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Abstract. In this paper, we propose a new class of adaptive trust
region methods for unconstrained optimization problems and develop
some convergence properties. In the new algorithms, we use the current
iterative information to define a suitable initial trust region radius at
each iteration. The initial trust region radius is more reasonable in
the sense that the trust region model and the objective function are
more consistent at the current iterate. The global convergence, super-
linear and quadratic convergence rate are analyzed under some mild
conditions. Numerical results show that some special adaptive trust
region methods are available and efficient in practical computation.
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1. Introduction

Trust region method is an important technique for solving optimization prob-
lems and has wide applications in many fields, such as science, engineering, econ-
omy and operations research, etc., due to its strong global convergence and ro-
bustness [2–4,16, 21, 24, 29, 30].
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Consider an unconstrained optimization problem

min f(x), x ∈ Rn, (1)

where Rn is an n-dimensional Euclidean space and f : Rn → R1 is a twice contin-
uously differentiable function.
Throughout this paper we denote

• xk as the current iterate (k = 0, 1, 2,...,);
• fk = f(xk), gk = g(xk) = ∇f(xk), Hk = H(xk) = ∇2f(xk);
• || · || as the Euclidean norm;
• Bk as a symmetric matrix and an approximation to Hk in some sense at

the point xk;
• B̂k = Bk + iI (I ∈ Rn×n denotes the unit matrix), i is the smallest

nonnegative integer such that B̂k becomes a positive definite matrix.

The existing methods for solving (1) can be divided into two classes: one is line
search method and the other is trust region method. Line search method needs to
carry out a line search procedure at each iteration and trust region method needs
to solve a trust region subproblem at each step. As we have known, trust region
methods are based on the following approach. At the iterate xk (suppose that it
is not a stationary point), a trial step is usually obtained by solving the following
subproblem

min
d∈Rn

mk(d) = gT
k d +

1
2
dT Bkd, s.t. ||d|| ≤ ∆k, (2)

where ∆k is a trust region radius. A merit function is normally used to test
whether the trial step is accepted or the trust region radius needs to be adjusted.
In comparison with quasi-Newton methods, trust region methods can converge to
such a point that is not only a stationary point, but also satisfies second-order
necessary conditions. Because of its strong convergence and robustness, trust
region methods have been studied by many authors [1, 5, 9–12, 17, 19, 22, 25] and
some convergence properties are given in the literature [6–8,14, 15, 18, 20, 26].

It is well known that the trust region radius ∆k in the above mentioned sub-
problem is independent of gk and Bk. As a result, we do not know whether the
quasi-Newton step, −B−1

k gk, is feasible at the k-th step, even when the test condi-
tion of the merit function is satisfied. This situation would decrease the efficiency
of these methods. Furthermore, the choice of ∆k also affects the efficiency of these
methods.

Sartenaer [19] presented a strategy for determining automatically an initial
trust region radius. The basic idea is to determine a maximal initial radius through
many repeated trials in the direction, −gk, in order to guarantee a sufficient agree-
ment between the model and the objective function. Zhang et al. [27] presented
another strategy of determining the trust region radius. Their basic idea originated
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from the following subproblem in an artificial neural network research [25, 26],

min mk(d) = gT
k d + 1

2dT Bkd

s.t. −α(xk) ≤ di ≤ α(xk), i = 1, 2, ..., n,

where αk = cp‖gk‖/mk, 0 < c < 1, mk = min(‖Bk‖, 1), and p is a nonnegative
integer. In their algorithm, instead of adjusting ∆k, they adjust p at each iterate.
Motivated by this technique, they solved the trust region subproblem (2) with

∆k = cp‖gk‖ · ‖B̂k
−1‖ (3)

and gave a global convergent adaptive trust region method [28], where c ∈ (0, 1)
and p is a nonnegative integer.

However, their method needs to estimate ‖Bk‖ or ‖B̂−1
k ‖ at each iteration,

which leads to some additional cost of computation. As a result, a simple adaptive
trust region method was proposed [23], which used the following trust region radius

∆k = cp‖gk‖3/gT
k B̂kgk, (4)

where c ∈ (0, 1), B̂k is a positive definite matrix and p is a nonnegative integer.
In this paper, we present a new class of adaptive trust region methods for

unconstrained optimization problems and develop several convergence properties.
At each iteration, the new methods generate a suitable initial trust region radius
automatically based on the current iterative information. The new trust region
model is more consistent with the objective function at the current iterate. The
global convergence and super-linear and quadratic convergence rate of these new
methods are proved under some mild conditions. Numerical results show that
some special adaptive trust region methods are available and efficient in practical
computation.

The rest of this paper is organized as follows. In the next section, we introduce
the new class of adaptive trust region methods and give some simple properties.
In Sections 3 and 4, the global convergence and super-linear and quadratic conver-
gence rate are investigated. Numerical results are given in Section 5. Conclusions
and future research are summarized in Section 6.

2. New algorithms and some properties

The new trust region methods for (1) at the current iterate xk need to solve
the subproblem

min
d∈Rn

mk(d) = gT
k d +

1
2
dT Bkd s.t. ||d|| ≤ αk, (5)

where

αk = −cp gT
k qk

qT
k B̂kqk

‖qk‖, (6)
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(0 < c < 1), p is a nonnegative integer and qk satisfies

− gT
k qk

‖gk‖ · ‖qk‖ ≥ τ (7)

with τ ∈ (0, 1].
We can determine B̂k by carrying out the procedure: if qT

k Bkqk > 0 then B̂k =
Bk else test B̂k = Bk + iI for i = 1, 2, 3, · · · until qT

k B̂kqk = qT
k Bkqk + i‖qk‖2 > 0.

Define the following parameter

Predk = mk(0) − mk(dk) = −mk(dk) = −
(

gT
k dk +

1
2
dT

k Bkdk

)
,

Aredk = fk − f(xk + dk),

rk =
Aredk

Predk
·

We assume that
(H1). The objective function f(x) is twice continuously differentiable on Rn

and the level set L(x0) = {x ∈ Rn|f(x) ≤ f(x0)} is bounded for a given x0.
(H2). {Bk} is uniformly bounded, i.e. there exists an M such that ||Bk|| ≤ M

for all k.

Remark 2.1. Since f(x) is a twice continuously differentiable function, (H1)
implies that {∇2f(x)} is uniformly continuous and bounded on a bounded open
convex set Ω that contains L(x0). Hence, there exists L such that ‖∇2f(x)‖ ≤ L
and

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Ω.

Remark 2.2. By the generating procedure of B̂k and (H2), we obtain that {B̂k}
is also uniformly bounded. In fact, assume that ‖Bk‖ ≤ M ′

0 for all k with M ′
0

being a positive constant, then ‖B̂k‖ = ‖Bk + iI‖ ≤ 2M ′
0 whenever qT

k B̂kqk =
qT
k Bkqk + i‖qk‖2 > 0.

Algorithm(A).
Step 0. Set 0 < c < 1, ε ≥ 0, 0 < η < 1, x0 ∈ Rn and p := 0, k := 0.
Step 1. If ||gk|| ≤ ε then stop else solve (5) to obtain dk. Set x̄k+1 =
xk + dk and go to Step 2.
Step 2. If rk < η then set p := p + 1 and go to Step 1.
Step 3. Set xk+1 = x̄k+1, modify Bk as Bk+1, set p := 0, k := k + 1 and
go to Step 1.

Lemma 2.3. For k ≥ 1,

Predk ≥ cp
(
gT

k qk

)2
2qT

k B̂kqk

, ∀p = 0, 1, 2, · · · .
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Proof. Take d = − cpgT
k qk

qT
k B̂kqk

qk, and since

||d|| = − cpgT
k qk

qT
k B̂kqk

||qk||
= αk,

it follows that d is a feasible solution to (5). Noting that dk is an optimal solution
to (5), we have mk(dk) ≤ mk(d), and thus,

Predk ≥ Pred

= −(gT
k d +

1
2
dT Bkd)

= −
(
−cp(gT

k qk)2

qT
k B̂kqk

+
c2p(gT

k qk)2qT
k Bkqk

2(qT
k B̂kqk)2

)

≥ −
(
−cp(gT

k qk)2

qT
k B̂kqk

+
cp(gT

k qk)2qT
k B̂kqk

2(qT
k B̂kqk)2

)

=
cp(gT

k qk)2

2qT
k B̂kqk

· �

Lemma 2.4. For k ≥ 1, it holds that

Predk ≥ 1
2

(
−gT

k qk

‖qk‖
)

min

{
αk, − gT

k qk

qT
k B̂kqk

‖qk‖
}

.

Proof. In the case of αk < − gT
k qk

qT
k B̂kqk

‖qk‖, since d = −cpgT
k qk

qT
k B̂kqk

qk is a feasible solution

to (5) and dk is an optimal solution to (5), we have mk(dk) ≤ mk(d), and thus,

Predk ≥ Pred

= −(gT
k d +

1
2
dT Bkd)

= −
(
−cp(gT

k qk)2

gT
k B̂kgk

+
c2p(gT

k qk)2gT
k Bkgk

2(gT
k B̂kgk)2

)

≥ −
(
−cp(gT

k qk)2

gT
k B̂kgk

+
cp(gT

k qk)2gT
k B̂kgk

2(gT
k B̂kgk)2

)

=
cp(gT

k qk)2

2gT
k B̂kgk

= −1
2
· gT

k qk

‖qk‖αk.
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In the case of αk ≥ − gT
k qk

qT
k B̂kqk

‖qk‖, since d = − gT
k qk

qT
k B̂kqk

qk is a feasible solution to (5)

and dk is an optimal solution to (5), we have mk(dk) ≤ mk(d), and thus,

Predk ≥ Pred

= −
(

gT
k d +

1
2
dT Bkd

)

= −
(
− (gT

k qk)2

qT
k B̂kqk

+
(gT

k qk)2qT
k Bkqk

2(qT
k B̂kqk)2

)

≥ −
(
− (gT

k qk)2

qT
k B̂kqk

+
(gT

k qk)2qT
k B̂kqk

2(qT
k B̂kqk)2

)

= −1
2

gT
k qk

‖qk‖

(
− gT

k qk

qT
k B̂kqk

‖qk‖
)

.

Therefore

Predk ≥ −1
2

gT
k qk

‖qk‖ min

{
αk, − gT

k qk

qT
k B̂kqk

‖qk‖
}

. �

Lemma 2.5. If (H1) and (H2) hold, then Algorithm (A) is well-defined, i.e.
Algorithm (A) does not circle at Step 1–Step 2 infinitely.

Proof. Suppose that Algorithm (A) circles at Step 1–Step 2 infinitely and denotes
k(i) as the index of k. Then, there exist point sequences {xk(i)}, {pk(i)}, {dk(i)},
{αk(i)} and {rk(i)}, where xk(i) = xk, pk(i) = i, and rk(i) < η, i = 0, 1, 2, · · · .

Lemma 2.3 shows that

Predk(i) ≥ cpk(i)
(gT

k qk)2

2qT
k B̂kqk

∀i = 0, 1, 2, · · · . (8)

By (H1) and the definition of Predk and Aredk, we have

Aredk − Predk = O(||dk||2). (9)

By (8) and (9) we obtain

|rk(i) − 1| =
|Aredk(i) − Predk(i)|

|Predk(i)| ≤ O(||dk(i) ||2)
cpk(i)

(gT
k qk)2

2qT
k B̂kqk

≤ O(||αk(i) ||2)
cpk(i)

(gT
k qk)2

2qT
k B̂kqk

=
O(||αk(i)||2)cpk(i)

2‖qk‖2

||αk(i)||2(qT
k B̂kqk)

→ 0 (i → +∞),



CONVERGENCE ANALYSIS OF ADAPTIVE TRUST REGION METHODS 111

and thus, for sufficiently large i, we have rk(i) ≥ η. This contradicts rk(i) < η and
the proof is completed. �

3. Global convergence

Theorem 3.1. If (H1) and (H2) hold, ε = 0 and gT
k qk < 0, then Algorithm (A)

either stops at a stationary point of (1) in finite step or generates an infinite
sequence {xk} such that

lim
k→∞

−
(

gT
k qk

‖qk‖
)

= 0. (10)

Proof. Suppose that Algorithm (A) generates an infinite sequence {xk} and lim
k→∞

(− gT
k qk

‖qk‖ ) 	= 0. Then there exist ε0 > 0 and an infinite subset K ⊆ N = {0, 1, 2, ...}
such that

−gT
k qk

‖qk‖ ≥ ε0, ∀k ∈ K. (11)

(H2) implies that there exists an M0 > 0 such that

||B̂k|| ≤ M0, ∀k ∈ K. (12)

By (11), (12), Lemma 2.3 and Algorithm (A), we have

∑
k∈K

[fk − fk+1] ≥
∑
k∈K

ηPredk ≥
∑
k∈K

η
cpk

ε20

2||B̂k||
, (13)

where pk is the largest p at the k-th iteration of Algorithm (A). Combining (12)
and (13), we have ∑

k∈K

[fk − fk+1] ≥
∑
k∈K

ηε20
2M0

cpk

.

Since {f(xk)} decreases monotonically and has a bound from below, we obtain

ηε20
2M0

cpk → 0, (k ∈ K, k → +∞).

Therefore, pk → +∞(k ∈ K, k → +∞) and we can assume that pk ≥ 1, ∀k ∈ K.
Algorithm (A) shows that the solution d̃k to the subproblem

min
d∈Rn

mk(d) = gT
k d +

1
2
dT Bkd

s.t. ||d|| ≤ −cpk−1 gT
k qk

gT
k B̂kgk

||qk||, (0 < c < 1),
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cannot be accepted by the algorithm. That is to say, if x̃k+1 = xk + d̃k then we
have

f(xk) − f(x̃k+1)
−mk(d̃k)

< η. (14)

On the other hand, by (12), Lemma 2.4 and Algorithm (A), we obtain∑
k∈K

[fk − fk+1] ≥
∑
k∈K

ηPredk

≥ −
∑
k∈K

η
1
2

gT
k qk

‖qk‖ min

{
αk, −||qk||gT

k qk

qT
k B̂kqk

}

≥
∑
k∈K

η
ε0
2

min

{
αk,

||qk||2ε0
qT
k B̂kqk

}

≥
∑
k∈K

ηε0
2

min
{

αk,
ε0
M0

}
.

By (H1), (H2) and the monotonicity of {f(xk)}, we have

αk → 0(k ∈ K, k → +∞). (15)

Since
f(x̃k+1) − f(xk) − mk(d̃k) = O(||d̃k||2),

and by Lemma 2.4, (11), (12) and (15), we have

|rk − 1| = |f(xk) − f(x̃k+1)
−mk(d̃k)

− 1|

≤ O(||d̃k||2)
ε0
2 min

{
αk, ε0

M0

}
≤ O(α2

k)
1
2ε0αk

→ 0(k ∈ K , k → +∞),

and thus, for sufficiently large k, we have

f(xk) − f(x̃k+1)
−mk(d̃k)

≥ η.

This is a contradiction to (14). Therefore, there is no such an infinite subset K
and ε0 > 0 such that (11) holds. This shows that (10) holds. �
Corollary 3.2. If the conditions in Theorem 3.1 hold and qk satisfies (7), then

lim
k→∞

‖gk‖ = 0.
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Proof. Since qk satisfies (7), by Theorem 3.1 we have

‖gk‖τ ≤ −gT
k qk

‖gk‖ · ‖qk‖‖gk‖ = −gT
k qk

‖qk‖ → 0(k → ∞).

This shows the conclusion. �

4. Convergence rate

Theorem 4.1. Assume that (H1) and (H2) hold and Algorithm (A) generates an
infinite sequence {xk} such that xk → x∗(k → +∞). H(x) is Lipschitz continuous
on a neighborhood N(x∗, ε) of x∗ and H(x∗) and Bk are positive definite matrices
such that

lim
k→∞

||[Bk − H(x∗)]qk||
||qk|| = 0, (16)

where qk = −B−1
k gk. Then {xk} converges to x∗ super-linearly.

Proof. Because B̂k = Bk for sufficiently large k, we assert that d̂k = −gT
k qk

qT
k Bkqk

qk is
an optimal solution to the subproblem

min
d∈Rn

mk(d) = gT
k d +

1
2
dT Bkd

s.t. ||d|| ≤ − gT
k qk

qT
k B̂kqk

||qk||.

In the sequel, we will prove that

f(xk) − f(xk + d̂k)
−mk(d̂k)

> η,

for sufficiently large k. By (16) we have

gk + H(x∗)d̂k = o(||d̂k||),

i.e.
d̂k = −H(x∗)−1gk + o(||d̂k||),

thus
||d̂k|| ≤ ||H(x∗)−1|| · ||gk|| + o(||d̂k||),

and consequently
||gk||
||d̂k||

≥ 1
||(H(x∗))−1|| +

o(||d̂k||)
||d̂k||

·
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By Corollary 3.2 we have gk → 0 (k → +∞), and therefore d̂k → 0 (k → +∞).
By Lemma 2.3 and noting that −gT

k qk = qT
k Bkqk we have

−mk(d̂k) ≥ (gT
k qk)2

2qT
k B̂kqk

≥ qT
k Bkqk

2
· (17)

By (16) and noting that qk = −B−1
k gk = d̂k we have

f(xk + d̂k) − f(xk) − mk(d̂k) = o(||d̂k||2). (18)

By (17), (18) and (12), we have∣∣∣∣∣f(xk) − f(xk + d̂k)
−mk(d̂k)

− 1

∣∣∣∣∣ ≤ o(||d̂k||2)
qT

k Bkqk

2M0

≤ 2o(‖d̂k‖2)
M0‖qk‖2

≤ 2o(‖d̂k‖2)

M0‖d̂k‖2

→ 0 (k → +∞),

which implies that
f(xk) − f(xk + d̂k)

−mk(d̂k)
> η,

for sufficiently large k. Therefore xk+1 = xk+d̂k for sufficiently large k. This shows
that Algorithm (A) reduces to a quasi-Newton method for sufficiently large k. We
can complete the rest proof by citing [2, 5, 15] or other related literature. �
Theorem 4.2. Assume that (H1) and (H2) hold and Algorithm (A) generates an
infinite sequence {xk} such that xk → x∗ (k → +∞). H(x) is Lipschitz continuous
on a neighborhood N(x∗, ε) of x∗ and H(x∗) and Bk are positive definite matrices
with Bk = H(xk) and qk = −B−1

k gk. Then {xk} converges to x∗ quadratically.

Proof. Since Bk = H(xk) implies that all conditions of Theorem 4.1 hold, we have
d̂k = qk → 0 (k → ∞). Therefore, there exists a k′ such that

xk + tqk ∈ N(x∗, ε), k ≥ k′, t ∈ [0, 1]. (19)

Because H(x) is Lipschitz continuous on the neighborhood N(x∗, ε) of x∗, there
must exist an L(ε) > 0 such that

‖H(x) − H(y)‖ ≤ L(ε)‖x − y‖, ∀x, y ∈ N(x∗, ε). (20)

In this case, Algorithm (A) reduces to Newton method for sufficiently large k. The
rest proof can also be seen from [2,5, 15]. �
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Theorem 4.3. Assume that (H1) and (H2) hold and Bk = Hk, αk = −cp ‖qk‖gT
k qk

qT
k B̂kqk

,

where 0 < c < 1 and p is a nonnegative integer. If {xk} converges to x∗, then
H(x∗) is a semi-positive definite matrix, i.e. x∗ satisfies the second order necessary
condition.

Proof. Denote λ1
k and λ∗ as the smallest eigenvalue of Hk and H(x∗) respectively.

Let zk be a normal eigenvector (‖zk‖ = 1) of Hk corresponding to the eigenvalue
λ1

k and zT
k gk ≤ 0, and then Hkzk = λ1

kzk. Suppose that H(x∗) is not a positive
semi-definite matrix, then λ∗ < 0 and thus λ1

k < 0 for sufficiently large k.
Because ‖αkzk‖ = αk, it follows that αkzk is a feasible solution to (5). There-

fore,

Predk ≥ −
(

αkgT
k zk +

1
2
α2

kzT
k Bkzk

)
≥ −1

2
α2

kzT
k Bkzk

= −1
2
α2

kzT
k Hkzk = −1

2
α2

kλ1
k||zk||2 = −1

2
α2

kλ1
k. (21)

By (21) and Algorithm (A) we have

Aredk ≥ ηPredk ≥ −1
2
ηα2

kλ1
k.

Since {f(xk)} is a monotone decreasing sequence and has a bound from below, we
have

Aredk = fk+1 − fk → 0 (k → +∞),

and thus α2
kλ1

k → 0 (k → +∞). Noting that λ1
k → λ∗ (k → ∞), we have

lim
k→∞

αk = 0.

From the definition of Algorithm (A), we can observe that the solution d̃k to

min
d∈Rn

mk(d) = gT
k d +

1
2
dT Bkd

s.t. ||d|| ≤ α̂k

with α̂k = −cqk−1 ||qk||gT
k qk

qT
k B̂kqk

(0 < c < 1), cannot be accepted by the algorithm, i.e.

if x̃k+1 = xk + d̃k, then
f(xk) − f(x̃k+1)

−mk(d̃k)
< η. (22)

On the other hand, noting that Bk = Hk, by Taylor expansion, we have

|f(xk) − f(x̃k+1) + mk(d̃k)| = o(||d̃k||2). (23)
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By (21) and (23) we obtain

∣∣∣∣f(xk) − f(x̃k+1)
−mk(d̃k)

− 1
∣∣∣∣ ≤ o(||d̃k||2)

− 1
2 α̂2

kλ1
k

≤ o(α̂2
k)

− 1
2 α̂2

kλ1
k

→ 0(k → ∞).

Since λ1
k → λ∗ < 0 (k → +∞), we get

∣∣∣∣f(xk) − f(x̃k+1)
−mk(d̃k)

− 1
∣∣∣∣→ 0(k → +∞),

and thus
f(xk) − f(x̃k+1)

−mk(d̃k)
≥ η

for sufficiently large k, which contradicts (22). This shows that H(x∗) is a positive
semi-definite matrix. �

5. Numerical results

In adaptive trust region methods, qk satisfying (7) has a wide scope. Of course,
qk = −gk is a natural choice, which leads to a recently proposed adaptive trust
region method [23]. If we take qk = −B̂−1

k gk, then we can obtain a new adaptive
trust region method. In this case, the trust region radius is αk = cp‖B̂−1

k gk‖ at the
k-th step. The adaptive trust region methods with qk = −gk and qk = −B̂−1

k gk

are denoted by TRS and TRN respectively. The original trust region method with
∆ = 100, ∆0 = 50 and η = 0.01 is denoted by TRO [15] (p. 68), which is described
as follows.

Algorithm 5.1 (trust region)

Given ∆ > 0, ∆0 ∈ (0, ∆), and η ∈ [0, 1
4 );

For k = 0, 1, 2, ...
Obtain dk by (approximately) solving (2);
Evaluate rk;
if rk < 1

4

∆k+1 = 1
4‖dk‖

else
if rk > 3

4 and ‖dk‖ = ∆k

∆k+1 = min(2∆k, ∆)
else

∆k+1 = ∆k;
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Table 1. Iterations, function and gradient evaluations and CPU time.

P n TRS TRN TRI TRZ TRO

1 2 26/88/26 18/36/18 28/62/28 26/59/29 36/56/56
2 2 23/45/23 18/34/18 27/58/27 32/32/32 42/57/52
3 2 15/46/15 12/23/12 16/52/16 22/33/22 20/78/60
4 2 15/55/16 12/18/12 17/68/17 34/64/34 28/75/68
5 2 26/48/26 21/26/21 26/68/26 37/87/37 32/78/72
6 2 18/49/18 15/15/15 23/63/23 35/38/35 28/85/78
7 3 43/46/43 36/36/36 52/65/52 61/72/61 48/67/67
8 3 48/62/48 35/35/35 53/58/53 64/68/64 83/75/72
9 3 46/56/46 37/37/37 63/68/63 66/74/66 85/85/81
10 3 28/34/28 23/23/23 25/50/25 56/61/56 65/72/64
11 3 46/62/46 38/38/38 53/57/53 59/78/59 72/83/78
12 3 46/68/46 37/37/37 65/75/65 69/72/69 83/88/83
13 4 56/58/56 45/45/45 68/74/68 81/89/81 91/95/91
14 4 38/45/38 29/29/29 43/48/43 68/78/68 86/92/86
15 4 76/76/76 59/59/59 85/88/85 97/99/97 94/98/94
16 4 29/36/29 18/18/18 43/63/43 78/84/78 93/98/93
17 5 93/98/93 79/79/79 98/98/98 85/96/85 92/123/93
18 6 38/46/38 26/26/26 38/64/38 54/59/54 63/82/78

CPU – 118 s 59 s 155 s 124 s 195 s

if rk > η
xk+1 = xk + dk

else
xk+1 = xk;

end(for).

We chose the parameters c = 0.75, η = 0.01, ε = 10−8 and {Bk} was modified by
BFGS formula.

If we set Bk ≡ I and qk = −gk we can also obtain a new adaptive trust region
method denoted by TRI. Zhang’s adaptive trust region method [27] is denoted by
TRZ. We chose 18 test problems and their initial points from the literature [13].
For example, P5 means the No. 5 problem and so on. The stop criteria is

‖gk‖ ≤ ε = 10−8.

We used Visual C++ Language to design the program in a portable computer
with Pentium IV/ 1.2MHz CUP. Numerical results are reported in Tables 1–4.
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Table 2. Total CPU time(∆0 = 0.8 and η = 0).

TRO TR0(1) TRO(5) TRO(10) TRO(20) TRO(30)

CPU 162 s 154 s 178 s 169 s 182 s

Table 3. Total CPU time(∆0 = 10 and η = 0.15).

TRO TR0(50) TRO(100) TRO(150) TRO(200) TRO(300)

CPU 198 s 204 s 212 s 185 s 195 s

Table 4. Total CPU time(∆0 = 0.2 and η = 0.01).

TRO TR0(0.3) TRO(0.5) TRO(0.8) TRO(0.85) TRO(0.9)

CPU 161 s 158 s 168 s 170 s 163 s

In Table 1, “P” denotes the test problem and n denotes the dimension of prob-
lems. Each group of three numbers means the iteration number, function eval-
uations and gradient evaluations in sequence. “T” refers to the total CPU time
for solving all the 18 test problems. As we can see, it is difficult to choose an
adequate upper bound ∆ in the original trust region method. If ∆ is too large
then the number of solving subproblems will be increased. If ∆ is too small then
the efficiency of algorithm will be reduced. Thereby, we should choose an ade-
quate initial trust region radius at each iteration. Such problem does not exist in
adaptive trust region methods because the initial trust region radius in adaptive
trust region method can be adjusted automatically according to the information
of iterates.

However, TRO has an advantage that allows η = 0. In adaptive trust region
method, η ∈ (0, 1). If η = 0, we don’t know whether the adaptive trust region
method can converge. If we take ∆ = 1, 5, 10, 20, 30, ∆0 = 0.8 and η = 0 in TRO,
we have the results in Table 2. TRO(1), TRO(5), TRO(10), TRO(20), TRO(30)
denotes the corresponding TRO with ∆ = 1, 5, 10, 20, 30, respectively. In Table 2,
we only list the total CPU time for solving all the 18 problems.

Similarly, we use TRO(m) to denote TRO with ∆ = m, and the related numer-
ical results are listed in Tables 3 and 4.

Tables 2–4 show that TRO is more efficient when we choose ∆ ∈ (0.5, 1.5)
and η ∈ [0, 0.15]. This is only a guess. In summary, ∆ in TRO is difficult to
determine in practical computation. Adaptive trust region method can overcome
this difficulty.

It is shown from Table 1 that TRN seems the best adaptive trust region method
because it uses the least total CPU time for solving all the 18 test problems. TRS
is the second adaptive trust region method that has good numerical performance.
The preliminary numerical results show that the adaptive trust region method is
a promising method for optimization problems.
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Table 5. Iterations, function and gradient evaluations and CPU time.

P n TRS TRN TRI TRZ TRO

19 11 32/74/32 26/48/36 31/79/45 35/83/35 58/184/64
20 31 86/132/79 42/97/63 65/99/64 63/84/63 56/179/56
21 20 35/69/35 42/64/42 75/147/75 46/53/46 78/126/78
22 30 54/137/85 38/94/45 69/72/69 53/84/68 59/196/83
23 20 53/64/56 35/47/46 67/84/67 62/68/62 74/198/78
24 20 47/52/68 45/58/45 57/83/68 45/83/63 65/174/79
25 40 64/93/89 62/78/62 78/124/98 78/156/79 63/187/93

CPU – 104 s 79 s 126 s 158 s 174 s

As we can see, the first 18 problems are all small problems. Thus, seven large
problems, Problems 19–25, from [13] were used to test the adaptive trust region
methods. We take the parameters ∆ = 1, η = 0.15, c = 0.75, ε = 10−8. Numerical
results are listed in Table 5, indicating that TRN is the best adaptive trust re-
gion method. We guess that TRN essentially reduces to quasi-Newton method in
many situations. Moreover, memory use and matrix computation may play a role
in performance comparison beyond the iterative number, function and gradient
evaluations. Therefore, CPU time seems a reasonable metric for comparing the
numerical performance of algorithms.

6. Conclusions and future research

In this paper, we presented a new class of adaptive trust region methods for
unconstrained optimization problems and investigated their global convergence.
In these new methods, the trust region radius can be adjusted automatically ac-
cording to the current iterative information by a simple computational formula.
Different choices of qk determine different adaptive trust region methods. If we take
qk = −gk then the new method will reduce to the recently proposed method [23].
If we take qk = −B−1

k gk with B−1
k being available, then we can obtain some in-

teresting new methods that have convergence properties of quasi-Newton method.
We can choose other qk to obtain many different adaptive trust region methods.
Numerical results showed that some adaptive trust region methods were available
and efficient in practical computation.

For the future research, we should choose B̂k and qk by using other approaches
and conduct some numerical experiments when qk is taken as another special
direction that satisfies (7).
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