots, superconducting
systems, and photons—while photons are indispensable for quan-
tum communication (2, 3) and are particularly promising for
quantum metrology (4, 5). In addition to low-noise quantum
systems (typically two-level “qubits”) quantum information pro-
tocols require a means to interact qubits to generate entangle-
ment. The canonical example is the controlled-NOT (CNOT)
gate, which flips the state of the polarization of the “target”
photon conditional on the “control” photon being horizontally
polarized (the logical “1” state). The gate is capable of generating
maximally entangled two-qubit states, which together with one-
qubit rotations provide a universal set of logic gates for quantum
computation.

The low-noise properties of single photon qubits are a result of
their negligible interaction with the environment, however, the
fact that they do not readily interact with one-another is proble-
matic for the realization of a CNOTor other entangling interac-
tion. Consequently it was widely believed that matter systems,
such as an atom or atom-like system (6), or an ensemble of such
systems (7), would be required to realize such efficient optical
nonlinearities. Indeed the first proposals for using linear optics
to benchmark quantum algorithms require exponentially large
physical resources (8–10).

In 2001, KLM made the surprising discovery that a scalable
quantum computer could be built from only linear optical
networks, and single photon sources and detectors (11). In fact,
it was even surprising to KLM themselves, as they had initially
intended to prove the opposite. The KLM recipe consists of
two parts: an optical circuit for a CNOT gate using linear optics,
single photon sources (12), and photon number-resolving detec-
tors (13); and a scheme (14, 15) for increasing the success prob-
ability of this CNOT gate (P ¼ 1∕16) arbitrarily close to unity,
where the probabilistic CNOT gates generate the entangled
states used as a resource for the implementation of controlled
unitary operation based on quantum teleportation (16, 17). This
discovery opened the door to linear optics quantum computation
and has spurred world-wide theoretical and experimental efforts
to realize such devices (18), as well as new quantum communica-
tion schemes (2) and optical quantum metrology (5). Inspired by
the KLM approach, a number of quantum logic gates using her-
alded photons and event postselection have been proposed and
demonstrated (19–28). Furthermore, optical quantum circuits
combining these gates have been demonstrated (29–33). In this
context, photonic quantum information processing using linear
optics and postselection is one of the promising candidates in
the quest for practical quantum information processing (18).

Knill-Laflamme-Milburn C-NOT Gate
Interestingly, none of these gates realized so far (19–28) actually
used the original KLM proposal of a simple measurement-
induced nonlinearity: either the gates are not heralded (the
resultant output photons themselves have to be measured and
destroyed) or rely on additional entanglement effects; as we
explain below, the KLM scheme is based on a direct implementa-
tion of the nonlinear sign-shift (NS) gate that relies on the inter-
action with a single auxiliary photon at a beam splitter (BS). The
NS gate is thus based on the efficient optical nonlinearity induced
by single photon sources and detectors. While a measurement-in-
duced nonlinearity has been verified by a conditional phase shift
for one specific input (21), the complete function of a NS gate for
arbitrary inputs has not been demonstrated. Moreover, it is an
important remaining challenge to combine the nonlinearities into
a network such as the KLM-CNOT gate, because this requires a
more reliable control of optical coherence than a nonlinearity
acting on a single beam, especially because nonlinearities tend
to couple modes to produce additional and often unexpected
noise patterns. Specifically, it is a difficult task to implement the
nested interferometers needed to perform the multiple classical
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and quantum interferences that form the elements of the quan-
tum gate operation, which has prevented the realization of the
KLM-CNOT gate.

The key element in the KLM CNOT gate is the nondetermi-
nistic NS gate (Fig. 1A), which operates as follows: When a super-
position of the vacuum state j0i, one photon state j1i and
two-photon state j2i is input into the NS gate, the gate flips
the sign (or phase) of the probability amplitude of the j2i
component: jψi ¼ αj0i þ βj1i þ γj2i → jψ 0i ¼ αj0i þ βj1i − γj2i.
Note that this operation is nondeterministic—it succeeds with
probability of P ¼ 1∕4—however, the gate always gives a signal
(photon detection) when the operation is successful.

The Nonlinear Sign-Shift Gate
A CNOT gate can be constructed from two NS gates as shown
schematically in Fig. 2A (11). Here the control and target qubits
are encoded in optical mode or path (“dual-rail encoding”), with
a photon in the top mode representing a logical 0 and in the bot-
tom a logical 1. The target modes are combined at a 1∕2 reflec-
tivity BS (BS3), interact with the control 1 mode via the central
Mach-Zehnder interferometer (MZ), and are combined again at
a 1∕2 reflectivity BS (BS4) to form another MZ with the two tar-
get modes, whose relative phase is balanced such that, in the ab-
sence of a control photon, the output state of the target photon is
the same as the input state. The goal is to impart a π phase shift in
the upper path of the target MZ, conditional on the control
photon being in the 1 state such that the NOT operation will
be implemented on the target qubit. When the control input is
1, quantum interference (34) between the control and target

photons occurs at BS1: j1iC1
j1iT0

→ j2iC1
j0iT0

− j0iC1
j2iT0

. In
this case the NS gates each impart a π phase shift to these
two-photon components: j2iC1∕T0

→ −j2iC1∕T0
. At BS2 the re-

verse quantum interference process occurs, separating the
photons into the C1 and T0 modes, while preserving the phase
shift that was implemented by the NS gates. In this way the re-
quired π phase shift is applied to the upper path of the target MZ,
and so CNOT operation is realized.

An NS gate can be realized using an optical circuit consisting of
three beam splitters, one auxiliary single photon, and two-photon
number-resolving detectors (Fig. 1B) (11). The NS gate is suc-
cessful, i.e., jψi → jψ 0i, when one photon is detected at the upper
detector and no photons at the lower detector. This outcome

Fig. 1. The KLM NS gate. (A) If the NS gate succeeds it is heralded; indicated
conceptually by the light globe. (B) The original KLM NS gate is heralded by
detection of a photon at the upper detector and no photon at the lower de-
tector. Gray indicates the surface of the BS from which a sign change occurs
upon reflection. (C) A simplified KLMNS gate for which the heralding signal is
detection of one photon.

Fig. 2. The KLM CNOT gate. (A) The gate is constructed of two NS gates; the
output is accepted only if the correct heralding signal is observed for each NS
gate. Gray indicates the surface of the BS from which a sign change occurs
upon reflection. (B) The KLM CNOT gate with simplified NS gate. (C) The same
circuit as (B) but using polarization encoding and PPBSs. (D) The stable optical
quantum circuit used here to implement the KLM CNOT gate using PPBSs and
a displaced-Sagnac architecture. The target MZ, formed by BS11 and BS12 in
Fig. 2B, can be conveniently incorporated into the state preparation and
measurement, corresponding to a change of basis, as described in the caption
to Fig. 3. The blue line indicates optical paths for vertically polarized compo-
nents, and the red line indicates optical paths for horizontally polarized com-
ponents.
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occurs with probability 1∕4 and so the success probability of the
CNOT gate is ð1∕4Þ2 ¼ 1∕16.

The key to NS gate operation is multiphoton quantum inter-
ference, which can be understood by considering the simplified
NS gate shown in Fig. 1C (35). The probability amplitude for
one photon to be detected at the output detector (which is the
success signal) can be calculated by summing up the amplitudes
of the indistinguishable processes leading to this result: For the
j0i input only reflection of the auxiliary photon contributes and
the amplitude is simply given by

ffiffiffiffi
R

p
, where R is the reflectivity of

the beamsplitter. For the j1i input the total probability amplitude
1 − 2R is given by the sum of the probability amplitudes for two
photons to be reflected (−R) and two photons to be transmitted
(1 − R). Finally for the j2i input the probability amplitude isffiffiffiffi
R

p ð3R − 2Þ. This probability amplitude shows that nonlinear sign
flip of the j2i term, required for NS gate operation, is possible for
any R < 2∕3, however, the amplitudes of the j0i, j1i and j2i com-
ponents are also modified by the operation, which is not desired.
In the original NS gate (Fig. 1B), the path interferometer is used
to balance these amplitudes. To preserve these amplitudes in the
case where the simplified NS gates are used small losses (0.24 for
R ¼ 0.23 in Fig. 1C) should be deliberately introduced in the out-
put using BS9 and BS10 in Fig. 2B (35), at the cost of reducing the
success probability slightly (from 0.25 to 0.23), but with the ben-
efit of removing the need for the interferometer in the NS gates.
Even with this simplification significant technical difficulties re-
main: nested interferometers, two auxiliary photons, and several
classical and quantum interference conditions.

Experimental Implementation of the KLM C-NOT Gate
We designed the inherently stable architecture shown in Fig. 2D
to implement the KLM CNOT gate of Fig. 2B, using polarization
to encode photonic qubits. This design takes advantage of two
recent photonic quantum circuit techniques: partially polarizing
beam splitters (24–26, 29) (PPBSs), which results in the circuit
shown in Fig. 2C, and the displaced-Sagnac architecture (5,
29), which results in the circuit shown in Fig. 2D. The PPBSs have
a different reflectivity R and transmissivity T for horizontalH and
vertical V polarizations. We used three kinds of PPBSs: PPBS1
(RH ¼ 50%, RV ¼ 100%), PPBS2 (RH ¼ 23%, RV ¼ 100%), and
PPBS3 (TH ¼ 76%, TV ¼ 100%). The control (C) and target (T)
photons are first incident on PPBS1 (first PPBS1 in Fig. 2C)
where two-photon quantum interference transfers pairs of H-
polarized photons to the same output port by photon bunching.
The outputs are then routed to PPBS2 (two PPBS2s in Fig. 2C),
where quantum interferences of the H components with two aux-
iliary horizontally polarized photons induce the effective nonli-
nearity. The photons then return to PPBS1 (second PPBS1 in
Fig. 2C) where a final quantum interference reverses the initial
operation of PPBS1, separating pairs ofH-polarized photons into
separate outputs. The PPBS3 at each of the outputs (PPBS3s in
Fig. 2C) balance the output polarization components. To charac-
terize the operation of the gate, the output modes Cout and
Tout were detected by the photon counters (DC and DT) with
polarization analyzers. Note that all the four polarization modes
of the control and target photons pass through all the optical
components inside the interferometer so that the path difference
between those four polarization modes are robust to drifts or
vibrations of these optical components.

We used four photons generated via type-I spontaneous para-
metric down-conversion. The pump laser pulses (76 MHz at
390 nm, 200 mW) pass through a beta-barium borate crystal
(1.5 mm) twice to generate two pairs of photons. One pair was
used as the C and T qubits, and the other as the auxiliary photons
A1 and A2. We first checked the quality of quantum interference
(34) between a C∕T photon and an auxiliary photon at PPBS2.
For example, to test the interference between C and A1, we de-
tected photons T and A2 just after the photon source to herald

photons C and A1, respectively, and measured the simultaneous
single photon detection counts between detectors DC and DA1
while scanning the arrival time of the C photon. Note that the
reflectivity of PPBS2 for horizontal polarization is 23% and thus
the visibility for perfect interference is V th ¼ 54%, rather than
100% in the case of a 50% reflectivity BS. The visibility V exp
of the observed dips are 48� 4% and 49� 3% (with bandpass
filters of center wavelength 780 nm and FWHM 2 nm), corre-
sponding to relative visibilities of Vr ≡ V exp∕V th ¼ 89% and
91%. To test the performance of our CNOT gate circuit, we used
coincidence measurements between the four threshold detectors
at DA1, DA2, DC, and DTrather than using photon number dis-
criminating detectors for DA1 and DA2 and loss detection at
PPBS3s because we needed to analyze the polarization state
of the output to confirm correct operation. We performed this
polarization analysis using a half-wave plate (HWP in Fig. 2D)
or quarter-wave plate (QWP in Fig. 2D) together with a polariz-
ing beam splitter (PBS).

Experimental Results
We first checked the “logical basis” operation of the CNOT gate
by preparing C and T in the four combinations of j0i and j1i (the
ZZ basis states) and measured the probability of detecting these
ZZ states in the output for each input state, to generate the “truth
table” shown in Fig. 3A. The experimental data show the ex-
pected CNOToperation, i.e., the T photon’s state is flipped only

Fig. 3. Experimental demonstration of a KLM CNOT gate. Left: ideal opera-
tion. Right: fourfold coincidence count rates (per 5,000 s) detected at DC, DT,
DA1, and DA2. (A) For control qubit, j0Zi ¼ jVi, j1Zi ¼ jHi; for target qubit,
j0Zi ¼ 1∕

ffiffiffi
2

p ðjVi þ jHiÞ, j1Zi ¼ 1∕
ffiffiffi
2

p ðjVi − jHiÞ. “10” indicates C ¼ 1 and
T ¼ 0. (B) For control qubit, j0X i ¼ 1∕

ffiffiffi
2

p ðjVi þ jHiÞ, j1X i ¼ 1∕
ffiffiffi
2

p ðjVi − jHiÞ;
for target qubit, j0X i ¼ jVi, j1X i ¼ jHi. (C) For control qubit, j0Y i ¼
1∕

ffiffiffi
2

p ðjVi þ ijHiÞ, j1Y i ¼ 1∕
ffiffiffi
2

p ðjVi − ijHiÞ; for target qubit, j0Y i ¼ 1∕
ffiffiffi
2

p ðjVi−
ijHiÞ, j1Y i ¼ 1∕

ffiffiffi
2

p ðjVi þ ijHiÞ. The events in which two pairs of photons are
simultaneously incident to the ancillary inputs and no photons are incident to
the signal inputs are subtracted, as confirmed by a reference experiment
without input photons.
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when the C qubit is 1. The (classical) fidelity of this process
FZZ→ZZ, defined as the ratio of transmitted photon pairs in
the correct output state to the total number of transmitted
photon pairs, is 0.87� 0.01.

Because almost all the errors conserve horizontal/vertical
polarization, the process fidelity FP of the quantum coherent
gate operation can be determined from the fidelities obtained
from only three sets of orthogonal input- and output states
(see Appendix: Derivation of the Process Fidelity),

FP ¼ ðFZZ→ZZ þ FXX→XX þ FXZ→YY − 1Þ∕2. [1]

The measurement result of the input-output probabilities in the
XX basis are shown in Fig. 3B, where the basis states are
fj0X i≡ 1∕

ffiffiffi
2

p ðj0i þ j1iÞ;j1X i≡ 1∕
ffiffiffi
2

p ðj0i − j1iÞg; the fidelity is
FXX→XX ¼ 0.88� 0.02. To obtain FXZ→YY , we detected the
YY basis output from XZ basis inputs, as shown in Fig. 3C.
The Y basis states are fj0Y i≡ 1∕

ffiffiffi
2

p ðj0i þ ij1iÞ;j1Y i≡ 1∕
ffiffiffi
2

p ðj0i−
ij1iÞg. The fidelity is FXZ→YY ¼ 0.81� 0.02. Using Eq. 1, we find
a process fidelity of FP ¼ 0.78.

A more intuitive measure of how all other possible gate opera-
tions (input and output states) perform is given by the average
gate fidelity F̄, which is defined as the fidelity of the output state
averaged over all possible input states. This measure of the gate
performance is related to the process fidelity by (36, 37)

F̄ ¼ ðdFp þ 1Þ∕ðdþ 1Þ; [2]

where d is the dimension of the Hilbert space (d ¼ 4 for a 2 qubit
gate). Based on Eqs. 1 and 2, our results show that the average
gate fidelity of our experimental quantum CNOT gate is
F̄ ¼ 0.82� 0.01.

Discussion
The data presented above confirm the realization of the CNOT
gate proposed by KLM, which is an optical circuit combining a
pair of efficient nonlinear elements induced by measurement.
This result confirms the first step in the KLM recipe for all-
optical quantum computation and illustrates how efficient non-
linearities induced by measurement can be utilized for quantum
information science; such measurement-induced optical nonli-
nearities could also be an alternative to nonlinear media used
for quantum nondemolition detectors (39) or photonic pulse
shaping (40). By emulating fundamental nonlinear processes,
such measurement-induced optical nonlinearities can also im-
prove our understanding of the quantum dynamics in nonlinear
media. Conversely, future technical progress may permit the re-
placement of these effective optical nonlinearities in the network
by approaches based on nonlinearities in material systems such as
atoms (6), solid state devices (41), hybrid systems (42), or optical
fiber Kerr nonlinearities (43). In this context, our demonstration
provides an experimental test for quantum networks based on
nonlinear optical elements and may serve as a reference point
for comparisons with future networks using other optical nonli-
nearities. In particular, the present results may be useful as a
starting point for a more general analysis of quantum error pro-
pagation in nonlinear optical networks. Our device will be useful
for conventional and cluster state approaches to quantum com-
puting (38), as well as quantum communication (2), and optical
quantum metrology (5). This circuit could be implemented using
an integrated waveguide architecture (28), in which case a dual-
rail encoding could conveniently be used.

In the present tests of the performance of CNOT gate opera-
tion, we used threshold detectors to monitor the output state. For
applications in which the output state cannot be monitored, high-
efficiency number-resolving photon detectors (13) could be used
at DA1 and DA2 to generate the heralding signals. We also used
spontaneous parametric fluorescence as single photon sources.

Note that alternative approaches that do not follow the KLM
recipe as closely can be useful for scalable linear optics quantum
information processing (18). For all these approaches, further
progress in on-demand single photon sources and practical
photon resolving detectors will be crucial to ensure reliable
operation.

Appendix: Derivation of the Process Fidelity
The PPBSs used to realize the KLM CNOT gate preserve the
horizontal/vertical polarization with high fidelity. In the quantum
CNOToperation, these polarizations correspond to the ZX-basis
of the qubits. In the data shown in Fig. 3, this means that the
number of flips observed for the control qubit in Fig. 3A and
for the target qubit in Fig. 3B are negligibly small, i.e., 0 error
event and only 1 error event respectively over 943 total events.
We can therefore describe the errors of the quantum gate in
terms of dephasing between the ZX-eigenstates. In terms of
the operator expansion of errors, we can define the correct
operation Ûgate and three possible phase flip errors as

Ûgate ¼ jVV ihVV j þ jVHihVHj þ jHV ihHV j − jHHihHHj;
ÛT ¼ jVV ihVV j − jVHihVHj þ jHV ihHV j þ jHHihHHj;
ÛC ¼ jVV ihVV j þ jVHihVHj − jHV ihHV j þ jHHihHHj;
ÛCT ¼ jVV ihVV j − jVHihVHj − jHV ihHV j − jHHihHHj: [3]

The operation of the gate can then be written as

EðρinÞ ¼ ∑
n;m

χnmÛnρinÛm; [4]

where n, m ∈ fgate;T;C;CTg, and χnm define the process matrix
of the noisy quantum process.

Each of our experimentally observed truth table operations
i → j is correctly performed by Ûgate and one other operation
Ûn. Therefore, the fidelities Fi→j can be given by the sums of
the probability Fp ¼ χgate;gate for the correct operation Ûgate

and the probabilities ηn ¼ χnn for the errors Ûn as follows.

FZZ→ZZ ¼ Fp þ ηT FXX→XX ¼ Fp þ ηC

FXZ→YY ¼ Fp þ ηCT: [5]

Note that these relations between the diagonal elements of the
process matrix and the experimentally observed fidelities can also
be derived from Eq. 4 using the formal definition of the experi-
mental fidelities. In this case the fidelities are determined by the
sums over the correct outcomes jðjÞli in EðjðiÞkihðiÞkjÞ, averaged
over all inputs jðiÞki,

Fi→j ¼ ∑
l;k

hðjÞljEðjðiÞkihðiÞkjÞjðjÞli∕4Þ

¼ ∑
n;m

χnm

�
∑
l;k

hðjÞljÛ†
njðiÞkihðiÞkjÛmjðjÞli∕4

�
: [6]

Here k, l ∈ f1;2;3;4g, and ðiÞk denote the k th state of the i basis
states. For example, jðiÞ1i ¼ jVV i, jðiÞ2i ¼ jVHi, jðiÞ3i ¼ jHV i,
jðiÞ4i ¼ jHHi for i ¼ ZX . The sums over initial states k and
final states l are one for n ¼ m ¼ 0 and for a single other error,
n ¼ m ¼ nðijÞ. All remaining sums are zero, confirming the
results in Eq. 5).
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Because the diagonal elements of the process matrix corre-
spond to the probabilities of the orthogonal basis operations,
their sum is normalized to one, so that ∑nχnn ¼ Fp þ ηTþ
ηC þ ηCT ¼ 1. It follows that the sum of all three experimentally
determined fidelities is FZZ→ZZ þ FXX→XX þ FXZ→YY ¼ 2Fp þ 1.
Therefore, the process fidelity of our KLMCNOT gate is given by

Fp ¼ ðFZZ→ZZ þ FXX→XX þ FXZ→YY − 1Þ∕2 ¼ 0.78: [7]

This number clearly exceeds the threshold Fp ≥ 0.5 for the gate to
produce entanglement—a key quantum operation of the gate.
The fidelity of the output states of the gate, averaged over all
input states is related to the process fidelity

F̄ ¼ ðdFp þ 1Þ∕ðdþ 1Þ ¼ 0.82; [8]

where d is the dimension of the Hilbert space (d ¼ 4 for a
two-qubit gate).
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