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CONTINUOUS TIME LINEAR-FRACTIONAL PROGRAMMING.
THE MINIMUM-RISK APPROACH (*)

by L M. STANCU-MINASIAN (l) and STEFAN TIGAN (2)

Communicated by Jean-Yves JAFFRAY

1. INTRODUCTION

In this paper, the minimum-risk approach is applied to the stochastic
continuous times linear-fractional problem. We note that the minimum-risk
model was introduced in stochastic linear programming by Bereanu [5, 6]
and Charnes and Cooper [9] (under the name of P-model). This approach
was extended by Stancu-Minasian [23], Stancu-Minasian and Tigan [26-
30], Tigan and Stancu-Minasian [34] to the stochastic programming with
linear-fractional and bilinear fractional objective and by Tigan [31], Tigan
and Stancu-Minasian [33] to the continuous time linear and linear-fractional
programming.

We consider two classes of continuous time fractional problems, with
a linear-fractional objective (see, Sect. 2), respectively with an objective
fonction having a linear-fractional kernel (see, Sect. 4). In the case when
the coefficients of the objective functions are simply randomized (Le. are
affine functions of a single random variable), we will show that, under some
positivity conditions, the stochastic continuous time linear-fractional problem
is equivalent with certain deterministic continuous time linear-fractional prob-
lem, while the stochastic continuous time fractional problem with an objective
function having a linear-frational kernel is equivalent with a deterministic
continuous time nonlinear-fractional problem. Some parametrical procedures
are proposed for sol ving these deterministic equivalent problems.
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2. PROBLEM FORMULATION

The following programming problem, which originated from Bellman's
bottleneck problem [3, 4] has received a great amount of attention in the last
decades (see, [1, 2, 7, 8, 11-22, 31, 33, 35-38]):

CLP. Find

fT

sup / a(t)z(t)dt, (1)
Jo

subject to

B(t)z(t) < c(t) + / K(t,s)z(s)ds, 0 < t < r , (2)
Jo

z(t) > o, o < t < r, (3)

where a : [0,T] —> i2n and c : [0,T] -> Rm are vector-valued continuous
known fonctions and B : [0,T] -^ .R77^71, üT : [0,T] x [03T] -> JR

mxn

are matrix-valued continuous known mappings, while z : [0,T] —>• i?n is a
vector-valued continuous unknown function. Let dénote by 5 the set of all
vector-valued function z satisfying constraints (2) and (3).

In what follows we suppose that 5 is a non-empty and bounded set.

A partial référence to the earlier works on continuous time programming
may be found in Farr and Hanson [12], Singh [21], Bodo and Hanson [7],
Hanson and Mond [13], Tyndall [35, 36] and Zalmai [37, 38].

Tyndall [35] has shown that, subject to the following constraint
qualifications

(i) {x e Rn : Bx < 0 and x > 0} = {0},

(ii) B, K, and c(t) have nonnegative components for 0 < t < T,

there exists an optimal solution z* to problem (1-3), in the particular case
when B and K are constant.

By adding slack variables, the constraints (2, 3) become

B*(t)z*(t) = c(t) -h / K(t, s)z{s)ds, 0<t<T. (2')
Jo

and

z*(t) >0, 0< t<T, (30
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where B*(t) = [£(£),/], z*(t) = ( $.* L ƒ is the m x m identity matrix

and z°(t) is an unknown m-dimensional real vector of slack variables.
Therefore, the vector z*(t) has m + n components.

Involving a condition on the dual associated with (1-3), Johannesson and
Hanson [15, 16] showed that the optimum solution to system (2', 3') occurs
when at most m of the m + n components of z*(t) are positive.

Tyndall [35] conjectured that when B and K are independent of time
and c(t) is smooth, then the solutions to (1-3) woiild be piecewise smooth
functions.

The usual approach to solving CLP is to form an approximation by
discretizing the time interval [0,T] (see, e.g., Buie and Abrham [8]). A
number of authors (see, Drews [11], Hartberger [14], Segers [20], Perold
[17], and Anstreicher [2]) have attempted to generalize the simplex method
to solve instances of CLP without discretizing.

Anderson and Philpott [1] discuss the form of optimal solution for a
class of continuous time linear programs called separated continuous linear
programs and show that under certain assumption of the problem data the
optimal solutions can be taken to be piecewise analytic functions.

Next, we consider a continuous time linear-fractional problem, which
extends the continuous linear problem CLP.

CFP. Find

jf0
T a(ï)z(t)dt

** foKt)z(t)dt
(4)

subject to the constraints (2) and (3), where a, c, B, K are the same as
in problem (1-3) and b : [0,T] —> Rn is a vector-valued continuous known
function.

We dénote the objective function of CFP by

JKz) = °T
 w w , for all z <E S.

£ b{t)z(t)dt

In problem (4) we make on the objective function ƒ the following usual
assumption:

fT

/ b(t)z(t)dt > 0, for all z e S. (5)
Jo

vol. 34, n° 4, 2000
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The problem is to détermine a bounded measurable n x l vector function
z(t) on [0,T] satisfying the constraints (2, 3) and maximizing the objective
function (4).

One of the difficulties in solving a stochastic linear programming problem
is often a lack of information about the probability distribution function
of the random variables involved in the objective function. There exists
a special case of stochastic linear programming problem, called stochastic
linear programming problem with simple randomization (Le. the random
coefficients of which are affine functions of a single random variable), in
which under appropriate assumptions, the minimum-risk solution does not
depend on the probability distribution function of the random variables.

We assume that in the objective function of problem CFP the vector-valued
function a(t) is simply randomized, that is:

a(t\cj) = a!(t) + r(üj)af(t)} t E [0,T], (6)

where a', o!' : [0,T] —> Rn are vector-valued continuous functions and r(u)
is a random variable on a probability space (O. /C. P) with a continuous and
strictly increasing distribution function T*.

Now we consider the following minimum-risk problem associated to the
stochastic problem CFP:

CMR. Find

supP< c
z l

subject to

z € S, (8)

where /? is a given number that represents a level for the objective function
of stochastic problem CFP.

DÉFINITION 1: A function z* E S, is said to be a minimum-risk solution of
level 0 for CMR problem, iffor z* is reached the supremum in (7).

3. DETERMINISTIC EQUIVALENT PROBLEM

In this section we show that for the minimum-risk problem CMR there
exists a deterministic equivalent problem, which is a continuous time
linear-fractional programming problem.
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THEOREM 1: If

s:a"(t)z(t)dt > 0, for all z e 5 (9)

and the probability distribution function T* of the random variable T{U) is
continuons and strictly increasing, then every minimum-risk solution of the
continuons time linear-fractional programming problem CMR can be found
as an optimal solution of the following fractional optimization problem:

FD. Find

subject to z E S.

Proof: Obviously, by the assumptions (5, 6) and (9), we have

(10)

Plu
ff[a'(t)+r(u)a"(t)]z(t)dt

>P
ƒ„ b(t)z(t)dt

U a'(t)z(t)dt + T(cj) f a"{t)z(t)dt
Jo

> f b(t)z(t)dt\

r(w) > — -f a"(t)z{t)dt J

Since T* is strictly increasing and continuous, from (11), we have

(11)

sup P < co
zes

a { t ; u ) z { i ) d t 1 I T J . n f J 0
J [ ^ b ( t ) - a ' ( t )

ÏQb(t)z(t)dt ~ J \™5 ffa"(t)z(t)dt

which concludes the theorem.
Next we give a sufficient condition, which assure that assumption (9) from

Theorem 1 holds.

PROPOSITION i: If assumption (5) holds and

a"(i)>0, for all te [0,T]3
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then

rT

/ a"(t)z(t)dt>0, for all z G S,
Jo

Le. the assumption (9) holds.
Proof: Indeed, by assumption (5), it follows that feasible set S didn't

contain the null mapping, that is, the vector-valued application

z(t) = 0, for all* G [0,T].

But, this fact together with the continuity of the functions z and a" implies
that (9) holds.

4. THE FRACTIONAL OBJECTIVE KERNEL CASE

Next we consider a continuous time problem with fractional kernel of the
objective function, that is:

FP. Find

subject to constraints (2) and (3).
In problem FP, the functions a, 6, c, B and K have the same significance

as in the problem CFP.
We dénote the objective function of problem FP by

Hz) = [T ^êdLt for all z G S.

Moreover, on the objective function h we suppose that

b(t)z(t) > 0, for all t G [0,T] and^ G S. (13)

Next we assume that in the objective function of FP problem, the vector-
valued mapping a(t) is simply randomized of the form (6).

We can state the following minimum-risk problem corresponding to the
level j3 associated to the stochastic problem FP:

FR. Find

subject to z G S.
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Similar with Définition 1 we have:

DÉFINITION 2: A function z* E S, is said to be a minimum-risk solution of
level (3 for FR problem, iffor z* is reached the supremum in (14),

Next we show that for the minimum-risk problem FR there exists, under
some supplementary assumption, a deterministic equivalent continuous time
programming problem with a nonlinear fractional objective function.

THEOREM 2: If
T a"{t)z{t)i: -dt > 0, for all z <E S, (15)

/o Ht)z(t)

and the probability distribution function T* of the random variable r(w)
is continuous and strictly increasing, then every minimum-risk solution of
the continuous time fractional programming problem FR can be found as
an optimal solution of the following deterministic continuous time fractional
programming problem:

CFD. Find
rT [f b(t)-a'(t)]z(t)

inf (16)

subject to z E S.

Proof: Indeed, by (6) and (15), we have

[a'{t)+r{u)a"{t)]z{t)
dt *>}

fT a"(t)z(t)
JQ

(17)
b(t)z(t)

Since T* is strictly increasing and continuous, from (17), we have

[f b(t)-a'(t))z(t) ^

-^77T~77^— dt > (f } — L-l | ïnt^
/Ozes

which concludes the theorem.

b(t)z(t)
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5. ALGORITHMIC REMARKS

The deterministic continuous time programming problems FD and CFD
have fractional objectives. For sol ving these classes of optimization problems
the parametric procedure given by Tigan [31] can be used.

We mention that this procedure generalizes the Dinkelbach method [10]
for sol ving nonlinear fractional programming.

Next we present two particularization of the parametrical procedure to the
problems FD and CFD respectively.

We associate to problem FD, for every real number q, the following
parametrical nonfractional continuous time programming problem:

P(g). inf | f [fib{t) - a(t)]z(t)dt -q f an{t)z{t)dt\.
z^s L/o Jo J

Let F : R —> R U {+00} be the optimal value function for parametrical
linear continuous time programming problem P(#), defined by

F(q) = inf / [/3b(t) - o!{t) - qa"{t)]z(t)dt, for every q G R.

A number of properties of function F, which can be proved easily, will be
used for finding an algorithm for obtaining the approximate optimal solution
of problem FD. We remember that z1 G S is an approximate e-optimal
solution of FD, if ƒ (zl) < q* + e, where ƒ is the objective function of FD,
q* is the optimal value of FD and e > 0 is a given nonnegative real number.

The function F is concave and continuous on R, and it is strictly
decreasing, Le. qi, 42 E R, qi < q% implies F(q\) > F(q2). Consequently,
the équation F(q) = 0 has a unique real solution.

It is well known in the area of fractional programming (see, Stancu-
Minasian [24, 25], Tigan [31, 32]) that problem P(g) is closely related to
problem FD. The relationships between problems FD and P(g) that will be
of immédiate interest to us are stated in the following lemma whose simple
proof will be omitted.

LEMMA 1: Let g* be the optimal value of FD, S a bounded set and let
F(q) be the optimal value of P(q) for any fixed q G R. Then the following
assertions are valid:

(a) If q G ƒ (S) then F(q) < 0.
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(b) If z* is an optimal solution of FD, then z* is an optimal solution of
P(q*) and F(q*) = 0.

(c) If P(qf) has an optimal solution zf and F(qf) — 0, then z1 is an
optimal solution of FD and qf = g*.

(d) Let 6 be a given nonnegative real number. If f0 an{t)z(t)dt > a > 0,
for all z G 5, and if P(q') has an optimal solution zf and F(qf) > 8,
then zf is an approximate ^-optimal solution ofFD and qf < g* + ^.

6. ALGORITHM FOR THE PROBLEM FD

With the help of the équivalence resuit given by Lemma 1, we can
formulate the following algorithm for finding an approximate solution of
problem FD.

Algorithm 1

Let 8 be a given positive real number.

Step 1. Take k := 0 and find z° G S.

Step 2. Compute the value V& of the objective function for the current
feasible solution zk:

/o a"{t)zk{t)dt

Step 3. Find
fT

Qk+i = inf ƒ [/%(£) - a'(£) - Vfca"(t)]z(t)dt. (18)

Let zkJrl € 5 the optimal solution for the linear continuous time problem (18).

Step 4. i) If Qfc+1 < -8, then take k := fc + 1 and go to Step 2.
ii) If Qk+i > —5, then the algorithm stops. The solution zk is an
approximate optimal solution of problem FD.

7. ALGORITHM FOR THE PROBLEM CFD

The remarks made earlier concerning the relationships between FD and
P(q) are, of course, applicable to CFD and its associated parametrical
problem:

inf nm)-g'(p-f(tMt)
z£SJ0 b(t)z(t) ' q

vol. 34, n° 4, 2000



406 I.M. STANCU-MINASIAN and S. TIGAN

If F dénote, as in the case of problem FD, the optimal value function of
problems CP(q), q € R, Le.

F(q) = inf /
ZZSJQ

T[(3b{t)-a'{t)-qa"(t)\z{t)
dt,

b(t)z(t)

we can formulate for problem CFD a similar result to Lemma 1.

LEMMA 2: Let q* be the optimal value of CFD and let F(q) be the optimal
value ofCP(q)for anyfixed q E R such that CP(q) has an optimal solution.
Then the following assertions are valid:

(a) Ifq e h(S) then F(q) < 0.
(b) If z* is an optimal solution of CFD, then z* is an optimal solution of

P(q*) and F(q*) = 0.
(c) If CP(qf) has an optimal solution z1 and F(qf) = 0, then z1 is an

optimal solution of CFD and q1 — g*.
(d) Let 8 be a given nonne gative real number. If Jo bAw^ dt > a > 0,

for ail z £ S, and if P{ql) has an optimal solution zf and F(qf) > ê,
then zf is an approximate ^-optimal solution ofCFD and qf < g* + - .

With the help of this équivalence, we can formulate the following algorithm
for finding an approximate solution of CFD problem.

Algorithm 2
Let 6 be a given positive real number.

Step 1. Take k := 0, and find a feasible solution z° of the problem CFD.

Step 2. Compute the value T4 of the objective function for the current
feasible solution zk:

rT \§;b(t)-a'(t)]zk(t)

K rT a»(t)zk(t)

Step 3, Find

Qk+i = int ƒ
T[(3b(t)-af(t)-Vka

ff(t))z(t)
b(t)z(t)

dt. (19)

Let zk+1 G S the optimal solution for the linear-fractional continuous time
problem (19).

Step 4. i) If Qfc+i < - 5 , then take k := k + 1 and go t Step 2.
ii) If Qk+i > —S, then the algorithm stops. The solution zk is an
approximate optimal solution of problem CFD.
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The numerical resolution of the continuous fractional problems (18)
and (19) involves its approximation by a discrete, rather than continuous,
optimization problem.

8. CONCLUSIONS

Two classes of stochastic continuous time fractional programming
problems were considered. In the case when the denominator of the
objective is simply randorrüzed some deterministic equivalent continuous
time fractional programming problem has been obtained.

Similar results can be obtained in the case of complete randomization
of the fractional objective (Le. the nominator b of the fractional objective
function is also random).
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