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Abstract. We describe the solution of a bound constrained convex
quadratic problem with limited memory resources. The problem arises
from physical simulations occurring within video games. The motiva-
ting problem is outlined, along with a simple interior point approach for
its solution. Various linear algebra issues arising in the implementation
are explored, including preconditioning, ordering and a number of ways
of solving an equivalent augmented system. Alternative approaches are
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problems are given.
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Introduction

This paper describes the solution of a problem arising in the application of
complementarity for physical simulations that occur within video games. The size
of the problems is typically not very large, ranging from around 20 variables to a
current limit of around 400 variables. The computational time available to solve
each instance of the problem is limited by the frame rate of the simulation, and
the memory allowed to solve each problem is severely restricted by the hardware
available on many of the existing game (console) platforms. The typical time frame
is of the order of milliseconds, while the amount of fast RAM available is 4-16K.
A further important feature of the solution technique is that worst case behavior
is very important – if large spikes in computation occur this can lead to loss of
frames and jumpy screen animations.

While these problems are clearly not large scale, the limited memory require-
ment means that techniques normally associated with large scale problems are
pertinent. In particular, limited memory methods and conjugate gradient tech-
niques would appear to be applicable.

We now describe some mathematical background on the problem. To handle
collisions in physical simulation, it is normally necessary to solve Linear Comple-
mentarity Problems (LCP’s) very efficiently. While more general formulations are
typically of interest, the form of the LCP considered here is a bound constrained
convex quadratic program

min
{

1
2
x�Ax + v�0 x : l ≤ x ≤ h̃

}
.

Here, x is the vector of length n to be found, l, h̃ and v0 are given vectors, the
bounds hold componentwise, and A is a symmetric positive semidefinite matrix
of the form A = JM−1J� + D. The matrix A is not computed explicitly, but is
given by J , M−1 and D. Here M = diag(M1, . . . , Mk) is block diagonal and each
Mi = diag(mi, mi, mi, Ii) is 6×6 with mi and Ii being the mass and inertia tensor
for the ith physical body. In fact, x is the vector of the impulses at each physical
contact, J�x is the vector of the impulses applied to the bodies, M−1J�x is the
vector of velocity changes of the bodies, JM−1J�x is the vector of relative velocity
changes at the physical contacts, and (if we ignore D) Ax + v0 is the vector of
relative velocities at the physical contacts.

The matrix J is sparse and represents collisions. If bodies i and j are capable
of colliding then J has a set of rows with nonzero entries only for those bodies;
thus it has a (collisions × bodies) block structure.

The matrix D is diagonal with small positive or zero diagonal elements. Physi-
cally, a positive element would correspond to a small springiness in the constraints,
but they are not put in to represent a physical effect. They are sometimes added
to make A positive definite and guarantee uniqueness in x. Note that if A is only
semidefinite then Ax + v0 will still be unique, even if x is not.
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We have around 1800 test problems from the application each of which is a
convex quadratic optimization with simple bound constraints. They are set up as
two suites of problems, one labelled “ball” and the other labelled “topple”. The
order of the problems is due to the visualization being performed. A ball is rolling
and bumping into things, a stack of bricks is toppling. The results show that the
difficulty varies as the simulation ensues. While the original problem description
specifies bounds on all the variables, it was decided to treat any bounds with
magnitude over 1020 as infinite. The resulting problems then have some doubly
bounded variables, some singly bounded variables and some free variables.

The remainder of this paper is organized as follows. In Section 1 we describe a
simple interior point approach to solving the problem and show this to be effective
in terms of iteration count on the problems at hand. Section 2 explores the linear
algebra issues that arise in an implementation of the interior point approach for this
application. In particular, we investigate preconditioning, ordering and various
ways of solving an equivalent augmented system. Section 3 briefly surveys other
approaches that were considered and discusses the pros and cons of them compared
to the interior point approach. The paper concludes with some recommendations
for solving these types of problems and indicates some thoughts for future research.

1. Interior point method

For computational ease, the problems were transformed by a simple linear trans-
formation so that doubly bounded variables lie between 0 and a finite upper bound
and singly bounded variables are simply nonnegative. Such changes clearly do not
affect the convexity properties of the objective function and result in some sim-
ple shifts coupled with a multiplication by −1 of the rows and columns of A (or
equivalently the rows of J) corresponding to singly upper bounded variables. The
resulting problem is thus:

min
{

1
2
x�Hx + q�x : x ∈ B

}

where
B = {x : 0 ≤ xB ≤ u, 0 ≤ xL, xF free}.

Introducing multipliers sB, sL and ξ for the bound constraints, the first order
optimality conditions of this convex problem are both necessary and sufficient and
can be written (see [23], for example)

g := Hx + q −
⎡
⎣ sB − ξ

sL
0

⎤
⎦ = 0

0 ≤ xB ⊥ sB ≥ 0
0 ≤ xL ⊥ sL ≥ 0

0 ≤ u − xB ⊥ ξ ≥ 0
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where the perp notation means that in addition to the nonnegative bounds, primal
and dual variables are orthogonal.

We apply the Primal-Dual Framework for LCP to this problem (see [23], pp. 158–
160). The critical system of linear equations (using the standard capitalization
notation) that must be solved at each iteration is:

⎡
⎢⎢⎢⎢⎢⎢⎣

HBB HBL HBF −I I
HLB HLL HLF −I
HFB HFL HFF
SB XB

SL XL
−Ξ U − XB

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∆xB
∆xL
∆xF
∆sB
∆sL
∆ξ

⎤
⎥⎥⎥⎥⎥⎥⎦

= −Φ

where

Φ =

⎡
⎢⎢⎣

g
XBsB − σµe
XLsL − σµe

(U − XB)ξ − σµe

⎤
⎥⎥⎦

with

σ ∈ [0, 1] and µ =
x�
B sB + x�

LsL + (u − xB)�ξ

‖L‖ + 2‖B‖ ,

where ‖ · ‖ denotes the cardinal of a finite set.
We first eliminate ∆sB, ∆sL and ∆ξ from this system to recover the following

problem:
(H + θ)∆x = −r (1)

where
θ = diag(X−1

B sB + (U − XB)−1ξ, X−1
L sL, 0F)

and

r = Hx + q − σµ

⎡
⎣ X−1

B e − (U − XB)−1e
X−1

L e
0

⎤
⎦ .

Once this system is solved, we can recover all the required values using back
substitution.

Some points of note. We use two stepsizes, for primal and dual variables, each
one been computed by means of the fraction to the boundary rule with 0.9995 as
parameter value. We choose σ = 0.1 as initial value of the centering parameter.
Whenever one of the stepsize becomes too small (less than 0.1), the centering
parameter is set to 0.3, otherwise it is set to max{σ, (0.1+σ)/2}. We initialize the
method (for the translated problem) at a point where xi = 1, i ∈ L, xi = ui/2,
i ∈ B and xi = 0, i ∈ F . The dual variables are set to

si =
{

0.1 + max{0, Hi·x + qi} i ∈ B,
max{0.1, Hi·x + qi} i ∈ L and ξi = si − (Hi·x + qi), i ∈ B,
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where Hi· stands for the i-th row of H . We terminate the interior point method
when

µ ≤ 10−8 and ‖g‖ ≤ (1 + ‖q‖)10−6.

The experiments in Matlab on our two suites of test problems show that the
interior point method is an effective solution approach. While there is some varia-
tion over the suite of problems, the maximum number of iterations is 22 for all test
problems and the vast majority of the solutions occur in no more than 20 iterations
of the interior point method. The average number of interior point iterations is
about 13. This approach appears very promising provided that we can solve the
linear systems within the time and space constraints imposed by the application.

2. Linear algebra

In this section we explore the linear algebra issues to solve the critical linear
system at each interior point iteration. We use a preconditioned conjugate gra-
dients method (PCG) (see [22], pp. 244–250) to solve the system (1) which we
will refer to as the primal system. We also investigate the possibility to solve an
equivalent augmented system which we will refer to as the dual system. In both
cases, we examine different preconditioners (diagonal preconditioners and incom-
plete Cholesky factorization) and also the possibility of reordering the system.

2.1. Primal system

Symmetry and positive (semi-)definiteness allow us to use PCG to solve the
primal system (1). The work involved in an iteration of this method is one
matrix×vector multiplication plus 5 vector operations (3 vector updates and 2
dot products) and 3 additional vectors require storage. The key issue is to deter-
mine an effective preconditioner for H + θ so that the number of linear iterations
needed is small, but little additional memory is required. Note that H has the form
J̃M−1J̃�+D, where J̃ incorporates the change of signs on the rows corresponding
to upper bounded variables.

We use the default convergence tolerance of a reduction in Euclidean norm of the
residual in the linear system by 10−6 in all runs of the standard Matlab conjugate
gradient code. Despite the relatively small dimension of the linear systems, the
conjugate gradient method without preconditioning fails to converge on some of
the resulting systems. This is even the case if we relax the convergence tolerance.
Given that termination in exact arithmetic should occur in at most n steps, this
indicates the poor conditioning of some of the linear systems. Thus we only report
results for PCG, and only choose options for which the method achieves the above
tolerance. This results in an (almost) identical sequence of iterations of the interior
point method.

The first preconditioner is the simple diagonal preconditioner diag(H) + θ as
suggested in [3]. Table 1 reports the computer time (Time), the choice of the pre-
conditioner (Precond), the number of conjugate gradient iterations (CG Iter) and
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Table 1. Results when solving (1) with the diagonal precondi-
tioner diag(H)+θ (diag) and an incomplete Cholesky factorization
(chol). The results are reported under the form mean/max.

Problem Precond Time CG Iter Nnz
Ball diag 0.30/0.53 1223/2057 67/118

chol 0.06/0.12 47/74 1222/1846
Topple diag 0.25/1.97 724/3107 71/288

chol 0.07/0.38 47/125 876/5111

the additional memory storage (Nnz, number of nonzeros in factor) per problem
to solve all the systems generated by the interior point method on each problem
class.

We experimented with the diagonal preconditioner θ + diag(
∑

j |H·j |) that at-
tempts to incorporate the off diagonal entries in H , but the results are not as good
as those of Table 1. While additional memory requirements are small, the numbers
of matrix-vector products are considered unacceptable for the application.

There is evidently significant non-local coupling that can not be accounted
for by these simple diagonal scaling. We therefore resort to a more sophisticated
preconditioner, namely an incomplete Cholesky factorization with a drop tolerance
(see for example [22]). Table 1 shows the computer time, the number of conjugate
gradient iterations and the number of nonzeros in the incomplete Cholesky factor
with a drop tolerance of 10−4, that are required to solve each problem using the
primal system. Increasing the drop tolerance led to significant increases in the
number of conjugate gradient iterations and was deemed unacceptable. It is clear
that the number of conjugate gradient iterations is decreased to a very reasonable
number using this approach, but that the size of the factor is too large for the
application. Note that the results for the “topple” problem are particularly bad
for this approach. We therefore investigate alternative linear systems in order to
generate preconditioners with smaller memory requirements.

2.2. Dual system

Alternative approaches for solving (1) stem from the equivalent augmented
system: [

M J̃�

J̃ −D − θ

] [
∆y
∆x

]
=

[
0
r

]
.

This symmetric and indefinite system might be preconditioned using for example
the results of [15] and [20], but without making further assumptions, no effective
technique of either type was found in this case. However, just as the original
system (1) (the primal system) results from an elimination of ∆y using the first
equation, an alternative is to use the dual system where we first eliminate ∆x
using the second equation, then solve for ∆y and finally use back substitution to
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Table 2. Results when solving (2) with the diagonal precondi-
tioner diag(N) (diag) and with an incomplete Cholesky factoriza-
tion preconditioner (drop tolerance of 10−4).

Problem Precond Time CG Iter Nnz
Ball diag 0.31/0.91 1242/3494 66/102

chol 0.06/0.15 43/103 1284/2564
Topple diag 0.10/0.56 364/1783 29/108

chol 0.04/0.13 30/64 242/1340

calculate ∆x:

N := (M + J̃�(D + θ)−1J̃)

N∆y = J̃�(D + θ)−1r (2)

∆x = (D + θ)−1(J̃∆y − r).

In this formulation, we implicitly assume that (D+θ) is invertible. This is the case
in our application examples, for which D is a positive diagonal matrix. The case
where D = 0 is discussed in Section 2.4. Two simple diagonal preconditioners can
again be used, namely diag(N) and diag(

∑
j |N·j |). The results for the first are

given in Table 2, and remain very similar for the second (which are not shown).
The results when an incomplete Cholesky factor is used to solved the system (2)
are reported in Table 2. The first point to note is that both of these are reduced
on the “topple” problem as compared to the results of Table 1. This is essentially
due to the fact that on these problems the size of the dual system is smaller than
that of the primal system. The results for the “ball” problem are less conclusive
and show that the worse case of both iteration count and number of nonzeros is
increased when using the dual approach.

Figure 1 summarizes the first experiments with two performance profiles [10] on
the amount of computer time for each problem suite. Each curve represents the
fraction p of problems for which the method is within a factor t of the best method.
A method with a large factor p (top curve) is to be preferred. It is clear that the
use of an incomplete factorization outperforms the diagonal preconditioning. The
solution on the dual system gives always better results for the “topple” suite, but
for the “ball” suite, a part of problems is more efficiently solved with the primal
system. This suggests using an approach that switches between the two systems
depending on known problem characteristics. We note that for all the “topple”
problems J has more rows than columns so that the dual system will be smaller
than the primal system. Since in general the relative dimensions of J̃ are not
known, we choose to solve the dual system if the number of rows of J̃ is greater
than its number of columns. This is an empirical choice based on the number
of nonzeros in the resulting (primal or dual) linear system. Using this heuristic
switching mechanism, the number of conjugate gradient iterations remains at a
reasonable number as shown in Table 3. Note that the “topple” problem is always
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Ball Topple

Figure 1. Performance profiles on computer time. The profiles
correspond to the results reported in Tables 1–2.

Table 3. Results when using both primal and dual systems with
an incomplete Cholesky factorization preconditioner (drop toler-
ance of 10−4).

Problem Time CG Iter Nnz
Ball 0.05/0.15 37/102 1151/2023

Topple 0.04/0.13 30/64 242/1340

solved using the dual approach, but the “ball” problem switches between the two
systems.

2.3. Orderings and drop tolerances

If we choose to perform an incomplete factorization then we require the in-
complete factors to be reasonably sparse. The storage required for an incomplete
Cholesky factorization with drop tolerance of 10−4 is shown in Table 3. Ideally,
we would like to limit the amount of storage that is available to the preconditioner
to 1000 double precision entries and neither approach achieves this goal.

We have investigated ordering the systems at hand to reduce the size of these
factors. We found the use of a symmetric reverse Cuthill McKee ordering (symrcm,
see [13]) to be helpful in this respect. If we perform a symmetric reverse Cuthill
McKee ordering of H + θ or N beforehand (and solve the permuted problem
explicitly), the size of preconditioners generated is shown in Table 4. However,
it should be noted that while the effects of drop tolerances are dramatic in the
number of conjugate gradient iterations required, their effect on the number of
nonzeros in the factors is somewhat limited. We show two extremes in Table 4.

Note that only one ordering needs to be carried out, but that an incomplete
factorization must be formed at every iteration of the interior point method. Since
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Table 4. Results when using both primal and dual systems, with
symrcm ordering and incomplete Cholesky factorization precon-
ditioner.

Problem Drop Tol Time CG Iter Nnz
Ball 1e-3 0.06/0.22 60/330 543/703

1e-4 0.05/0.11 32/80 563/811
1e-8 0.04/0.08 12/24 575/945

Topple 1e-3 0.05/0.15 46/108 198/836
1e-4 0.04/0.13 27/60 215/902
1e-8 0.04/0.12 13/22 233/982

the number of interior point iterations and the number of conjugate gradient iter-
ations remain (small and) unchanged, we believe that preconditioning with a very
small drop tolerance is an efficient and effective way to solve the problem at hand.

We have also investigated the possibility of reusing the incomplete factors. How-
ever, while this has proven effective in other applications, it just served to dra-
matically increase the number of conjugate gradient iterations required in this
application.

2.4. Effect of D

In both application examples, the matrix D has positive entries, ensuring that
the problem at hand has a unique solution. We carried out a limited number
of experiments where we set D = 0. Since in many cases the matrix J is quite
rank-deficient, this can lead to substantial difficulties in our dual approach.

However, subject to the following caveats, all problems were solved by our
approach. The first caveat is that in the dual approach, it may no longer be
possible to form (2) since D + θ may no longer be invertible. To protect against
this, whenever we solve (1) by first transforming it to (2), we perturb D + θ to
force every entry to be at least 10−8. The second caveat is that the resulting linear
system (2) is very hard to solve and requires an exact factor. For even very small
values of the drop tolerance the PCG method failed.

Thus to gain robustness in the method, we suggest using the adaptive pri-
mal/dual approach (possibly with very small perturbations), combined with a
symmetric reverse Cuthill McKee ordering and solution using exact factorization.
While it is possible (particularly in the primal system) to employ a drop toler-
ance in an incomplete Cholesky factorization preconditioner, the gain in terms of
memory is very small compared to the increase in conjugate gradient iterations.

3. Other approaches

We experimented with several other approaches to determine their applicability,
including OOQP [12], PATH [8,11], SEMI [19], L-BFGS-B [24], SPG [5] and TRON
[17].
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Table 5. PATH Results (the memory storage is for the LU fac-
torization only).

Problem Time Iter Mem
Ball 0.004/0.01 30/84 2230/4184

Topple 0.01/0.13 70/355 2574/19766

Table 6. SEMI Results (an iteration is a Newton step, not a
LSQR step).

Problem Time Iter Mem
Ball 0.01/0.14 6/15 2018/3824

Topple 0.1/1.77 11/30 2312/13900

The OOQP code did not solve all the problems in the suite so we have not
reported results for that code here. The failures are due to difficulties in the
factorization, as the matrix becomes more ill conditioned. However, we note that
in the cases successfully solved, the number of interior point iterations used by
OOQP was very similar to the code we outlined above.

3.1. PATH and SEMI

We configured the PATH solver [8, 11] to act as a modified Lemke code (using
a regular start instead of a ray start) with termination criteria of 10−4. Note that
each iteration corresponds to a pivot, implementable by a rank-1 update. While
the use of a crash procedure [9] does reduce the number of pivots required to solve
the problem, we have not reported these results here since we attempted to reduce
the overall complexity of the approach. We present the results in Table 5. The
iterations required by this approach are quite small, although for the larger test
problems in the “topple” suite it increases to nearly 400. This approach could
be implemented using the problem specific linear algebra techniques outlined in
Section 2. We believe however, the method of Section 1 will perform better on
this application due to the small fluctuation in iteration count in the context of
the interior point method.

The semismooth approach described in [19] is similar to the interior point ap-
proach that was outlined in Section 1 in that it generates a small number of linear
systems to solve, except that it typically destroys the symmetry properties of
H . We used an option file that configured the code to carry out monotone line-
searches without a crash procedure and using a Fischer merit function, as these
options greatly improved the performance of the code on these problems. The
implementation uses an incomplete LU factorization preconditioner to the LSQR
iterative solver [21], which by default has a very small drop tolerance. We present
the results (with termination criterion of 10−4) in Table 6.

While the iteration count is very impressive, the number of nonzeros in the LU
factors approaches 14,000 even when the Markovitz ordering is used. It remains
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Table 7. L-BFGS-B results.

Problem m Time Feval Mem
Ball 3 0.075/0.180 1302/2287 822/1324

5 0.066/0.149 858/1449 1309/2012
10 0.097/0.683 757/1422 2947/4152

Topple 3 0.038/0.559 296/1332 855/3024
5 0.035/0.453 207/666 1356/4392
10 0.039/0.466 162/ 534 3027/8232

a topic for future research to determine if iterative techniques, more specialized
reformulations or other orderings can reduce this memory requirement to an ac-
ceptable level. A (predictor-corrector) smoothing method implemented within
Matlab performs very similarly to the SEMI code.

An advantage of the techniques of this section over the other ones outlined in
this paper is that they would perform just as well on convex LCP’s that are not
derived directly as the optimality conditions of a convex quadratic optimization
problem.

3.2. L-BFGS-B

The limited memory BFGS method [24] appears to be ideally suited to this
application. This code has a limited memory requirement of 2mn + 4 ∗ n + 12 ∗
m2 + 12m where n is the underlying problem dimension and m is a parameter
that determines the number of BFGS corrections saved in memory. We used the
code on the application supplied suite of test problems giving rise to the results
shown in Table 7. The mean/max numbers of function evaluations and memory
requirement are reported in columns Feval and Mem.

The run was terminated when the infinity norm of the projected gradient be-
comes smaller than a tolerance of 10−4. We experimented with 3 values of the
parameter m. Note that each iteration approximately solves a model problem de-
termined by the current limited memory approximation of the Hessian matrix H .

Clearly, these results show that the benefit of m > 3 is not substantial in terms
of computer time. Furthermore, the amount of memory required when m = 3 is
much smaller, and is therefore preferred. However, even in this case, the method
takes over 6n additional memory, and is thus more memory intensive that the
problem specific approaches outlined above.

However, as a general purpose approach to these problems this technique has
several benefits. Firstly, it does not require the matrix H to be formed explicitly
but uses reverse communication to request objective function and gradient evalu-
ations. Thus, H does not need to be formed, it can be applied using J , M−1 and
D. Furthermore, the memory required is known in advance and is not affected
by changes in density of J . However, the cost of this method is the number of
iterations that are needed - the method often requires more than 1000 function
evaluations with m = 3 and more than 500 with m = 10.
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Table 8. Results when solving the linear systems (1) or (2) with
a L-BFGS preconditioner.

Problem m Time CG Iter 2n(m + 1)
Ball 4 0.60/2.94 892/3400 623/1020

8 0.65/3.57 769/3247 1121/1836
16 0.62/3.94 598/2737 2118/3468

Topple 4 0.21/1.49 317/1634 295/1080
8 0.22/1.66 267/1447 531/1944
16 0.21/1.81 214/1206 1002/3672

3.3. L-BFGS preconditioning

Limited memory BFGS updates can also be used to compute a preconditioner
for the conjugate gradient method [18]. The method is designed for solving a se-
quence of slowly varying linear systems. It uses information from the resolution
of the current linear system to build an L-BFGS approximation matrix as a pre-
conditioner for the next linear system. The benefits of this approach are the same
as the L-BFGS-Bq algorithm, that is, low memory storage, an amount of memory
known in advance and a Hessian matrix H that does not need to be formed but
can simply be applied.

We experimented with a slightly different approach than the one described by
[18]. Since the matrices of the linear systems are of the form H + θ, where θ
is diagonal and is the only term varying during the interior point iterations, we
perform an L-BFGS approximation of H , say M , and use M +θ as preconditioner.
Formulas and the algorithm for the computation of the matrix-vector products
(M+θ)−1v are obtained from a compact representation of M [7] combined with the
Sherman-Morrison-Woodbury formula (see [1]). The memory storage requirement
is of 2n(m + 1) + O(m2), where m is the number of vector pairs of length n kept
in memory. The choice of the vector pairs at one iteration is carried out using the
SAMPLE algorithm described by [18].

Table 8 shows the mean and maximum amount of computer time and number
of conjugate gradient iterations that are required to solve the linear systems for
each class of problems. We used the same primal-dual switching mechanism as
described in Section 2.2. The parameter m indicates the number of vectors pairs
kept in memory and the last column indicates the amount of additional memory
required to store the vector pairs. We observed a linear decrease of the number of
conjugate gradient iterations for increasing values of m, but the counterpart is that
the computational cost increases at each iteration, so that the overall computer
time does decrease. Note that the computer time are not directly comparable
with those of the L-BFGS-B results, because of the use of different programming
languages.
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Table 9. SPG Results.

Problem Time Iter Feval
Ball 0.21/1.00 4085/9995 6929/+15000

Topple 0.12/4.15 892/9990 1390/+15000

3.4. SPG

SPG [5] implements a gradient projection method combined with a nonmono-
tone line search. It is derived from the Barzilai-Borwein algorithm [2] and is glob-
ally convergent for the minimization of a nonlinear differentiable function over a
convex set [4]. SPG is particularly well suited to our application because it needs
only to store two gradient vectors and the projected direction of line search. More-
over the inner cost of one iteration is nearly reduced to the computation of two
scalar products.

We used the Fortran 77 code supplied by the authors with the default parame-
ters settings, except that we set the maximum number of function evaluations to
15000 and we used the same stopping criterion as with our experiments with L-
BFGS-B, that is the infinity norm of the projected gradient must be smaller than
10−4. Table 9 shows the computer time, the number of iterations and function
evaluations to solve both problem suites.

SPG is a gradient algorithm and so we observed that sometimes a very great
number of iterations are needed to obtain a sufficiently accurate solution. In
particular we observed that to attain the given accuracy the number of function
evaluations is greater than 15 000 for 23 problems. By relaxing the upper bound
on the number of function evaluations, we observed more than 100000 function
evaluations for 6 problems. Even when the stopping tolerance is relaxed to 10−2,
the number of function evaluations is still greater than 15,000 for these problems.
Though our implementation of the computation of function and gradient values is
not optimal and can be certainly improved for a real application, we think that
the inherent slow convergence of the gradient method is a serious drawback for
this application.

3.5. TRON

TRON [17] implements a truncated Newton method for solving bound con-
strained problems. It uses a gradient projection method and a preconditioned
conjugate gradient method with an incomplete Cholesky factorization to solve the
linear systems. The factorization uses a technique proposed by Lin and Moré [16]
and depends on a parameter p that specifies the amount of memory to store the
preconditioner. An advantage of the preconditioning technique is to predict the
amount of memory used by the application, what is not allowed with the drop
tolerance strategy used in the preconditioning of our interior point approach.

We performed the experiments with the Fortran 77 code supplied by the au-
thors. Table 10 shows the results for both suites of test problems. The TRON
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Table 10. Tron results.

Problem Iter Time CG Iter Nnz
Ball 6.6/10 0.036/0.065 40/91 866/2129

Topple 5.6/13 0.040/0.204 27/ 286 1035/6867

approach seems to be very efficient in terms of number of iterations. The overall
number of main iterations (Iter) is smaller than the one of the interior point ap-
proach. The computer time (Time) is of the same order as the interior point and
L-BFGS-B, though it is not directly comparable to the former because of different
programming languages. While the number of conjugate gradient iterations (CG
Iter) remains reasonable for each problem, in particular for the “ball” suite, the
amount of memory to store the preconditioner is prohibitive for the application.
This is due to the fact that the number of nonzero elements of the preconditioner
is equal to nnz + n(p + 1) where nnz is the number of nonzero elements of the
strict lower triangular part of the factorized matrix and n is the problem size. For
a part of the test problems, the Hessian matrix of the quadratic function is not
sparse.

4. Conclusions

This paper has provided a case study of the solution of a particular suite of
test problems arising from physical simulations in the video game industry. The
paper has proposed an interior point method for solution and has investigated
the use of iterative methods to solve the systems of linear equations that arise.
Several other codes (PATH, SEMI, L-BFGS-B, SPG, TRON) also process all the
models at hand, but are considered inferior to the interior point approach because
they are too memory consuming or CPU time consuming or both. Obviously, the
optimization that we have considered here, seem non-trivial to generalize to the
complementarity setting. However, when direct methods are applied to solve (1)
or (2), the symmetry of the underlying systems is no longer as crucial – in fact
LU decomposition can be used in place of Cholesky factorization.

The interior point approach is theoretically guaranteed to process problems of
the type described here and in practice takes very few iterations (linear solves)
to generate accurate solutions. The method is easily generalizable to unsymmet-
ric complementarity problems, relying on corresponding changes to the methods
needed to solve the resulting linear systems.

We have proposed a primal/dual switching mechanism for solving the underly-
ing linear systems in our method as a means to reduce memory requirements. This,
coupled with a symmetric reverse Cuthill McKee ordering, allows all the systems
to be solved with preconditioner memory requirements of less than 1000 double
precision entries. The preconditioner recommended is an incomplete Cholesky fac-
torization with very low drop tolerance. It is interesting to note that in many cases
the nonzeros in the preconditioner are fewer than the nonzeros in the matrix J .
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Unfortunately, the benefits of this preconditioner when coupled with the other
features of our solution approach are limited, and direct solution does not take
much more memory than the preconditioner, and can lead to more robustness
on problems that are not strongly convex. In both cases, we acknowledge the
potential drawback of needing to form the matrix used in (1) or (2) in order that
the (incomplete) factorization can be carried out.

We believe that the use of iterative methods within the context of interior
point methods remains a topic of future research. Newly developed codes such
as GALAHAD [14] and KNITRO [6] for (quadratic and) nonlinear programming
already incorporate conjugate gradient techniques for subproblem solution in large
scale settings.

Limited memory solution of complementarity problems remains an open area
for general problems. This paper has shown it to be difficult to use iterative linear
equation solvers in the context of convex quadratic programs with simple bounds.
Complementarity problems are considered more difficult than these problems for
iterative solvers since they generate unsymmetric systems. We remain hopeful
that careful study of particular applications, coupled with a more complete under-
standing of the interplay between theory and implementation will lead to advances
in this area.

Acknowledgements. The authors wish to thank J.M. Mart́ınez and an anonymous referee
for their useful remarks and improvements.

References
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