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MODELLING INTEGER LINEAR PROGRAMS
WITH PETRI NETS (*, **)

b y P . RICHARD (*)

Communicated by Philippe CHRÉTIENNE

Abstract. - We show in this paper that timed Petri nets, with one resource shared by all the
transitions, are directly connected to the modelling of integer linear programs (ILP). To an ÎLP can
be automatically associated an equivalent Petri net. The optimal reachability delay is an optimal
solution of the ILP. We show next that a net can model any ILP. I order to do this, we give a
new sufficient reachability condition for the marking équation, which also holds for gênerai Petri
nets without timed transitions.
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1. INTRODUCTION

Linear programming is a gênerai and useful approach to solve operational
research problems. Analytical équations define the objective function and
the linear constraints of the problem. In particular cases, the problem can
be formulated in different ways. For instance some problems can be both
represented by a graph and a linear program. Besides models based on graph
lead to a better understanding of the studied problems.

Petri nets give a graphical view of Systems. When the net is extended
with a time feature, performance évaluation of the modelled system can
then be made. Timed Petri nets give a good représentation of scheduling
problems. They allow multiple resolution approaches like branch and bound,
linear programming and many others like constraint logic programming.
Furthermore, the study of subnet classes defines fondamental problems. For
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instance, Computing the average cycle time in a strongly connected marked
graph defines the basic cyclic scheduling problem. We assume hereafter the
reader is familiar with basic concepts of Pétri nets. If it is not the case,
one can refer to [2].

In this paper, we show the link between scheduling a special class of
timed Pétri nets and solving Integer Linear Programs (ILP). We illustrate the
modelling technique with the examples of the Simple Transportation Problem
and the Knapsack Problem. We prove that any Integer Linear Program can
be modelled by a Pétri net.

2. MODELHNG INTEGER LINEAR PROGRAMS WITH PETRI NETS

We define a special class of timed Pétri nets for modelling Integer Linear
Program (ILP). We define a sub-class of timed Pétri nets, called after STPN
for short. A timed Petri net is a Pétri net with temporisation associated to
transitions. STPN is a timed Petri net with a special place, which leads to
the mutual exclusion of all transition fires.

DÉFINITION 1 : A sequential timed Petri net is:
- A Petri net < P, T3 Pre, Post >. G = Post-Pre. \P\ = n, \T\ = m;
-d:T—>N, is the delay mapping to transitions. D = {d%);
~Pme € P is such that Vt G T, pme € {'t} and pme G {f};
-Mo(pme) = 1.

It directly follows from the previous définition that a marking is reachable
in a STPN if, and only if, it is reachable on the underlying untimed net
since no parallelism is allowed in the transition firings. Thus the reachable
markings follow the classical marking équation:

M = Mo + CX

where M is the reached marking, Mo is the initial marking, C is the incidence
matrix, and X is the characteristic vector (number of transition fires).

An ILP, in its standard form (slack variables have been added) is defined

Subject to CX = b.

In order to show the link between Petri nets and Integer Linear Programming,
let us assume that delay s are the costs of the vector D. Then DTX models
the duration in order to fire the transitions xt times. Let C be an incidence
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matrix and b = M f — Mo, then the constraints of the ILP model the classical
marking équation of Pétri nets. For instance the net modelling the constraint
xi — %2 + 2^3 — 4#4 = 3 is given in Figure 1. Every firing of a transition
increases by one the value of the correspondmg variable in the modelled
ILP. The behaviour of the net must ensure that Mf(p) — M$(p) — 3, in
order to respect the linear program constraint modelled by a place in the
STPN. The mutual exclusion place ensures that the reachability delay will
be expressed as a sum of delays (dt) weighted by the characteristic vector
(xt). The reachability time is the linear objective function: z — Yl dtxt.

teT
Since the characteristic vector is integer, the linear program associated to a
sequential Petri net is in integer numbers.

x2 x4
Figure 1. - Modelling of a linear program constraint (the mutual exclusion place is not drawn).

DÉFINITION 2: The integer linear program associated to a sequential Petri
net N, noted ILP(I\Q, is:

[Opt]z = XTD

Subject to

CX = M3 - Mo

where OPT is the optimisation sense (Min or Max). C is the incidence
matrix of the net. M f is the final marking and MQ is the initial one. X is
the characteristic vector, and D is the vector of delays associated to the
transitions.

Since the marking équation is a necessary condition for the reachability
criterion, every firing séquence in the net N is associated to a feasible
solution in ILP(iV). If it is also sufficient, then to every feasible solution X
of ILP(iV) can be associated a feasible schedule of the transitions that leads
from the initial marking to the final one.

vol. 34, n° 3, 2000
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We now consider the example of the Simple Transportation Problem (STP).
Materials are available in a set of plants (Pi). A set of clients required these
materials in some quantities (Dj). For each couple (i, j) we know the unitary
cost of transportation from i to j(cij). The linear program of this problem is

[Min]z =

m

.t. — / \%jj = —PiVi = l.n

We assume that the sums of demands and availabilities are equal. If it is
not the case, one can introducé new fictitious plants or demands. For this
problem it is well known that the matrix of constraints is totally unimodular.
Thus if the values of the problems are integers, then the solutions will be
integers too. The generic model of the Simple Transportation Problem based
on Pétri net is given in Figure 2.

Mo(uj)=O

Figure 2. - The generic Pétri net model if the STP (the mutual exclusion place is not drawn).

It is easy to see that the incidence matrix of this model is exactly the
matrix of constraints of the STP, The two représentations (Pétri net model
and linear program) are equivalent. The net is an acyclic state machine.
It is well known that the incidence matrix of a state machine is totally
unimodular and since the net is acyclic, the marking équation is a necessary
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and sufficient reachability condition [2]. But in the gênerai case, the marking
équation is only a necessary condition for the reachability problem. In this
latter case, solving the ILP through its Petri net model leads to a lower
bound of the optimal solution.

Let us give a second example, which deals with another classical
operational research problem: the Knapsack problem. Unlike the STP
problem, the Knapsack problem is weakly NP-Complete. We only recall
the well-known analytical formulation in integer numbers:

Max z =

3.t.

In the Petri net model (Fig. 3), we consider initially that the place is marked
with F tokens. The objective is to find the optimal schedule so that the
place becomes empty.

P1

x1(c1) x2(c2) xn(cn) s

Figure 3. - Petri net model of the Knapsack problem (the mutual exclusion place is not drawn).

As in the STP case, the Petri net model of the Knapsack problem is defined
by an acyclic graph. So solving the problem while scheduling the transitions
of net leads to the optimal solution for the Knapsack problem.

3. GENERALITY OF THE MODELLING APPROACH

An important problem is the generality of our approach: can we model
every ILP by means of STPN? Precisely, can we build a STPN so that the
optimal solution X* of the ILP is firable on the net (Le. there is a firable
séquence associated to the eharaeteristie vector which is a solution of the
integer program). We prove hereafter that it is always possible to define
such an equivalent net.
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The resuit is based on a special class of firing séquences having a regular
pattern of interleaving transitions. These kinds of séquences have also been
used in other fields than Petri nets theory. But the main interesting resuit for
our study is the works of Karp et al on the scheduling of the computations
of uniform récurrence équations [1]. Let us first define the concept of regular
séquence that will be used hereafter.

DÉFINITION 1 : A regular séquence is a firing séquence a of lengîh l that is
defined by l subsequences: a = <TOÖI .. • CFI—I cmd in every subsequence k,
0 < k < l is verified:

Utah if

We must note that the séquence of transitions in each subsequence
O"O,<TI, . . . ,cri_i is not fixed through this définition. The proof technique
is based on a well-known resuit of Karp et al (1967). Their resuit leads
in f act to a new resuit in the Petri net theory: a necessary and suffi cient
reachability condition for the marking équation. The proof uses a technical
lemma that is based on the bounded distance between integer markings
and continuous markings belonging to the segment [Mo, M/]. The proof of
Theorem 1 uses iteratively this technical lemma and shows that if the initial
marking Mo, and the marking M f to be reached are in the domain defined

by Karp's bound» then there is a regular séquence a so that Mo—>Mf.

Karp's bound B is defined by the sum of the columns of the incidence
matrix, where only absolute values of components are considered. The Karp's
domain KB is the domain defined by all the markings greater than or equal
to the Karp's bound.

m

Nn, M > B}.

THEOREM 1: Let N be a Petri net, Mo, M/ be the initial and final markings
belonging to Karp's domain and so that M = Mo + Cx, x > 0? then there is

a m

a regular séquence er, MQ—>Mj and its length is \<j\ = ]T̂  Xi*
i l

(The original proof can be found in [1] (pp. 372-373), or in [3] for its
Petri nets version.)

To a given ILP, with the constraints expressed as CX = 6, one can always
modify the constraints so that b becomes non-negative, by multiplying the
constraints by — 1. Assuming that bi > 0 for each i = l...n, the STPN can
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be built as follows:
- the incidence matrix is C,

- Afo = E \°i\ a n d Mf(p) = MO(P) + b(p) for p = l...n.
i

Thus solutions X of M f = Mo + CX are feasible, f. e. there is an associated
firable regular séquence. Now we shall show that the above réduction is
polynomial. Size (x) dénotes the memory space required to store x.

THEOREM 2; The réduction is polynomial.

Proof: First, from the time complexity point of view, the main computation
is due to Karp's bound. This can be performed in O(m.n), thus in polynomial
time. Secondly, we must verify that the size of the obtained net is
polynomially bounded in the size of the ILP. The size of the net is defined by :

size(NJMo,Mf) = size(C) + size(Mo) + size(Mf).

We verify that:

size{C) = size(A) and size(Mo) = size(B) < size(A).

Furthermore: size^Mf) = size(Mo + b) < size(Mo) + size(b) since for
every integers x, y > 1 it holds that log(x + y) < log(x) + log(y).
Thus size(N) < 3size(A) + size(b), which is a polynomial space bound
according to the size of the ILP.

4. CONCLUSION

We have presented the ability of Pétri nets to model integer linear programs.
To any ILP can be associated an STPN so that there is a firable séquence
of transitions to each feasible solution of the ILP. This result is based on
a new necessary and sufficient reachability condition for Pétri nets. This
condition is only based on the values of the initial marking, the final
marking, and the incidence matrix of the net. The optimisation step of the
ILP can then be viewed as a scheduling problem in the STPN. In [3], we
have shown that the results can be easily extended to linear program while
considering continuous Pétri nets. Those principles have been used to design
computer-aided software for production planning in the bottle-glass industry.
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