RATRO Operations Research
RAIRO Oper. Res. 41 (2007) 381-398
DOI: 10.1051/r0:2007035

TOWARDS OPTIMAL FORMWORK PAIRING
ON CONSTRUCTION SITES

THIERRY BENOIST!

Abstract. Minimizing shutterings assembling time on construction
sites can yield significant savings in labor costs and crane moves. It
requires solving a pairing problem that optimizes the ability for the
crane to move chains of shutterings as a whole when they can be later
reused together to frame another wall of the site. In this paper, we
show that this problem is NP-hard in the strong sense as well as both its
multiflow and ordering aspects. We also introduce a linear relaxation
that computes reasonably good lower bounds of the objective, and
describe a Tabu Search based on pairings insertion and ejection that
builds promising solutions.

Keywords. Pairing, Russian dolls, tabu, fixed-charge multi-commodity
flow.

Mathematics Subject Classification. 90B90.

1. INTRODUCTION

A piece of formwork (or shuttering) is a pair of vertical metallic panes used to
build walls: concrete is to be poured in between these panes and requires typically
one drying day before this shuttering can be removed and reused elsewhere on the
site. Different formwork families (characterized by their lengths: typically from 60
to 480 cm) are used on a construction site but walls are usually longer than the
maximal length: therefore covering a wall requires assembling several formworks
together (see Fig. 1, page 3). For instance a wall of 9.50 m can be covered in various
ways using formworks of 1,2,3or4dm: 2x4m+1x2m,or 3 x3m+1x1m,
or 1 x4 m+ 2 x 3 m, etc. For each wall, the main constraint states that the sum

Received January 1st, 2002. Accepted February 6, 2007.
1 Bouygues e-lab, 32 av Hoche, 75008 Paris, France; tbenoist@bouygues .com
© EDP Sciences, ROADEF, SMAI 2007

Article published by EDP Sciences and available at http://www.rairo-ro.org or http://dx.doi.org/10.1051/r0:2007035

http://www.edpsciences.org
http://www.rairo-ro.org
http://dx.doi.org/10.1051/ro:2007035

382 T. BENOIST

of the lengths of allocated formworks must exceed the length of the wall (covering
constraint).

Framing walls on a construction site is one of the main tasks of the carcass work
(the other is framing floors). A building deck in a residential building like those
erected by Habitat, a trademark of BOUYGUES Construction, is typically made
of a hundred walls and completed in around ten days, using a limited number
of vertical formworks whose rotation and assembling are planned by the Method
Department.

Assembling two shutterings together takes several minutes and requires the
most critical resource: the crane. This task can be repeated more than 1000 times
per site, thus minimizing the number of junctions to be performed is of great im-
portance. A solution to achieve this goal is to move chains of shutterings from
one wall to another without disassembling them, what requires solving a Form-
work Pairing problem (FPP) maximizing the size and number of such chains.
To our knowledge this problem has never been addressed in the literature despite
its impact on labor costs and crane moves.

We first define the problem in the next section and prove its NP-hardness in
Section 3. Section 4 proposes a relaxation modeled by a linear program, whose
optimal integer solutions are found using a Russian-Doll algorithm. Section 5 is
a parenthesis on the ordering aspect of the problem and its complexity. Finally
Section 6 describes a greedy algorithm and a Tabu Search approach, whose results
are discussed in Section 7.

2. FORMWORK PAIRING PROBLEM

2.1. DATA: SCHEDULE AND ALLOCATION

The first well-known problem arising in the planning of construction sites con-
sists in scheduling framing tasks (one per wall), subject to precedence and ex-
clusion constraints. The second problem consists in allocating formworks to each
wall, satisfying the covering constraint exposed in introduction as well as a lot
of side constraints and preferences and tending to minimize the total number of
formworks to command for the site (the stock of the site).

The solutions of these problems (walls scheduling and formworks allocation) are
the input of the Formwork Pairing Problem studied in this paper. We denote
by N the number of walls, by T' the number of days (makespan) and by K the
number of formwork types. The result of the scheduling problem is a function d:
[1, N] — [1,T] specifying for each wall w the day d(w) it has been assigned to. We
denote by W, the set of walls framed on day ¢: W = {w € [1, N]|d(w) = ¢}. The
set of formworks allocated to wall w is a vector a,, of length K such that a,[k]
is the number of formworks of type k allocated to wall w,|a,| denotes the total
number of formworks allocated to wall w (|aw| = >, aw[k]). Finally, the stock A[]
is the maximum number of formworks of type k that will be used simultaneously
on this site: Vk € [1, K], A[k] = maziepn,11{ X wew, @wlkl}

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 383

'))")' l_rl
|

Junction Junction

FIGURE 1. Covering a wall with an assembly of formworks (view
from the top).

2.2. PAIRING MODEL

Given a schedule for the site and an allocated set of formworks for each wall,
the Formwork Pairing Problem deals with the ordering of these formworks.
Since formworks only differ by their length, they can be assembled in any order.
However, as explained in Section 1, our goal is to move formwork chains from
one wall to another without disassembling them in order to save labor costs and
rane moves. Since only consecutive groups can be extracted from a wall assembly
to be reused elsewhere, we must arrange allocated formworks in an appropriate
order on each wall. For instance both leftmost formworks of Fig. 1 have been
extracted together from a previous wall, thus their junction can be preserved, thus
the number of junctions to be performed on this wall is two instead of three.

Formworks allocated to a wall w must be arranged in a sequence of length
|aw|. We define the position (w,p) as the pth element of this sequence'. Hence,
the successive utilizations of one formwork can be expressed as a list of positions
{(w1,p1), (w2, p2), . ..}2. Our goal is to compute these successive positions for each
formwork in order to minimize on each wall the number of neighbors in its covering
sequence that were not already neighbors on their previous positions. The cost
function to be minimized is the total number of these junctions.

This description can be formalized into a constrained multi-commodity flow
problem, associating a commodity with each of the K formwork types. Thus a
directed graph G(V, E) can be defined representing each position (w, p) by a node.
We add a source node and a sink node, respectively named (0,1) and (N + 1,1).
An edge (w1, p1) — (wa, p2) of capacity 1 is defined for each pair of positions such
that d(w;) < d(wz) (by convention d(0) =0 and d(N +1) =T + 1.

This edge models the possibility to reuse the p;th formwork of wall w; at the poth

1Both faces of a wall are not identical, therefore an non ambiguous “left to right” indexing
can be chosen.
2This list codes for “this formwork is first used on the p1th position of wall w1, then on the

”

path position of wall wa,...".

384 T. BENOIST

position of wall ws.

V= {(’w,p) |’LU € [17N]7 pe [17 |aw|]}U {(07 1)) (N+ 1, 1)}’ (1)
E= {(wlapl) — (w2, p2) ‘(wlapl)a (w2,p2) € VEAd(wr) < d(ws) } . (2)

In this graph, the successive utilizations of a piece of formwork form a path. Hence
a solution of this problem is a flow on G(V, E). One junction is saved each time
a pair of parallel edges {(w1,p1) — (w2,p2), (w1,p1 + 1) — (wa2,p2 + 1)} is used.
Indeed the use of this pair means that the p1th and (p; + 1)th formworks of wall
wi will by moved together to positions ps and ps 4+ 1 of wall ws.

2.3. VARIABLES, COST FUNCTION AND CONSTRAINTS

We use two families of variables. The flow function itself is denoted by X:
E x [1,K] — Z*. We also define a binary variable Y: P — {0,1} on each edge
(w1,p1) — (w2, p2) of the following subset P C E:

P = {(wlapl) - (w27p2) € E|p1 < |aw1| /\p2 < |aw2|}' (3)

This subset P is the set of edges such that the parallel pair {(wi,p1) — (w2, p2),
(w1,p1 + 1) — (we,p2 + 1)} exists. The use of this pair of parallel edge e.g.
the saving of one junction is modeled by Y(,1 p1)—(w2,p2) = 1. Without these
savings, the number of junctions to be performed on each wall w would be |a,,|—1.
Therefore the total number of junctions to be performed on this site reads:

Z law| — N — Z Y(wsp1)—(w2.p2) - (4)

we[l,N] (w1,p1)—(w2,p2)EP

Equation (4) is the cost function to be minimized when solving the FPP.

For each commodity k < K, the flow issued from the source and collected by the
sink is A[k] (Eq. (5)). All edges have unitary capacities: more precisely the flow
across each node must equal 1 (Eq. (6)) since for each position (w, p) there is only
one pth formwork on wall w. Besides the flow crossing all nodes (w, p) of a wall w
must match the allocation vector of this wall (Eq. (7)): for each commodity k the
number of nodes of the wall crossed by one unit of this commodity must equal the
number of formworks of this type k allocated to this wall (a,[k]). Finally a pair
of parallel edges is used only if both edges are crossed by one unit of flow of any
commodity (Eq. (8)).

k) _ (k) _
VESK,) Xy = Alk] and Y Xoh)—wF ALK
(0,1)—(w,p)eE (w,p)—(N+1,1)EE
(5)

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 385

stock Monday Tuesday@ Wednesday Thursday Friday

R W
(2

. XYL
1 - @ g
g [s |
e 1 :
e] 1
FIGURE 2. A 10-walls example.
> > Xl (o) = 1
(w1,p1)—(w,p)EE k<K ’ ’
(wp)—(wop)el k<UD TR

(6)

Ywe [N VE< K, Y > x® awlk] =

(w1,p1)—(w,p) —
P<nw (w1,p1)—(w,p)EE

Y Xt O

P<nw (w,p)—(w,,p,)EE

V(w17p1) - (’U}Q,pQ) S Pa 1/V('Lul,pl)~>(w2,pz) <

1 (k) (k)
B > (X<w1,p1>~<w2,p2>+X<w1,p1+1>a<w2,pz+1))' (8)
E<K

2.4. EXAMPLE

Figure 2 shows an optimal flow (saving 11 junctions) for a problem where
10 walls must be framed in 5 days using formworks of 6 families. In this pic-
ture:

e edges toward the sink and unused edges have not been drawn, for the sake
of readability;

e sets of parallel edges have been represented by single bold edges labeled
by the number of formworks moved as a whole, i.e. the number of saved
junctions plus one;

e nodes have been grouped by wall and labeled by the commodity of the unit
of flow crossing them. Consider for instance wall 4 (the only one framed

386 T. BENOIST

on Wednesday): its 1st formwork (position (4, 1)) has type 4, the second
one (position (4,2)) has type 1, and so on...

3. NP-HARDNESS

In order to prove the NP-hardness of the Formwork Pairing Problem, we

will prove the NP-completeness of the corresponding decision problem (belonging
to NP).

3.1. REpUCTION TO Constrained Minimum Edge-Cost Flow

Let us consider the specific one-family case (K = 1). In this case, shutterings
can be freely ordered since all of them are identical. Thus the number of junctions
on each wall is the “number of its sources” minus one since the concatenation of
incoming formwork chains is feasible and is the best ordering. This leads to a flow
problem (in a layered graph such that each node corresponds to a wall, and each
layer represents a working day) where the number of active incoming edges must
be minimized at each node, i.e. the total number of used edges (on which the flow
is strictly greater than zero) must be minimized (11). More precisely the decision
problem can be reformulated as follows, aggregating positions of each wall winto
a single node crossed by a flow |a,| (10).

Name: Constrained Minimum Edge-Cost Flow

Instance: a directed graph G = (V, E) whose vertices can be partionned into
layers V = {s} UV1 U Va...UVp U {t} such that E = {(w; — w2)|lwy = sV wy =
tV3i < j,wr € Viws € V;}, a demand function a: V\{s,t} — Z* and two positive
integers A and B.

Question: is there a flow function X: A — Z7T such that:

Y Xeww <A 9)

(s—w)eE
Vw € V\ {Sat}v Z X' —w = Z Xwow’ = O, (10)
(w'—w)EE (w—w”)eFE
and [{(wy,ws) € B| X y1—w2 > 0} < B? (11)

Finally the one-family case is a variant of the Minimum Edge-Cost Flow prob-
lem? (proved NP-complete in [5]) on a layered graph where the flow across each
node is fized. To our knowledge this variant is not known to be NP-complete®.

3SMinimum Edge-Cost Flow is also named Fixed Charge Flow.

4The classical transformation from X3C suggested in [5] does not address the complexity of
this variant because it makes use of one node per 3-set, that is selected if and only if a non-null
flow crosses the corresponding node. This mechanism is obviously not operational when flows
across all nodes are fixed.

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 387

3.2. COMPLEXITY PROOF

We will prove the NP-completeness of the Bipartite Minimum Edge-Cost
Flow problem defined below, which is a sub case of Constrained Minimum
Edge-Cost Flow.

Name: Bipartite Minimum Edge-Cost Flow

Instance: A bipartite graph G = (UUV, A), a demand function a: UUV—ZT
and a positive integer B.

Question: Is there a flow function X: A — Z7 such that:

Vu €U Xuow =y, WEV Y Xy = ay |{(u—v) € B, Xy >0} < B.

veV uelU
(12)
Proof. Let us consider the NP-complete 3-Partition problem [4]:
Instance: A finite set X of 3m positively weighted elements such that:
3w 3w
Vo e X, Tw<w(x)<7w (13)

where w(x) is the weight of z and w is the average weight.

Question: Can X be partitioned into m disjoint subsets of equal weight 3w?
(note that Eq. (13) enforces these subsets to contain exactly three elements).

With any instance of 3-Partition, one can associate an instance of Bipartite
Minimum Edge-Cost Flow by the following polynomial transformation.

Each z € X is associated with a left vertex u source of w(z) units of flow. We
create m right vertices each of which is a sink of 3w units of flow, and consider
the complete bipartite graph G with infinite capacities on all edges, searching for
a flow in this graph with less than 3m active edges.

=: Assume X, Xa,... X, is a balanced partition of X (each X; weighting
3w). If we name Uy, Us, ... U, the corresponding subsets of left vertices, the flow
using only edges {(u,v;),Vi < m,Vu € U;} is trivially feasible and only activates
3m edges (one per left vertex).

<: Assume reciprocally that F' is a flow on G activating only 3m edges. Since
no weight is null, we can infer that for each left vertex u there is exactly one active
edge (u,v;). If for each i we name U; the set of left vertices u such that (u,v;)
is active, then the corresponding subsets Xi, Xs,... X,;; are a balanced partition
of X.

Finally Bipartite Minimum Edge-Cost Flow isNP-complete in the strong
sense as soon as the number of right vertices is greater than three. It remains
NP-complete at least in the weak sense with only two right vertices (analogous
transformation from Subset Sum [2]). O

Proposition 3.1. proves that the one-family case of the FPP is NP-hard in the
strong sense even in a bipartite graph. Thus the general case (K > 1) is NP-hard
too.

388 T. BENOIST

FIGURE 3. Transformation from 3-Partition.

4. LINEAR RELAXATION OF THE FPP

The linear model presented in Section 2 contains O(K x (X|a,|)?) variables®
with highly discrete constraints, making this MIP not tractable with Xpress-MP
for instance. Therefore we introduce in this section a simpler cost function (lower
bound of the number of junctions to be performed) that can be minimized in a
lighter model, namely a Fixed Charge Multi-commodity Flow [7] where the
flow across each node is fixed.

Intuitively, this relaxation relies on an argument evoked in Section 3.1: if form-
works used to cover a wall w come from Z different walls, then at least Z — 1
junctions must be performed on wall w. Therefore the objective of this relaxation
is to minimize the number of active w; — wo links.

Although NP-hard, we will prove that this relaxation is usually tractable for
real size problems and yields good lower bounds.

4.1. RELAXATION

Let us add a new set of Boolean variables to the model defined in Section 2,
detecting for each pair of walls whether formworks are moved from the first wall
to the second wall or not (noting Q. = {wy,wy € Q?|d(w1) < d(wsz)} for any
QC0,N+1]).

Z: [1’N]< = {071}7Z’LU1—>U/2 =le Xw1—>’LU2 2 1

o s € 0N U X = Y S Xy g (09
FSE p1 < aw, |
D2 < |aw2|

5Which means up to one million binary variables on practical instances.

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 389

Proposition 4.1. For all solutions of this enriched model:

Z Alk] + Z Zwy—wy, — N < Z |aw| N Z Y(ws,p1)— (w2 ,p2) -

E<K wi,w2€[1,N] < we[1,N] (w1,p1)—(w2,p2)€EP
(15)

Proof. Since Y A[k] = Xy Xo—w (Eq. (5)), the difference between the left hand
side and the right hand side of (15) can be rewritten:

Z Xo—w + Z Zwo—w T Z YV(’WO,P)‘)(“”‘I) o |aw|
welLN] wo € [1, N] P < |auw|
d(wp) < d(w) q < |ay
(16)
For each wg such that d(wg) < d(w), Zy,—w equals either:
e 0 in which case the corresponding 3y term is null too,
e or 1, in which case at most X,,,_.., — 1 pairs of parallel arcs are activated
between wgy and w, where X,,,_.,, is the aggregated flow from nodes of wg
to nodes of w.

Since |a,| is also the sum of X, on all wy preceding w (including 0), (16) is
always negative. O

4.2. LINEAR MODEL

The left hand side of Equation (15) is not only a lower bound of the original
objective: it also allows simplifying the model since positions and parallel edges
are irrelevant to this relaxation. In other words it is possible to aggregate position
nodes of each wall w in a single node, crossed by a,[k] units of each commodity.
Since the objective is to minimize the number of activated edges (we omit the
Y A[k]—N constant term in what follows), this relaxed problem is a Fixed Charge
Multi-commodity Flow [7] (NP-hard). In this new graph G’ = (V', E’), where
V' =[0,N +1] and E' = {w; — wa|wy, w2 € V'? Ad(w;) < d(ws)}, the objective
is to minimize the sum of Z variables subject to three families of constraints:

VESK, Y X(O, = Ak (17)
0—weE’
Vwe[LNLVE<K, > xW ,=alk = > xP., @9
w1 —weE’ w—wo EE’
Y, — we € B, Ve < K, XE . < min(aw, [k, aw, [K]) X Zwy—ws - (19)

In the remaining of the paper, this relaxation will be referred to as R(FPP). In
practice, it can be interpreted as a focus on the minimization of the number of
crane moves, independently of assembling times. It determines the sequence of

390 T. BENOIST

walls covered by each formwork and provides a lower bound. However, given a
solution of the relaxed problem R(FPP), deciding whether these shutterings can
be ordered to produce an FPP solution of equal cost will be proved NP-complete
in Section 5.

4.3. VALID INEQUALITIES

The above model can be enriched with classical valid inequalities concerning
incoming edges of each node (and symmetrical cuts can be posted on outgoing
edges). For each (non-sink) node w of V’ we define E,, C E’, the set of incident
arcs of w. A subset C C E, is said to cover w (noted C' > w) when: Vk <
K, Yy wecay[k] = awlk]. Thus E, can be partitioned into E U E, where E,}
is the set of covering edges (any singleton of E;! covers w). From now on, for
any subset C' of E/ we note ¥(C) the number of actives arcs in this subset i.e.
2(C)=%cZ.

When E;, = (), the only covering cut would be ¥(F,,) > 1 but it is always redun-
dant since Yk < K, X(Ey,) > EX(k)/aw[k] is induced by (18) and (19). Otherwise
(when E, # (}), two types of valid inequalities can be generated:

e no subset whose complementary does not cover w can be totally unused
i.e. if B\ C does not cover w, L(E;; UC) > 1 is valid;
e if F/ contains no covering subset of cardinality strictly smaller than some
«, then when no edge of E; is used, at least « edges of £, need to be
activated, thus X(E,)) > a(1 — X(E}})) is valid.
Even after adding these cuts for all C' C E,|C| < 2,24 h CPU is not sufficient to
complete the search (with Xpress-mp) on real-size problems (around 100 walls):
integral solutions are found quickly but their optimality is not proven. This poor
result is not completely surprising since flow cover cuts are known [6] to be usually
not facet defining when not lifted. Instead of lifting valid inequalities, we propose
in the next section a simple iterative procedure adapted to the layered structure
of the graph.

4.4. RUSSIAN DOLLS SEARCH

The Russian Dolls algorithm [8] was first developed to solve an Earth Observa-
tion Satellite Scheduling problem [1] by constraint optimization techniques. The
idea is to successively solve growing nested sub-problems, starting by the schedule
of the very last tasks (photos) and ending by solving the whole problem. Each
sub-problem provides a good bound boosting the resolution of the next ones, what
makes the whole process much faster than a direct resolution of the whole problem.

What we propose here is to adapt this mechanism to solve our Integer Linear
Program ((17), (18), (19)). Given any subset of edges C' C E’, a lower bound of
3(C) can be obtained solving the linear program with objective ¥(C'), and relaxing
all integrality constraints on edges of E’\C; we note this lower bound LB(C). Thus
the search applies on an ordered collection {C1,Cs,...Cy,} of subsets of E’, with

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 391

Cy, = E': for each subset C; it computes LB(C;) and posts %(C;) > LB(C;).
Finally LB(C,,) = LB(E") is the optimal integer solution.

Because of the layered structure of the graph, it seems natural to consider the
following subsets (this interval reasoning can be compared to [3]):

Vi, to < T, [t1,t2] = {w1 — we € E' |d(wy) > t1 Ad(ws) < ta}. (20)

A first difference with the original algorithm is that the property C; C C;11 is not
required (and is violated by (20)): X(C;) > LB(C;) holds even if some edges of
C; are not included in C;;; and inequalities on non-nested overlapping sets can
coexist efficiently. In our case we sort intervals by increasing width in order to
ensure a weaker property: C;11 ¢ C;.

A second important point is that, when solving a sub-problem, remaining vari-
ables are not ignored but just continuously relaxed. Thus a global improvement
constraint X (A’) < ub can be posted, where ub is the value of the best solution
found by a limited preliminary global search. This global cut prevents each inter-
val to be optimized to the detriment of the remaining of the problem. Therefore
the resolution of an interval is not only boosted by bounds on nested intervals but
also by bound on other non-nested intervals, since improving the global polyhedron
makes the global improvement cut more difficult to satisfy.

This whole procedure completes in less that 10 min on a 1 GHz PC for in-
stances described in Section 7. For instance on problem Al, once all intervals of
widths 1 and 2 have been optimized, the corresponding cuts make the [6,9] interval
infeasible: no assignation of binary values to Z variables of [6, 9] satisfies the im-
provement cut. This infeasibility proves the optimality of the solution found in the
preliminary step. It shall be noted that removing valid inequalities of Section 4.3,
only make this mechanism three times slower.

5. ORDERING PROBLEM

In Section 3, the complexity of the Formwork Pairing Problem was proven
using the one-family case and in Section 4 we solved a linear (aggregated) relax-
ation of the problem. In both cases ordering constraints are of no importance,
therefore one could wonder whether this ordering aspect is a minor constraint or
not, i.e. whether the pure ordering problem where formwork flow is fixed, is a
difficult problem. In other words, once each shuttering is determined to be used
on a fixed list of walls, is it difficult to arrange these shutterings on each wall in
order to optimize the pairing? If not, optimal solutions of R(FPP) (Sect. 4) may
be polynomially extended to optimal solution of the FPP.

We prove in this section that no such polynomial algorithm exists unless P = NP
(however Sect. 6.2 presents a heuristic and efficient way of using solutions of the
relaxation). Even the following local Compatibility problem, is NP-complete in
the strong sense: for one wall, given the incoming and outgoing aggregated flows
of formworks suggested by our relaxation, is it possible to arrange formworks in

392 T. BENOIST

FIGURE 4. Transformation from 3-Partition to Compatibility.

a sequence such that both incoming and outgoing subsets can be extracted from
this sequence (as neighbors)?

5.1. DEFINITION

This Compatibility problem can be seen as a string problem, interpreting the
set of formwork families as an alphabet of symbols. It aims at deciding whether
there exists a string compatible with two decompositions (respectively representing
incoming and outgoing formwork subsets of a wall).

Name: Compatibility

Instance: A finite alphabet ¥ = {e1,¢9,...6x} and two collections of vectors
of NX: € = {v1,vs,...v,} and C" = {v},v},...v/, }.

Question: Are C and C’ “compatible”, i.e. is there a string z € ¥* and two
permutations ¢ and 1 such that:

Z = 2122 ...%,, concatenation of strings z; € ¥*(i < n), z; containing v, ;) [k]
times symbol €, Vk < K;

z = z12...2,, concatenation of strings z; € ¥*(j < m), 2} containing vy [k]
times symbol e, Vk < K.

5.2. COMPLEXITY

Proposition 5.1. Compatibility is NP-hard in the strong sense

Proof. Consider an instance of 3-Partition (¢f. 3.2) and transform it into the
following Compatibility instance:
o ¥ ={e1,e2...6m};
o C = {v1,v2,...04m—1} with Vi < 3m,v; = (w(z;),0,...0) and Vi >
3m,v; = (0,...2,...0) where the only non-null entry is v;[i — 3m + 1] = 2;
o " = {v},v},.. v} with: v} = (3w,1,0,...0),v),, = (3w,0,...1) and
Vj € [2,ml],v; = (3w,0...,1,1,....0), where the two consecutive “1” are
at entries {j,7 + 1}.

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 393

The size of this instance is polynomial with the size of the original 3-Partition
instance since it involves the same w(z;) numbers paired with m — 1 zeros, 2m — 1
additional vectors (involving numbers 0,1 and 3@w) and m symbols.

=: Assume C and C’ are compatible. Vk > 2, the compatibility string z
must contain exey (vector vz, 1x—1). Since only v,_, and vj, contain one ey, they
must be neighbours in z that is to say that ¢ must satisfy |[¢1(k1)y!(k)| = 1.
Thus ¢ is either the identity or “i(j) = m 4+ 1 — j” and z or its inverse equals
e30eed0e2e3Wel | e3We2 3%, Each substring e covers substrings zgi124k42
24x43 of z such that vy ap11)[1] + Vg (arto) 1] +Vpart3)[1] = 3w. Hence {(zyap+1)
Top(ak12)> To(akt3)) |k € [0,m]} is a 3-partition of set X.

<: Assume reciprocally that there exists a collection {X]...X/ } of subsets
of X, each of weight 3w (and of cardinality 3) and define a permutation ¢ on
[1,4m — 1] such that:

o VjelmlVie[d(—1)+1,4(G — 1)+ e, € X};
o Vjel,m—1]p(4j) =3m+j.
String 2z = e3%e2edPe2e3Pe2. 302 e3P, with permutations ¢ and 1 = identity
proves the compatibility of C and C”.
Finally 3-Partition can be polynomially transformed into Compatibility,
thus Compatibility is NP-hard in the strong sense. O

A polynomial specific case of Compatibility is given in appendix as well as
an NP membership proof (since the size of compatibility string z is not polyno-
mial with the instance size, a more compact certificate of compatibility must be
exhibited). We refer the reader to [2] for a more detailed study of this problem.

Finally, trying to extend solutions of R(FPP) to solutions of the FPP would re-
quire solving N NP-hard Compatibility problems subject to coupling constraints
(for each edge w; — wa, sequences chosen for walls wy and we must induce iden-
tical orders on formworks of this edge). This difficulty advocates for the design of
heuristic approaches to the FPP (Sect. 6), possibly using solutions of R(FPP) as
an oracle.

6. GREEDY ALGORITHM AND TABU SEARCH FOR THE FPP

A naive greedy algorithm consists in arbitrary ordering formworks on first day
walls, then using the biggest possible formwork chain from one of these walls
for a second day wall, then the second biggest, etc. Applying such a strategy
(Greedyppp) on a construction site means re-using each day the biggest possible
formwork assemblies and randomly dispatching the remaining (without study-
ing what ordering would be preferable for next days): it approximately divides
the number of junctions by two, compared to moving shutterings one by one
(1by1 ppp).

This section describes a Tabu approach inspired from [9]. It is based on a
compact model focused on parallel edges. These pairings are inserted one by one

394 T. BENOIST

TABLE 1. Computational results.

Data Upper Bounds (solutions) Lower Bounds
Problem Days Walls Families||1byl ppp Greedyppp Tabuppp Guided Tabuppp ||RDS LP with Cuts LP
A0 5 10 6 25 17 14 14 14 14 14
Al 10 76 7 174 91 78 76 74 72 69
BO 10 76 21 209 114 94 91 87 85 81
B3 8 80 9 145 86 76 75 73 72 70
B4 6 27 9 48 35 31 31 31 31 31
B5 8 79 9 128 72 66 66 66 65 64
B6 26 154 9 123 73 61 60 60 60 58
B9 26 125 9 60 37 33 33 33 33 31
C1 11 69 9 124 69 63 63 63 63 61
Cc2 19 143 18 152 68 63 61 56 55 52
C3 8 80 9 151 84 73 73 68 67 65
C4 7 45 21 45 33 28 28 28 28 28
C5 8 79 9 131 74 67 67 66 65 64
C6 25 153 8 259 129 120 116 1116 110 106
Cc7 19 143 18 171 80 64 64 59 59 56
Cc9 26 125 9 89 50 42 41 41 41 39

into a pairing set (Sect. 6.1), ejecting conflicting ones if any (Sect. 6.3). A Tabu
algorithm controls this insertion/ejection heuristic (Sect. 6.2).

6.1. PAIRING MODEL

We define a pairing 7 as a triplet of P x [1, K| x [1, K] (¢f. Eq. (3)). A pairing
v = {(w1,p1) — (wa,p2), k, k'} models a triplet of constraints {¥ (.1 p1)—(w2,p2) =

1,X((Z)17p1)ﬂ(w27p2) = 1’X((’fjl),p1+1)~>(w2,p2+l) = 1}. Such a pairing represents a
pair of formworks moved together. It constrains nodes (wy,p1) and (we, p2) to be
crossed by commodity k, and nodes (w1, p1 + 1) and (w2, p2 + 1) to be crossed by
commodity &’. It is said to overlap another pairing 7' if w; = w},ws = wh, p1+1 =
p} and ps + 1 = p) that is to say that ~,~’ form a triplet of formworks moved
together. Finally we note E, = {(w1,p1) — (w2, p2), (w1,p1 +1) — (w2, p2 +1)}.
A pairings set I is consistent if and only if it satisfies the following four constraints:

(i) all pairings constraining the same node (w,p) must constrain it to be
crossed by the same commodity, because only one formwork can be the
pth on wall w.

(i) non-overlapping pairs (v,7') € I'? must satisfy: w; # w) V |p; — pl| >
2,Vi € {1,2}. Indeed if v and ~' share a formwork at their origin for
instance, they must move this shared item to the same position i.e. they
must overlap.

(iii) for all wall w, Vk < K, the number of positions constrained to be crossed by
commodity k must be smaller than a,,[k], otherwise the allocated number
of formworks of family k would be exceeded on wall w.

(iv) for each day and each formwork family, the allocations a,[k] of this day,
plus the number of formworks of type k waiting on previous walls to be

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 395

re-used on next days cannot exceed available quantities A[k]:

VES T, Vh <K, Y aylk]+ > x® < A[k].

(w1,p1)—(w2,p2)
weWsy
{(wl,Pl)H(ﬂ&,pz)G L_JF E,Y|d(w1)<t/\d(w2)>t}
V€
(21)

In terms of the FPP multi-flow, constraint iv (21) makes sure that the flow crossing
each layer (either through nodes or arcs) never exceeds capacities A[k], k < K.

Proposition 6.1. There is a surjection from the set of FPP solutions to the set of
all consistent sets of pairings, mapping each FPP solution of cost ¢ to a consistent
set of size Xl|a,| — N —c.

Proof. From any FPP solution, reading the corresponding pairing set is straightfor-
ward; its size is exactly the number of saved junctions ¥Xy. And for any consistent
pairing set of size s, a flow satisfying the 3s constraints modeled by these striplets
is easy to find, assigning to each unconstrained node-position (from left to right)
available commodities from previous nodes, Equation (21) avoiding starvation.
The cost of this FPP solution is at most X|a,| — N — s. O

The advantage of this pairing model is to focus on the important part of the
problem (parallel arcs), breaking a lot of symetries. Besides, in a local search
approach, it means that any consistent set is a feasible solution that can be locally
modified adding or removing pairings.

6.2. INSERTION/EJECTION TABU SEARCH

In [9], radio links are inserted in the frequency range and interfering links are
ejected and added to the Tabu list. Similarly we start with ' = () and insert
pairings one by one, conflicting ones being ejected and added to the Tabu list.
More precisely, each move consists in selecting a (non-tabu) pairing « to insert, and
removing an ejection set Sy C I' from I' U {7} such that I' U {7}\S, is consistent.
The computation of a (nearly) minimum-cardinality ejection set is detailed in
Section 6.3.

We compared two version of this Tabu search. The first one (denoted Tabuppp)
uses an heuristic inspired from the greedy algorithm to add non-conflicting par-
ings. Once no more pairing can be added without conflict (local optimum), we
randomly generate a bunch of pairings and insert the one whose associated ejec-
tion set has minimum size. The second approach (denoted GuidedTabuppp) is a
variant using R(FPP) as an oracle: pairings are inserted accordingly to the op-

timal solution of this multiflow relaxation. More precisely, if XﬁLwQ items of
type k are transported from wall wy to wsy in the R(FPP) solution, this number is
taken as an upper bound in the tabu search: any candidate pairing whose insertion
would make this bound exceeded is considered as conflicting. The results of this

algorithms are discussed in Section 7.

396 T. BENOIST

6.3. EJECTION SET COMPUTATION

Adding a pairing v to a consistent set I' may lead to an inconsistent set. We
consider here the problem of computing a minimum-cardinality ejection set S, C T’
such that ' U {7}\S, is consistent. Such a set exists for any pairing + such that
{7} is consistent, since I' is always a valid ejection set.

Physical constraints i and ii require to eject the corresponding conflicting pair-
ings. On the contrary there are several ways to solve conflicts associated to cumu-
lative constraints iii and iv (Eq. (21)). Any pairing v causes at most 4 covering
conflicts (constraint iii) and 2 x (start(wz)—end(wy)) availability conflicts (con-
straint iv). A covering conflict occurs on a wall w when too many positions are
constrained to be covered by a formwork of family k: thus one or two positions
must be freed, removing the (at most 4) pairings constraining it. Similarly an
availability conflict occurs for a day t and a family £ when too many formworks
of this family are planned to be moved from a previous wall to a future one (thus
unavailable on day t¢): one or two of these shutterings must be made available
on day t, removing the (at most 2) corresponding pairings. We solve this prob-
lem with a (sub optimal) greedy algorithm removing the pairing subset solving
the maximum number of conflicts (lookahead), and repeating this step until all
conflicts are solved.

7. COMPUTATIONAL RESULTS

The following table lists the results obtained on 16 FPP instances (available at
http://e-lab.bouygues.com) where A0 is the 10-wall example of Figure 2 and
others are real instances of Bouygues Habitat, involving an average of 100 walls.
The three rightmost columns give the three lower bounds computed on the re-
laxation R(FPP) of Section 4: the continuous optimum of the LP model (with
and without Xpress automatically generated cuts) and its optimal integer solution
obtained by our RDS strategy (in less than 10 min as pointed out in Sect. 4.4).
The left columns correspond to the four resolution algorithms tested: 1by! ppp,
Greedyppp, Tabuppp and GuidedTabuppp. Less that 1 s CPU is required by
1byl ppp and Greedyppp. As for the local search approaches, both were stopped
after 10000 moves i.e. around 5 min.

These results prove that the natural greedy approach to the (NP-hard) Form-
work Pairing problem (Greedyppp) is far from being optimal: the proposed
Tabuppp based on a compact model of the problem produces significantly better
solutions. Besides, solving a multiflow relaxation of the problem with a Russian-
Dolls strategy provides lower bounds that establish the optimality of the Taburpp
solution on 6 of the 16 instances. Finally, when using an optimal solution of this
relaxation as a guide to our tabu search (Guided Tabuppp), two other instances are
optimally solved and 5 solutions are improved. In summary, 8 instances remain
open with gaps ranking from 1.5% to 9%.

TOWARDS OPTIMAL FORMWORK PAIRING ON CONSTRUCTION SITES 397
8. CONCLUSION

In this paper we have introduced the Formwork Pairing Problem, arising
in construction sites. We have proven its strong NP-hardness and designed a
Tabu algorithm producing good solutions. Solving an adequate relaxation with
an innovative “Russian Dolls” approach, we obtained both a lower bound and an
oracle. This oracle proved to be useful as a guide for the Tabu algorithm, and the
lower bound proved the optimality of 50% of our solutions.

Compared to the greedy approach, our best Tabu algorithm saves an average
of 14% of the number of junctions to be performed. From an industrial point of
view it means that the corresponding labor cost can be decreased by 14% through
formwork pairing optimization.

Acknowledgements. The author is grateful to Fabrice Chauvet for his precious help on
complexity proofs.

REFERENCES

(1] J. Agnese, N. Bataille, E. Bensana, D. Blumstein and G. Verfaillie, Exact and Approximate
methods for the Daily Management of an Earth Observation Satellite, in Proc. of the 5th
ESA Workshop on Artificial Intelligence and Knowledge Based Systems for Space (1995).

[2] T. Benoist and F. Chauvet, Complexity of some FPP related Problems, E-lab Technical
Report (2001).

[3] Y. Caseau and F. Laburthe, Improved CLP Scheduling with Task Intervals, in Proc. of the
11th International Conference on Logic Programming, MIT Press (1994).

[4] M.R. Garey and D.S. Johnson, Complexity results for multiprocessor scheduling under re-
source constraints. STAM J. Comput. 4 (1975), 397-411.

[5] M.R. Garey and D.S. Johnson, Computers and intractability, a guide to the theory of NP-
completeness. W.H. Freeman, New York (1979).

[6] Z. Gu, G.L. Nemhauser and M.W.P. Savelsbergh, Lifted flow cover inequalities for mixed 0-1
integer programs. Math. Program. 85 (1999) 439-467.

[7] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization. Wiley Inter-
science Series in Discrete Mathematics and Optimization, John Wiley & Sons (1988).

[8] G. Verfaillie, M. Lemaitre and T. Schiex, Russian Doll Search for Solving Constraint Opti-
mization Problems, in Proc. of AAAI-96, Portland, OR, (1996) 181-187.

[9] M. Vasquez, A. Dupont and D. Habet. Consistency checking within local search applied to
the frequency assignement with polarization problem. RAIRO Oper. Res. 37 (2003) 311-323.

APPENDIX A: PROPERTIES OF THE Compatibility PROBLEM

When there is at most one occurrence of each symbol in the researched string z,
one can reformulate the question as follows: naming X the set of symbols appearing
in z, is it possible to order symbols of X such that each element (subsets of X) of
C U C’ appears in a consecutive block?

Let G be a bipartite graph defined as follow: left vertices represent elements
(subsets of X) of collection C, right vertices represent elements of collection C”,
and for each pair (¢, ¢’) € C' x C’ the corresponding edge is added in G if and only

398 T. BENOIST

if these subsets intersect without one being included in the other i.e. (¢Nd #
DA(cg)N ¢ e).

Proposition 8.1. C and C’ are compatible if and only if G contains no node of
degree greater or equal to 3 and no cycle.

Proof. See [2] (arcs in G represent neighbours in the compatibility string z, hence
only degrees 1 and 2 are allowed and cycles are forbidden). O

Finally (in this “all different” case) the compatibility question can be decided
computing 0(mn) intersections of subsets (¢ N ¢’).

This polynomial case of Compatibility can be used to prove its membership
to NP. Given C and C’, two compatible vectors, let M be a 3-dimensional matrix
such that Vi < n,Vj < m,Vk < K, M[i, j, k] is the number of ¢ shared by v; and
v§ on string z. Such a matrix describes the dispatching of “symbols sets” of C
into “symbol sets” of C’ and is valid if and only if M abides:

Vi<n, Y M[i,j]=uv;andVj<m, Y Mlij]="v}. (22)

Jjsm i<n
Proposition 8.2. Matrix M is a polynomial size compatibility certificate whose

validity can be checked in polynomial time.

Proof. See [2] (M proves the compatibility of C' and C” when the bipartite graph
linking vertices ¢ < n and j < m such that (M[i,j] #0)A(Mi,j] # v;) A
(M[i,j] # ;) contains no cycle and no node of degree >3). O

Finally, we conclude that Compatibility belongs to NP.

