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Abstract

Signal peptide (SP) is a short peptide located in the N-terminus of proteins. It is essential to target and trans-
fer transmembrane and secreted proteins to correct positions. Compared with traditional experimental methods
to identify signal peptides, computational methods are faster and more efficient, which are more practical for an-
alyzing thousands or even millions of protein sequences, especially for metagenomic data. Computational tools
are recently proposed to classify signal peptides and predict cleavage site positions. However, most of them dis-
regard the extreme data imbalance problem in these tasks. In addition, almost all these methods rely on additional
group information of proteins to boost their performances, which, however, may not always be available. To ad-
dress these issues, we present Unbiased Organism-agnostic Signal Peptide Network (USPNet), a signal peptide
classification and cleavage site prediction deep learning method that takes advantage of protein language models.
We propose to apply label distribution-aware margin loss to handle data imbalance problems and use evolution-
ary information of protein to enrich representation and overcome species information dependence. Extensive
experimental results demonstrate that our proposed method significantly outperforms all the previous methods
on classification performance by 10% on multiple criteria. Additional studies on the simulated proteome data
and organism-agnostic experiments further indicate that our model is a more universal and robust tool without
dependency on additional group information of proteins. Building on this, we design a whole signal-peptides-
discovering pipeline to explore unprecedented signal peptides from metagenomic data. The proposed method
is highly sensitive and reveals 347 predictions to be the candidate novel SPs, with the lowest sequence identity
between our candidate peptides and the closest signal peptide in the training dataset at only 13%. Interestingly,
the TM-scores between candidates and SPs in the training set are mostly above 0.8. The further analysis of the
experimentally verified novel SPs provides evidence that although USPNet does not rely on any structure infor-
mation as input, it detects SPs based on evolutionary and structural information instead of sequence-similarity.
The results showcase that USPNet has learned SP structure with just raw amino acid sequences and the large
protein language model, and thus enables the discovery of novel SPs that are distant from existing knowledge
effectively.
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1 Introduction
A signal peptide (SP) is a short amino acid sequence working as a specific targeting signal to guide and transfer

proteins into secretory pathways [1]. It has a three-domain structure: Positively charged N-region, hydrophobic
H-region, and uncharged C-region [2]. The SPs function as specific segments to guide proteins to reach correct
positions and then be cleaved by cleavage sites nearby their C region. Thus, the identification of signal peptides is
vital for studying destinations and functions of proteins [3, 4, 5, 6].

As comprehensive experimental identification of SPs can be time- and resources-consuming, many compu-
tational tools have been proposed to classify signal peptides and predict cleavage sites. The first attempt was
a formulating rule proposed in 1983 [7]. Von Heijne first applied a statistical method to unveil patterns nearby
cleavage sites of signal peptides based on only 78 Eukaryotic proteins [7]. Furthermore, generative models, such
as the hidden Markov model (HMM), were proposed to facilitate the recognition of signal peptides. These models
focused on analyzing these three functional regions (N-region, C-region, and H-region) in detail and were built by
capturing the relationships between different regions of signal peptide [8, 9, 10, 11, 12]. Different from generative
models, some homology-based methods were proposed [13]. The predictions of these methods are based on the
similarities between sequences in the existing knowledge base and the input sequences. In addition, they can
achieve similar prediction performance as generative models.

Recently, supervised models have made great progress in signal peptide recognition. The query sequences
are encoded into embedding vectors and then fed into models to directly compute probabilities for each signal
peptide type. Among these methods, machine-learning-based models play an important role in their remarkable
performances [14]. DeepSig applied deep convolutional neural networks (DCNNs) architecture to the recogni-
tion of signal peptides and the prediction of cleavage site positions [15]. Furthermore, SignalP5.0 came up and
benchmarked all the previously proposed methods [16], and SignalP6.0 [17] is able to predict all 5 types of signal
peptides that the previous model failed to detect. These methods achieved advanced performance in tasks, but
most of them suffered from extreme class imbalance and therefore performed poorly on data from minor classes
[18, 19, 20]. In addition, these methods often depend heavily on additional information about groups of organisms
to boost their performances. However, it is impractical to obtain sufficient group information from metagenomic
data in reality [21, 22]. A robust tool should only require amino acid sequences to yield accurate prediction results.

In signal peptide classification, the key problems to solve are the imbalance of training data and object de-
pendence on group information. Rao et al. [23] introduced a transformer-based language model, ESM-1b, which
demonstrated that information learned from large-scale protein sequences alone could implicitly encode func-
tional and structural information and benefits various downstream tasks, such as secondary structure prediction
and contact prediction, outperforming specific-data-trained model by a large margin. Rao et al. [24] also found
that integrating multiple sequence alignments (MSA) into the model, referred to as the MSA transformer, led to
more excellent performance. These protein language models [25, 26] gain improvement on problems with limited
annotated data. Inspired by that, we thus propose the unbiased organism-agnostic signal peptide predictor (USP-
Net) based on a BiLSTM [27] framework and protein language models to classify signal peptides and predict their
cleavage site positions. We leverage an advanced MSA-based protein language model to enrich the representa-
tions to aid in encoding group information of sequences. Moreover, we combine class-balance loss with Label
distribution-aware margin (LDAM) loss [28] as the loss function of USPNet to improve generalization. Our model
is end-to-end, which takes just raw amino acids as inputs. It is efficient to perform the classification of all five
types of signal peptides and the non-signal-peptide type protein. We compare our model with several task-related
deep learning models on the re-classified SignalP5.0 benchmark set. Notably, USPNet achieves more than 10%
improvement of MCC on multiple classes compared to the previous state-of-the-art methods. Besides, our model
significantly outperforms SignalP6.0 on the recall rate of cleavage site prediction. On our curated domain-shift
independent set, USPNet also performs better than other models, showing the generalization of our method on
the classification of signal peptides. To further showcase the potency of USPNet, we collect proteome-wide data
from Escherichia coli (strain K12) as well as other 7 organisms. When applying USPNet to detect signal peptides
from proteome-wide data, it retrieves nearly all of them, which is among the best of all models being tested. In
addition, we thoroughly assessed the group information dependency by conducting an organism-agnostic exper-
iment which removes group information in the input. USPNet’s well-trained encoders empowered with MSA
information as well as protein language models capture rich evolution and functional information, allowing the
model to remain robust despite the absence of group information. Such highly sensitive signal peptide prediction
capability enables novel SPs mining from large metagenomic resources. We thus build a complete pipeline from
handling metagenomic data to making novel signal peptide detection. We collect swine gut metagenomics data
from multiple resources to carry out the case study and finally screen out 347 peptides from millions of sequences
as the candidates that have low sequence identity with existing SPs and are likely to be novel signal peptides.
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The result indicates that USPNet is able to provide evolutionary and structural information of SPs and effectively
discovered candidate signal peptides that are distant from existing knowledge.

The main contributions of our work are summarized as follows:

• We introduce Unbiased Organism-agnostic Signal Peptide Network (USPNet), which is able to predict all
5 known types of signal peptides. Extensive experiments demonstrate that the proposed method achieves
state-of-the-art performance over other signal peptide predictors on signal peptide classification. We ap-
ply USPNet to the independent set and proteome-wide studies. The model reaches 10% improvement on
multiple criteria compared with previous methods and keeps its performance above 90%.

• We provide two versions of USPNet for usage. One constructs multi-sequence alignment (MSA) and uses
an MSA transformer to generate embeddings to enrich our representations. The other utilizes evolutionary
scale modeling (ESM) embeddings [23], which we named USPNet-fast. The first version of USPNet has
better prediction ability, and USPNet-fast can make inferences 20 times faster. We facilitate users so that
they can choose the tool based on the application scenarios.

• We resolve the extreme imbalance problem in signal peptide prediction. Considering that previous al-
gorithms train models mainly based on cross-entropy loss, we propose to apply label-distribution-aware-
margin loss (LDAM) to improve the generalization of less frequent classes [28]. We present a modified loss
function by combining class-balance loss with LDAM loss to make USPNet learn useful information from
small classes.

• We build a whole pipeline to detect signal peptides from original metagenomics data. We reveal 347 predic-
tions to be the candidate novel SPs, with the lowest sequence identity between our candidate peptides and
the closest signal peptide in the training dataset at only 13%. Notably, the TM-scores between candidates
and SPs in the training set are mostly above 0.8. We also retrieve all 4 experimentally verified signal pep-
tides of our study genomes supported by literature and do not exist in the training dataset. Results show that
USPNet learns evolutionary and structural information without additional inputs from the protein folding
model and hence could discover peptides that have low sequence identity but high structural similarity at an
ideal speed.

2 Result

2.1 USPNet is a pipeline for predicting signal peptides from metagenomics data
As shown in Figure 1.a, the pipeline can predict signal peptides from metagenomics data, and even discover

novel SP candidates. The basic architecture of our method is the Bi-LSTM [27, 29] with the self-attention mecha-
nism [30], and we leverage protein language model-based encoder to enrich representations (Figure 1.b). USPNet
takes amino acid sequences as input and simultaneously predicts signal peptide types and the corresponding cleav-
age sites. Considering the length of signal peptides in proteins N-terminus is usually between 5 and 30, we set 70
as the cut-off to the length of proteins, which means that each input sequence contains at most 70 amino acids.
The sequence then goes to the feature extraction module, employed with an embedding layer. As the number of
common residue types is 20, it converts the input sequence into an L×20-dimensional matrix, where L is the length
of the sequence. Particularly, we add an L×4-dimensional vector at the head of the generated embedding to store
the group information (Eukaryotes, Gram-positive, Gram-negative bacteria, and Archaea). Then, the generated
embedding is fed into our BiLSTM part. It consists of a Bi-LSTM layer with self-attention and a CNN, which
simultaneously extracts forward and backward directions of long-distance dependencies and global/local features
of sequences. Following the Bi-LSTM module, we develop an MLP-based module to predict cleavage sites and
SP types separately. To integrate more information in classifying signal peptides, we include MSA embeddings.
To be specific, we first generate Multi-sequence alignment (MSA) for each sequence and then input MSAs to
the pre-trained MSA Transformer model [24] to obtain embeddings from its final layer. And to bend over back-
ward to resolve the data imbalance, our loss function is designed by combining class-balance loss with Label
distribution-aware margin (LDAM) loss [28]. Detailed information is introduced in the Methods part.

Besides the above-mentioned method, we also introduce another version of USPNet, called USPNet-fast,
which replaces MSA embeddings with ESM-1b embeddings [23], and keeps other modules unchanged (Figure
1.c). USPNet-fast is able to predict signal peptide and cleavage sites faster and without much performance degen-
eration.
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Figure 1: USPNet workflow for predicting signal peptide (SP) and cleavage site. a. The pipeline of USPNet for
signal peptide discovery from metagenomics data. USPNet takes raw amino acid sequences as input and uses BiL-
STM module as well as Protein Language Model to get concatenated embeddings as input for prediction. Here we
list the top 10 most frequently occurring peptides that are automatically annotated as SPs by the UniProt database
out of 347 candidates. b. Detailed architecture of USPNet. The training data is imbalanced. The protein sequences
go through the feature extraction module and are then passed to the BiLSTM module, which includes a Bi-LSTM
layer with self-attention and a CNN for extracting long-distance dependencies and features of the sequences. For
SP type prediction, USPNet incorporates MSA embeddings generated by a pre-trained MSA Transformer model.
Subsequent MLP-based modules predict cleavage sites and signal peptide types. Label Distribution-Aware Margin
(LDAM) loss is employed in training to address data imbalance. c. USPNet-fast replaces the MSA-transformer
with ESM-1b, which does not require MSA, and thus enables a much faster inference speed.

2.2 USPNet outperforms the previous methods on the benchmark dataset
Signal peptide type prediction

USPNet is able to predict the type and cleavage site of a signal peptide at the same time. To fair analyze
performance, we train and test our model on the re-classified, extended, and homology-reduced datasets derived
from the data published with SignalP5.0 and SignalP6.0[16, 17]. The combination of training and benchmark
data is identical to the homology partitioned SignalP6.0 dataset. For signal peptide type prediction, the training
data, with benchmark data excluded from the dataset, contains 13679 sequences and can be considered into six
parts according to six different kinds of labels. However, the data is extremely imbalanced. As shown in Table
1, the sequences with major-class labels are ten times more than those with minor-class labels. Therefore, to
mitigate this bias and achieve a fair assessment of performance, we focus on the Matthews Correlation Coefficient
(MCC) over different divisions of sequences that belong to the less frequent classes. We use two versions of MCC
as measurements, namely MCC1, which contrasts specific signal peptides against TM/Globular (NO-SP) type
proteins, and MCC2, which additionally includes all remaining sequences in the negative set.
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Figure 2: USPNet demonstrates robust performance across different signal peptide types and organism
groups. a. Length distributions with the performance of signal peptides in the benchmark set. Most SPs are
below 50 AAs in length, and all models have degradation in performance when SPs are longer than 30 AAs.
b. The performance under different sequence identities between the benchmark set and training set. c. Signal
peptide prediction running time comparison between USPNet and USPNet-fast. The MSA generation step is time-
consuming, accounting for roughly 95% of the total processing time. d. Radar charts of USPNet and other models
on different perspectives of performance. We compare MCC1 of different models from the viewpoint of organism
groups with proportional information of each SP type. USPNet behaves as the most powerful signal peptide
predictor in every organism group. e. Comparison between USPNet, USPNet-fast, SignalP6.0, and SignalP5.0
on both signal peptide type prediction and signal peptide cleavage site prediction. And Neff scores of MSA on
Tat/SPI of Gram+ and Gram-, and benchmark set. (Independent t-test: two independent samples t-test).

We compare signal peptide classification performance over different organism groups of several known signal
peptide prediction models on the benchmark dataset. In total, 16 methods are selected for comparison; among
them, SignalP6.0 and SignalP5.0-retrained are trained on the same training dataset as ours. Results for other
methods are obtained directly from their publicly available web servers, which leads to potential performance
overestimation due to the lack of homology partitioning. As the task at hand involves multi-class classification,
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Table 1: Statistics for the composition of the full dataset adopted in this study, with the benchmark dataset numbers
in parentheses. SP denotes Sec/SPI, L denotes Sec/SPII, P denotes Sec/SPIII, T denotes Tat/SPI, TL denotes
Tat/SPII, and N/C denotes TM/Globular(NO-SP) here.

Dataset Organism SP L P T TL N/C Total

SP type prediction

Eukaryotes 2040 (146) - - - - 14356 (5581) 16396 (5727)
Gram-positive 142 (15) 516 (120) 4 (0) 39 (18) 8 (3) 226 (81) 935 (237)
Gram-negative 356 (61) 1087 (257) 56 (0) 313 (51) 19 (5) 933 (133) 2764 (507)
Archaea 44 (36) 12 (9) 10 (0) 13 (9) 6 (5) 110 (81) 195 (140)

we dissect the results based on the types of signal peptides. For the data with Sec/SPI labels, our model outper-
forms other methods on nearly all the organisms and metrics. The only exception is PRED-SIGNAL, specifically
designed to detect only Sec/SPI SPs, which marginally outperforms us on MCC1 of Archaea. Nonetheless, our
model still demonstrates superior performance on MCC2 (Figure 2.d and Supplementary Figure 3). When con-
sidering Sec/SPII SP classification, only 5 methods demonstrate capability, with corresponding data available for
three organism groups. USPNet unequivocally has the best performance across all the metrics. For the MCC1 of
Archaea, we exceed others by at least 6%. Moreover, even our USPNet-fast does better than all other competitors.

When looking at the performance from the perspectives of SP length and sequence identity, we find that
detection performances for short SPs are good, and all methods have degradation when SPs are longer than 30 AAs
(Figure 2.a). And when sequence identities are lower than 40%, USPNet has minimal performance degradation
(Figure 2.b), showing better generalization to proteins distant from the training data. It is obvious that USPNet
has made an impressive promotion in the prediction performances, especially over the minor classes.

We also conduct a head-to-head comparison of MCC1 and MCC2 between USPNet and SignalP6.0, as shown
in Figure 2.e. USPNet achieves significant improvement on most SP types. Especially for data with Sec/SPII
labels, we observe an increase of 10.0% across all 4 groups. And on Tat/SPII, the class with the least data, USPNet
is able to retrieve nearly all SPs. Despite SignalP6.0 demonstrating commendable performance, it falls short when
compared with USPNet. On Tat/SPI of Gram-positive and Gram-negative, however, USPNet is behind USPNet-
fast and SignalP6.0. This can primarily be attributed to the subpar quality of multiple sequence alignments (MSA)
in incorrect predictions. We calculate the number of effective sequences (Neff) of correct predictions and incorrect
predictions used by the MSA-transformer in our method(Figure 2.e). Specifically, for Tat/SPI, there exists a
significant Neff gap between correct and incorrect predictions: the median of the former is around 90, while
the latter is only 4. Across the entire benchmark set, the MSA quality of correctly predicted SPs is also better,
suggesting that high-quality MSA generation could boost the performance of USPNet. Overall, the results on
the benchmark set accord with our assumption that the margin-based loss formulation allows the classification
boundary of rare classes to be extended further and avoid overfitting in some ways. With better generalization,
USPNet is an unbiased multi-class SP predictor that is able to predict all 5 kinds of SPs. Besides the benchmark
set, we also conduct 5-fold cross-validation on the full training and benchmark sets (Supplementary Table 5-9).
Since homology partitioning is inoperative in cross-validation, USPNet showcased more impressive performance,
especially for the minor classes such as Tat/SPII and Sec/SPIII signal peptides.

Signal peptide cleavage site prediction

Generally, the key focus of USPNet is to produce a predictor to classify various signal peptide types with a
better generalization of different classes. However, before categorizing SPs, finding out the precise cleavage site
of a protein is also an essential step in a real-world application. Here in USPNet, we utilize the attention weights
of the context attention matrix to acquire information related to per amino acid, subsequently informing cleavage
site decisions. For comparison, we employ both precision and recall rates to evaluate USPNet’s performances on
cleavage site prediction against SignalP6.0 and SignalP5.0-retrained, and the result can be observed from Figure
2.e. We notice that the overall performances on cleavage site predictions of USPNet are comparable to SignalP6.0.
In especial, our model significantly outperforms the other 2 models on recall, which indicates that we are better
at finding as many signal peptides in organisms as possible, especially those belonging to elusive minor classes.
However, our model’s precision is slightly lower than that of SignalP6.0 in certain classes, potentially due to the
amplified weight allotted to minor classes, leading to a potential increase in false positives. Nevertheless, users
can adjust weights according to their specific needs, enhancing USPNet’s effectiveness and suitability for their
application scenarios.
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USPNet versus USPNet-fast

In the study, we introduce two versions of USPNet for use. They are USPNet and USPNet-fast. The rationale
behind developing USPNet-fast is to provide a quicker prediction option, recognizing that the multiple sequence
alignment (MSA) steps can be particularly time-consuming. Inspired by this need, we incorporate ESM-1b to
replace MSA-transformer and expedite prediction while retaining other modules (Figure 1.c). ESM-1b encodes
properties of protein sequences across different scales. As confirmed in previous research, the model can learn
structures of amino acids, protein sequences, and evolutionary homology solely from sequence data, without
additional biological signals [23]. To measure the degree of speed increase, we randomly select some sequences to
test the prediction time of both USPNet and USPNet-fast (Figure 2.c). It shows the average inference time for the
two methods is roughly the same. However, generating MSA is a demanding task, accounting for approximately
95% of the total processing time. USPNet-fast, by avoiding the need for MSA files and working directly with
amino acid sequences, is significantly faster. We evaluate the performance of USPNet-fast on the benchmark
set and compare it with USPNet (Figure 2.e). On most categories of signal peptides, USPNet-fast is slightly
behind USPNet, but the gap is modest. Notably, for Tat/SPI of both the Gram-positive and Gram-negative groups,
USPNet-fast outperforms the standard USPNet by approximately 2% and 7%, respectively. Hence, when the
MSA quality is not satisfying, applying USPNet-fast instead of USPNet is preferable. Generally, the fast version
outperforms most previous methods (Figure 2.d) and offers substantial speed benefits.

2.3 Protein language models and LDAM loss improve the generalization of USPNet
In this part, we will discuss the performances of models with different loss functions and embeddings to look

deeply into the reasons why USPNet is universal. We will compare LDAM loss with other commonly-used loss
functions and analyze the performance differences between models with and without MSA and ESM embeddings.
Notably, we employ overall MCC, Kappa, and balanced accuracy for evaluation instead of using MCC over
different classes and organism groups. Because performance across minor classes for some models is remarkably
similar, and these metrics can make overall performance more straightforward and intuitive to display differences.

Before delving into the experiment results, to verify the efficiency of protein language models sequence em-
beddings, we perform visual processing of the embedding vectors on our benchmark data. We extract embeddings
from 4 models and apply UMAP [31] for data dimensionality reduction. UMAP uncovers similarity patterns in
data points with multiple features, allowing us to observe the convergence of data points with high similarity
into clusters when the dimensionality-reduced results are projected onto a two-dimensional plane. For USPNet,
we extract embeddings from the last embedding layer, the result is shown in Figure 3.a. We can observe some
obviously differentiated clusters, and each cluster mainly consists of one type of data, which indicates USPNet
nicely mines the functional features inside the peptide sequences and is efficient in classifying different types of
signal peptides. For the two protein language models applied in our study to build USPNet and USPNet-fast,
we take their output directly for visualization. As these two language models are trained on large-scale protein
data via self-supervised learning, they have learned the structural and functional information of universal protein
sequences. And results show that the models also encode the functional information of signal peptides. At last, to
evaluate the help of protein language models from another perspective, we train a model that removes the embed-
dings of protein language models and remains all other modules, which we call Bi-LSTM. Although Bi-LSTM is
trained on the same data as USPNet, it cannot splendidly discover the pattern of signal peptides and therefore does
not encode much valuable information into its embeddings. We then evaluate the efficiency of different modules
in USPNet by concrete measurable metrics.

We first trained the USPNet model with three loss functions: cross-entropy function, focal loss, and LDAM
loss [32]. The other two introduced here are for better comparability to display the advantages of LDAM loss. The
hyperparameters of loss functions are chosen manually according to multiple runs. In Figure 3.b, by analyzing
the results of experiments, it is clear that LDAM loss allows for maximum gains in improving the accuracy of
predictions. With the same model architecture and ESM embedding, the LDAM ESM model trained based on
LDAM loss reaches the MCC of 0.93, which is 1.8% higher than the Focal loss and 2.6% higher than cross-
entropy loss, respectively. In addition, we try to apply the deferred re-balancing training procedure proposed with
the LDAM Loss (LDAM-RW). However, when training the signal peptide predictor, the LDAM-RW algorithm
cannot help gain benefits. Instead, we propose to directly apply the combination of LDAM Loss and class-balanced
loss[33], called CB-LDAM loss. Except for baseline loss functions, we used focal loss and cross-entropy loss with
reweighting for comparison. We manually give different weights according to the frequency of different signal
peptide labels to enhance generalization. And these manual reweighting factors are acquired based on the results of
multiple runs. Results show that class-balanced reweighting from the start will help models make further progress.
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Figure 3: Embedding and ablation study performance analysis of USPNet compared to alternative models.
a. 2-D UMAP projection of different embeddings on benchmark data. USPNet embeddings show the same types
of peptides cluster together. Bi-LSTM embeddings are the last layer output of the Bi-LSTM model. Even if it
is trained on SP data, we cannot see clear clusters of different SP types. Both protein language models (MSA-
transformer and ESM-1b) form clusters between different SP types, indicating that they encode some functional
information related to signal peptides. b. Ablation study performance of USPNet: MCC, Kappa, and Balanced
Accuracy of models trained with different loss functions and embeddings. c. ROC curves and Precision-Recall
curves of USPNet and Bi-LSTM on different types of signal peptides prediction. Our model is stable across all 4
kinds of SPs, while Bi-LSTM suffers from the data imbalance problem. d. Comparison of USPNet’s organism-
agnostic performance against SignalP6.0 and SignalP5.0 on the benchmark dataset, when organism group infor-
mation is missing, showcasing comparable performance to SignalP6.0 without obvious performance degradation
and significant outperformance compared to SignalP5.0 across all categories.

Finally, to evaluate the functionality of protein language model embeddings, we add one, two, and three linear
layers, respectively, to integrate information from original ESM or MSA embeddings. The results of experiments
suggest that we get the best results using two layers. And the reason for the decline in performance with more
layers may be overfitting. It is clear that the model can acquire continuous improvement by integrating information
from state-of-the-art embeddings. Compared with the ESM embedding, the MSA embedding further improves
the overall performance of the model. Besides, we also remove the MSA or ESM embeddings to evaluate the
performance of Bi-LSTM. Specifically, we take AUCROC and AUCPR to make the comparison (Figure 3.c).
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USPNet behaves steadily on all types of signal peptides and keeps the value of AUROC above 0.9 and AUPRC
above 0.8. Interestingly, the lowest performance is seen in class Sec/SPI, which indicates USPNet’s excellent
performance for minor classes. But when we look into the Bi-LSTM, it shows that the performance is extremely
poor on type Sec/SPI. One reason is that we set the weight of the minor classes at a high level, making the model
inclined to predict the signal peptides as minor classes. However, if we do not set the weights, the model can
suffer from data imbalance problem [29], compromising its ability to identify these minor classes. In summary,
the protein language models boost the generalization, while our loss function strategically shifts the model’s focus
towards minor classes. Working in unison, these factors enable USPNet to classify signal peptides precisely and
resolve the data imbalance.

2.4 USPNet is robust against the organism-agnostic experiments
The previous results indicate USPNet is able to make predictions that outperform other previous models in

classifying signal peptide types, especially in the minor classes. To further tap the group-information-independent
capacity of USPNet, in this part, we carry out organism-agnostic classification.

Most previous proposed signal peptide prediction tools, including SignalP5.0 [16] and TargetP2.0 [29] rely on
extra group information of sequences to enrich embeddings and boost their performance. Typically, this involves
incorporating a one-hot embedding vector with a specific number of dimensions corresponding to group origins
into the model. However, in the context of metagenomic research and various other applications, obtaining group
information for all sequences is not practical. It is thus essential to develop methods capable of accurately pre-
dicting signal peptide types using solely amino acid sequences. In the following experiment, we still utilize the
benchmark dataset, but remove the organism group information. Specifically, group information is missing in the
input for USPNet. We also include the retrained SignalP5.0 for comparison since SignalP6.0 does not rely on
group information [17]. For SignalP5.0, we input randomized group information instead because it does not sup-
port blank input of group information. The performance is assessed using the Matthews Correlation Coefficient
(MCC2).

As depicted in Figure 3.d, remarkably, USPNet’s performance, in general, remains high and exhibits no signif-
icant degradation in signal peptide detection without group information. A comparison of the overall performance
(multi-class MCC) between the three models reveals that USPNet still behaves the best when missing group in-
formation. This demonstrates the resilience and adaptability of USPNet in scenarios where group information is
unavailable.

Conversely, SignalP5.0 experiences a substantial decline across all categories when group information is ab-
sent. Specifically, SignalP5.0 displays a notable decrease of 0.155 in its multi-class MCC when without group
information. The signal peptides of minor classes concentrate on Archaea, Gram-Negative, and Gram-Positive
groups, which suffer the most when group information is missing.

One reason for the robust performance of USPNet is that protein language models [23, 24] applied in USPNet
are able to encode protein sequences into a high-level feature space and represent biological variation. The two
models take advantage of enormous protein data and learn structural/functional properties as well as evolutionary
information. The representations will possibly substitute for the formerly mentioned group embedding. With
our manipulation that concatenates MSA/Evolutionary Scale Modeling (ESM) embeddings with the Bi-LSTM
embeddings, USPNet is turned into an organism-agnostic model to handle the universal database reliably. What’s
more, USPNet has the potential to serve as an end-to-end model to directly get results based on residue-level
sequences from unknown origins, which can be beneficial for typical cases of metagenomic data.

2.5 USPNet has impressive generalization ability and works well on domain-shifted data
Performance of USPNet on the rigorous non-retrospective independent test set

USPNet performs well on the benchmark set and does not rely on group information. However, sound perfor-
mance may be expected on account that it is done in the same domain as the training set. In order to verify our
model’s robustness in a domain-shift dataset, we first curate an independent test set, called SP22, with stringent
criteria to ensure its differentiation from our training dataset (40% sequence similarity, published after November
2020, i.e., the date of benchmark dataset collection, and so on, see Methods). SP22 comprises 43 protein sequences
from 39 species, which are largely absent from the training set, with each sequence containing a signal peptide.
Among them, 31 are from Eukaryotes group, 6 are from Gram-negative group, and 6 are from Gram-positive
group.
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Figure 4: Performance of USPNet on domain-shift data. a. The rigorous non-retrospective SP22 indepen-
dent dataset performances of different models on sequences from Eukaryotes, Gram-Negative, and Gram-Positive
groups. b. Scatter plot of the prediction of USPNet and SignalP6.0 on the SP22 dataset. USPNet can retrieve the
signal peptides in both very short and long proteins. c. Escherichia coli (strain K12) proteome-wide prediction
performance of USPNet. It accurately classifies almost all proteins. d. The UniProt labels and USPNet prediction
results’ matching conditions on the complete proteome data of Escherichia coli (strain K12). e. Cladogram of
species tree of all the 193 reference proteomes with experimentally verified SPs. The annotation rings from inner
to outer are: 1) prediction results of USPNet and SignalP6.0; 2) organism group of proteins; 3) detailed organism
of proteins; 4) length of signal peptides.
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We analyze the performances of USPNet as well as SignalP6.0 and SignalP5.0 on the SP22 dataset to see if our
model works well on domain-shift data. We collect the results of SignalP6.0 and SignalP5.0 by feeding sequences
into their web servers. USPNet correctly identifies 28 Eukaryotes SP sequences, which is better than SignalP6.0
and SignalP5.0, as Figure 4.a shows. For groups of Gram-negative and Gram-positive, USPNet correctly identifies
all 6 Gram-negative SP sequences and 6 Gram-positive SP sequences, while both SignalP6.0 and SignalP5.0
mispredict one SP sequence for each organism group. We then analyze the misclassified protein sequence made
by the two models (Figure 4.b) and find that USPNet can correctly predict the SP type of two particularly long
protein sequences, one with a length of 5206 in the Gram-negative group and one with a length of 2178 in the
Gram-positive group, while other models can not. Additionally, USPNet can classify the shortest sequence in
the SP22 dataset, with a length of 36 from the Eukaryotes group. The results demonstrate that USPNet is able
to handle proteins with various lengths, while previous methods have exhibited limitations in this aspect. The
performance on the SP22 further unveils the advantages of USPNet in learning features of data from various
sources with minor-class labels and the ability to make unbiased predictions.

USPNet retrieves most SPs on proteome-wide data

Besides the independent test, we want to evaluate if USPNet is effective with the case study for species.
Consequently, we examine the proteome-wide prediction performance of USPNet in Escherichia coli (strain K12)
as well as other 7 organisms and compare it with the benchmark model, SignalP6.0. The data we selected comprise
the entire set of proteins that can be expressed by an organism. To ensure accuracy in subsequent classification,
we demand high-resolution cleavage site prediction. Despite the variability in protein lengths, our restricted input
makes USPNet focus on analyzing the N-terminus of a sequence and therefore alleviates the influence of long
proteins. Moreover, the attention mechanism enables the holistic analysis of the input sequences and thus makes
USPNet performs meticulous detection.

We further assess the proteome-wide performance using the well-annotated proteome of Escherichia coli
(strain K12) (Figure 4.c). Out of the 141 experimentally verified SPs, 125 are Sec/SPI, 6 are Sec/SPII, and 10 are
Tat/SPI SPs. USPNet successfully detects all 141 experimentally verified SPs. Out of them, USPNet accurately
predicts 123 out of 125 SPs as Sec/SPI type and precisely predicts all 16 SPs from Sec/SPII and Tat/SPI type. As
one of the most advanced methods, SignalP6.0 also predicts all SPs from strain K12.

Besides the experimentally verified signal peptides, we also apply USPNet to the complete proteome-wide
data of Escherichia coli (strain K12). Specifically, we use the reference proteome with Proteome ID UP000000625
[34], which includes the complete genome sequence of Escherichia coli K-12, as the dataset for our study. The
dataset contains 4403 protein sequences. Among them, 3907 are annotated as NO-SP and 496 are annotated as SP
by UniProt. USPNet predicts 3734 proteins as NO-SP and 669 as SP. The detailed matching information is shown
in Figure 4.d, before ‘/’ is UniProt’s annotation, and after ‘/’ is USPNet’s prediction. ‘SP/SP correct type’ means
the type of predicted SP is the same as the annotation, while ‘SP/SP incorrect type’ means the predicted SP type
and annotation are different. Notably, most of the prediction results are matched with the annotations, and only
around 6% are inconsistent. However, it is difficult to verify the correctness of the result because some annotations
in UniProt are automatic annotations provided by existing prediction tools. In other words, some of them are not
experimentally verified. Nonetheless, USPNet’s genome-scale predictions yield estimates of plausible results.

For other reference proteomes from 7 different organisms, the UniProt database reports 52 experimentally
verified SPs. USPNet shows a strong performance that seeks out 51 experimentally verified SPs, with only one
miss prediction in Bacillus subtilis. However, in comparison, SignalP6.0 makes 3 false predictions for experi-
mentally verified SPs from Bacillus subtilis. We then reconstructed the phylogeny of all proteins and obtained
the unrooted tree, which is annotated with the prediction results (Figure 4.e). The incorrect predictions made by
both models are all proteins from Gram-positive bacteria. The result shows the effectiveness of USPNet in find-
ing out proteome-wide signal peptides across different organisms with greater accuracy than previous methods.
The near-perfect performance demonstrates USPNet can potentially handle the annotation of proteomes with high
confidence when there is no experimental validation.
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Figure 5: The exploration of metagenomics data for signal peptide discovery. a. Schematic representation
of the USPNet pipeline for novel signal peptide discovery in metagenomics data. 347 novel SP candidates were
identified. b. Pie charts depicting the distribution of 3,881,170 protein sequences predicted by USPNet that
contain signal peptides, categorized by predicted SP types (left) and organism groups (right). c. Sequence logo for
347 novel signal peptide candidates (top), as well as 16 artificial novel SPs (bottom). Two sets of peptides exhibit
a similar residue distribution. d. Visualization of the alignment between select proteins and their predicted signal
peptides, accompanied by RMSD and pLDDT values; the majority exhibit alignment with the predicted novel
SPs. e. Distribution of the highest sequence and structure similarity between 347 candidates and 4 experimentally
verified SPs mentioned in our study to that in the training dataset. The sequence identity hit a low of only 13%,
but the structural similarity is strikingly high, with TM-scores mostly above 0.8. And 3 pairs of sequences, one
with maximum sequence similarity, one with minimum sequence similarity, and a random one, are sampled and
aligned. They have analogous structures.
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2.6 USPNet enables the discovery of novel SPs based on structural information with
extremely low sequence similarity

The benchmarking exhibits that USPNet enables high-resolution signal peptide prediction, and drastically im-
proves performance on the minor classes compared with previous methods. Besides, the proteome-wide research
demonstrates our method effectively detects the SPs from the proteomes of various organisms. Moreover, in the
organism-agnostic experiment, the performance of USPNet seems to be group-information-independent. All the
above studies provide evidence that USPNet has the potential to discover SPs from multiple sources of data. One
of the most preliminary data for research is metagenomics. However, previous works have not shown that they can
efficiently detect SPs or even novel SPs from original metagenomics data. At the same time, no standard pipeline
is available for signal peptide discovery from metagenomics cohorts. Therefore, we would like to evaluate if UP-
SNet is applicable in real-world metagenomics research and explore the pattern of USPNet in recognizing SPs. In
this section, we build a complete pipeline from collecting metagenomic data to make novel signal peptide detec-
tion. The pipeline is shown in Figure 5.a. We studied the swine microbiome, which has a complex community
structure. And its constituent microbes, especially those in the gut, could employ many functional proteins like
AMPs [35] to help compete for resources or stabilize the community structure. Many of these proteins are likely
dependent on signal peptides for their functionality, providing an adequate resource for finding SPs.

Here we collect the swine gut metagenomic data from five projects and resources. In total, we have 14027
genomes, which are used to predict ORF sequences. To generate high-quality protein sequences, we first inte-
grate fastp [36] as a quality controlling tool and utilize PLASS [37] to assemble nucleotide sequences to protein
sequences, which leads to 40,391,320 sequences. Then, considering the amount of data as well as the time cost,
we apply USPNet-fast to recognize signal peptides on all sequences. As a result, 6,407,575 are predicted as signal
peptides (c Signal peptides). The total running time of USPNet-fast for completing all predictions is 211,932
seconds. To avoid some potential false positives, we remove the genomes that are without organism group infor-
mation, and the known signal peptides are also removed. Then, we get 3,881,170 sequences. The distribution of
3,881,170 protein sequences according to predicted SP types and group information is shown in Figure 5.b. The
majority of sequences come from gram-negative bacteria. Sec/SPII type SPs are predicted to be the most frequent
in both Gram-negative and Gram-positive bacteria and second frequent in Archaea. Sec/SPI type SPs are predicted
to be the most frequent in Archaea.

Given the known effect of signal peptides in directing the transfer of synthesized proteins to the secretory
pathway, we further select sequences that are likely expressed to proteins/peptides. We accomplish this by identi-
fying the same peptides in swine gut metaproteomics data, and eventually identify 347 sequences. Besides novel
peptides, our method also retrieves all the 4 experimentally verified signal peptides that exist in swine gut data
but do not exist in the previously mentioned datasets (Table 2). The evidence shows their exhaustive functions
in controlling protein secretion and translocation, which belong to different families and play a part in different
organisms. Therefore, our comprehensive filtering guarantees all 347 peptides are novel in comparison with ex-
perimentally verified SPs. We compare them with 16 artificially designed and synthesized novel SPs, which have
various compositions in the h-region and are validated to improve the secretion [38], by logo plot (Figure 5.c).
Notably, our candidate peptides show similar motifs to these novel signal peptides: the second and third places
are dominated by lysine. For the rest of the positions, alanine and leucine take first place. The similarity between
these sequences indicates they may have homologies. We also applied USPNet on these 16 novel SPs. It precisely
classifies all their types and cleavage sites. To look for further evidence that our discovered peptides are probably
SPs, we search in the UniProtKB [39]. It shows that 1,715 proteins contain these peptides with a confident label
ECO:0000256 (automatic annotation), demonstrating that they are automatically classified as signal peptides by
the database with high confidence, 10 most frequently occurring sequences of 347 predicted novel signal peptides
are provided in Table 2. The most often seen sequence is WP 008666378.1 (NCBI ID), which appeared 179
times, about one-tenth of all proteins. In total, we have 281 peptides that appeared in the 1715 sequences. We then
choose some of these proteins and predict their 3-D structure using Alphafold2 [40]. Thereafter, we align them
with their corresponding predicted signal peptides (Figure 5.d). Prominently, the N-terminus sequences of these
proteins are mostly well-aligned with our predicted novel SPs. Meanwhile, the structural connection between
such sequences and their subsequent sequences does not seem very strong. It signifies that these N-terminus se-
quences are more likely to be deleted or replaced when functioning, which coincides with how signal peptides
work. Finally, our analysis reveals that the maximum sequence identity between our candidate peptides and the
closest signal peptides (SPs) in the training dataset is merely 81.8%. The majority exhibits less than 60% similar-
ity, with the lowest similarity being only 13%. However, their structures have a remarkable likeness, the average
TM-score is above 0.8. We further perform structural alignment on 3 pairs of sampled sequences with the highest
similarity value, the lowest similarity value, and the random one (Figure 5.e). These results further underscore the
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Table 2: Top 10 most frequently occurring predicted signal peptide sequences in 1715 proteins (Novel SP can-
didates), and some experimentally verified SPs that we figure out from swine gut metagenomics data. (Seq-sim:
highest sequence similarity value in the reconstructed training set, TM-score: highest structure similarity (TM-
score) value in the reconstructed training set)

Novel SP candidates
protein ID (NCBI) Predicted SP Count Evidence
WP 008666378.1 MNKKFLSAILFGALMVSSTGT 179

ECO:0000256
Automatic assertion
according to
sequence analysis.
SAM:SignalP

WP 008661887.1 MNKKFLSVILFSALMVGTAGT 102
ABG29383.1 MKKTLVSALTTALVVGAASTTFA 61
WP 009145071.1 MKKSLVLAMAMALGVTASA 49
WP 005825009.1 MNLNFRRTALLVGICSAVSLTYTPQLFA 32
WP 006847594.1 MRRLTLLLVSLVLLSIQSVLA 32
WP 006846852.1 MKHLKQFLLMAMLLFTLAPLQVSA 30
WP 006848777.1 MKKIAILSLSLTLAAAAQA 28
WP 006846306.1 MYQQLKRASMALTLSSVCFLAFA 27
WP 005844474.1 MIKKLYLPLVALLVLALSS 26
Experimentally Verified
Entry (UniProtKB/Swiss-Prot ID) Predicted SP Evidence Seq-sim TM-score
P02768 MKWVTFISLLFLFSSAYS [41] 0.222 0.990
P28800 MALLWGLLALILSCLSSLCSAQ [42] 0.35 0.902
Q2UVX4 MKPTSGPSLLLLLLASLPMALG [43] 0.381 0.709
Q3MHN5 MKRILVFLLAVAFVHA [44] 0.125 0.961

structural homology between our candidate peptides and specific signal peptides. Our method takes raw amino
acid sequences as input and does not rely on structural information. However, the discovered candidates seem to
have been screened out based on structural similarities. To further test our hypothesis, next, we look into the 4
verified SPs. Our original training set contains SPs exhibiting over 60% similarity to these verified SPs. To ensure
USPNet detects SPs without depending on sequence similarity, we exclude SPs from the training set with more
than 40% sequence identity to 4 verified SPs and retrain our model. This time, our model is still able to detect all
4 SPs, which on average, have quite high structural similarities to the training set (Table 2). The literature-based
evaluation and database search results show that our USPNet is scalable to large amounts of data. Although it is a
sequence-based method, it can discover peptides that have low sequence identity but high structure resemblance,
which shows that our method has learned to represent protein folding information without any related inputs at a
relatively ideal speed. It may potentially help to screen signal peptides from metagenomics data and discover SPs
that differ significantly from what is currently known.

3 Discussion
We develop USPNet as a deep-learning method focusing on resolving the existing long-tail data distribution

problem and group-information dependency in signal peptide prediction. To solve the data imbalance, we first
include LDAM, which is orthogonal to most deep-learning-based signal peptide predictors. As the single loss
function has limited effects Based and considering the feature of LDAM, we propose to combine class-balanced
loss and LDAM loss together in our method, which we named CB-LDAM loss to enhance the generalization
of boundaries of minor classes and major classes. Furthermore, the developed protein language models incor-
porate rich evolutionary and structural information and have shown their excellent abilities to improve plenty of
downstream tasks. Therefore, we propose to introduce MSA transformer and ESM embeddings to achieve an
end-to-end organism-agnostic model. Finally, we present a new model architecture. The attention-based BiLSTM
model allows for maximizing the possibilities to integrate and extract relationships among different positions of
inputting sequences and helps boost performance.

Although comprehensive experiments have verified that the integration of all these techniques can achieve
better performance in signal peptide prediction compared with state-of-the-art methods, our result on recognizing
Sec/SPI signal peptide of Archaea is not that impressive. We suppose the reason for this phenomenon is our loss
function adjusts the weight of different types of SPs, and hence makes USPNet tend to classify peptides into minor
classes. During real-life usage, to make the model more focused, we recommend that users can tune the weights
of different types according to their demand.

As previously highlighted, we develop a complete pipeline to discover novel signal peptides from metage-
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nomics data. The reason we choose USPNet-fast for the study is the multi-sequence alignment can be time-
consuming, making it impossible to finish the large-scale screening in a reasonable time. The 347 candidate novel
SPs are available as an open science resource. Potentially, new signal peptides may be used to improve the se-
cretion efficiency of heterologous proteins. We provide a paradigm for the discovery process, and it is easy to
reproduce. Besides swine gut data we used in our study, other resources like the human gut and cardiac tissue are
also signal peptide reservoirs. We expect our pipeline can give new insights into the related research.

Apart from signal peptide prediction, data imbalance, and object—dependence is very common in biological
prediction problems. Our model-developing strategy can be transferred to more general fields of bioinformatics
[45, 46, 47, 48, 46, 49]. In summary, USPNet represents a widely applicable framework for predicting signal
peptides or even protein sequences. Considering the fact that it can be integrated with other tools in a pipeline, we
believe USPNet will be helpful to investigate a wide range of signal peptide problems.

4 Methods

4.1 Data collection
We collected, in total, four kinds of datasets in our study, including benchmark data, independent dataset,

proteome data, and metagenomic data.

Benchmark data

The training and benchmark test set is the same as introduced in SignalP6.0 [17], which reclassified some
SP types for data published with SignalP5.0 [16]. Further, it added some new SPs from UniProt20 [50] and
Prosite21 [51], and new soluble and transmembrane proteins from UniProt and TOPDB22 [52]. Then, part of the
data in the new dataset was removed with the homology partitioning methodology introduced by Gı́slason et al.
[53]. In total, the training data contains 13679 sequences, and the benchmark test data contains 6611 sequences.
The original training dataset comprises proteins from four organism groups: Eukaryotes, Gram-positive, Gram-
negative bacteria, and Archaea. To verify the effects of better generalization on minor classes, we carry out
five separate SP types: Sec/SPI, Sec/SPII, Tat/SPI, Tat/SPII, and Sec/SPIII SPs. Other proteins are accordingly
considered as TM/Globular (NO-SP) type, as shown in Table 1. The dataset with 6 separate labels has a long-
tailed label distribution, which means that the NO-SP type is superior in numbers among different labels. Notably,
there are three minority class SPs: Tat/SPI contains 365 data points, and even worse, only 33 data are labeled as
Tat/SPII signal peptides, and 70 are labeled as Sec/SPIII signal peptides. In both training and benchmark sets, the
length of the protein sequences can be varied. However, the lengths of signal peptides usually fall in 10-50 AAs
(Figure 2). We thus set a cut-off at 70 AAs to highlight signal peptides and avoid the influence of the long protein
sequences.

Independent test set

The independent test dataset we curated is named SP22. It collected verified SP proteins from the Swiss-
Prot database [50], which was released after November 2020, i.e., the date of SignalP 6.0 dataset collection.
Specifically, it is generated in the following steps: (1) we remove proteins before November 2020, and proteins
composed of less than 30 amino acids; (2) we select those from eukaryotes, Gram-positive and Gram-negative
bacteria; (3) we select proteins containing signal peptides with a confident label ECO:0000269 (experimental
annotation) and ECO:0000305 (manually curated annotation) from the Swiss-Prot database (released on 2022
04). Furthermore, to better ensure the independence of the SP22 dataset, CD-HIT [54] is applied to remove
redundant proteins sharing more than 40% similarity with proteins in SiganlP6.0 dataset, and internal redundancy
of SP22 is cut off to 80%. In total, SP22 has 43 protein sequences from 39 species that seldom appeared in the
training set, and all of the sequences have signal peptides. Among them, 31 are from Eukaryotes group, 6 are from
Gram-negative group, and 6 are from Gram-positive group.

Proteome-wide data

We collect reference proteome data from UniProt database. For Escherichia coli (strain K12), UniProt reports
496 proteins with signal peptides, 141 of which are experimentally verified and 355 predicted in various ways. Ex-
perimentally verified SPs are collected as signal peptides with a confident label ECO:0000269 and ECO:0000305
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from the Swiss-Prot database (released on 2022 04) for all proteomes. We also study other 7 reference pro-
teomes available in UniProt, including Bacillus subtilis, Corynebacterium glutamicum, Deinococcus radiodurans,
Haloferax volcanii, Methanocaldococcus jannaschii, Pyrococcus furiosus, and Thermus thermophilus.

Metagenomics data

We collect metagenomes of swine gut from five resources: PRJEB38078 [55], PRJNA561470 [56], PR-
JNA647157 [57], CNP0000824 [58], and Global Microbiome Conservancy (GMBC) [59]. They are used for
predicting sORF sequences. And to ensure that our sORFs are indeed expressed, we used a metaproteome dataset
from PRIDE project PXD006224 [60]. We select sequences that are identical to our predicted signal peptides.

4.2 Establishment of USPNet
Considering the length of signal peptides in protein N-terminus, we set a cut-off as 70 to the input sequence

length of protein L, which means that each input sequence contains at most 70 amino acids. Considering the
number of different residue types is 20, we employ an embedding layer to extract features and therefore convert
input sequences into the L×20-dimensional matrix. At the same time, we use one-hot encoding to express 4 kinds
of group information (Eukaryotes, Gram-positive, Gram-negative bacteria, and Archaea) of the input sequence
using 4 binary numbers. Then, we replicate them, converting input auxiliary sequences into the L×4-dimensional
matrix. If there is no provided group information, all entries are designated as 0.

For USPNet, the model architecture comprises two key components: the BiLSTM-attention model and the
feature extraction module to predict both signal peptide type and cleavage sites.

BiLSTM module

We first describe the BiLSTM module. It gets the L×20-dimensional embedding vectors of protein sequences
and feeds them into one fully connected layer with 252 hidden units. The output of the fully connected layer
has two usages. First, it is passed to two CNN layers to generate L×512-dimensional representations for future
use. The CNN can capture the important motifs and aggregate both useful local and global information across the
entire input sequence. Second, the output is concatenated with the auxiliary matrix to form the L×256-dimensional
matrix as the input to the BiLSTM layer. It is with 128 hidden units to extract long-distance dependencies of
sequences over forward and backward directions. In this way, we integrate information from input sequences at a
higher level for later prediction by concatenating the outputs of two directions, which can be written as:

ht = [
−→
h t;
←−
h t]

= BiLSTM
(
ex

i

,
−→
h t−1,

←−
h t+1, θCls

)
,

(1)

where
−→
h t and

←−
h t denote hidden states at time point t over forward and backward directions, respectively. ex

i

de-
notes the embedded representation of the input sequence element xi. θCls denotes the parameters of the BiLSTM
layer. The BiLSTM layer takes the embedded input ex

i

, the forward hidden state
−→
h t−1, the backward hidden

state
←−
h t+1, and the parameters θCls as input and outputs the concatenated hidden states ht. The BiLSTM layer

outputs 256-dimensional vectors.
To better aggregate information from different feature subspaces, we develop a multi-head attention mecha-

nism in the BiLSTM module, with the scaled dot-product attention in each head:

Attention(Q,K, V ) = softmax(QKT

√
dk

)V, (2)

where 1√
dk

is the scaling factor, and dk is the dimension of the queries and keys. We conduct Equation (2) in each
head and concatenate the multiple single-headed outputs together:

MultiHead(Q, K, V) = Concat ( head 1, . . . , head h)W
O,

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

) (3)

Where the projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv ;

Q is the output from the previous BiLSTM layer; both K and V are the same as the input to the BiLSTM layer.
And h represents the number of heads. We employ h = 2 to form the parallel attention layers. For each head, we
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use dmodel = 256, dk = dv = dmodel/h = 128. Within the multi-head attention module, we employ a residual
connection step to stabilize training and help mitigate the possible vanishing gradient problem. The output of
the multi-head attention module is further concatenated with its input, and then element-wise added with the
representations of previous CNN layers. After that, the vector is finally fed into the second BiLSTM layer with
256 hidden units.

To predict the cleavage site, we build a three-layer MLP on top of the second BiLSTM layer. The output
of BiLSTM is hence fed into three fully connected layers to produce the L×11-dimensional matrix. The 11-
dimensional vectors correspond to SP region labels, with 10 SP region labels for each amino acid in protein
sequences and 1 annotation for vacancies of input sequences with lengths less than 70. The output matrix is used
to directly predict the presence of cleavage sites across all positions of amino acids of input protein sequences.

Further, the output of the second BiLSTM layer is also used to predict signal peptide types. The output
vector is reshaped and first goes through one fully connected layer to reduce its dimensionality and result in a
512-dimensional vector. Meanwhile, we include MSA embeddings here to integrate more information. The pre-
trained MSA Transformer model [24] generates 768-dimensional embeddings, and we use fully connected layers
to aggregate high-level information about these embeddings as a 64-dimensional vector. The processed results are
concatenated with the vectors from previous outputs of the fully connected layer. The concatenated results hence
have 512+64 channels and are summarized by a fully connected layer with 256 hidden units. Finally, the outputs
are forwarded to a normalized linear projection layer to make the prediction.

Loss function designed for the data imbalance problem

Most existing knowledge bases related to signal peptides suffer from extreme data imbalance. The number of
the minority classes of signal peptide sequences is usually much smaller than that of non-signal-peptide sequences.
This scenario may lead to poor generalization in low-resource data types. Existing techniques, such as cost-
sensitive re-sampling and re-weighting, can effectively cope with challenges brought by data imbalance. How-
ever, for the signal peptide prediction, these methods are case-sensitive and prone to overfitting. Post-correction
methods are also proposed to handle data imbalance, but generalization improvement cannot be ensured. In-
spired by the vanilla empirical risk minimization (ERM) algorithm, we introduce LDAM loss and combine it with
reweighting to solve the issue.

LDAM loss focuses on correcting the cross-entropy function by introducing the margin item △y to improve
the generalization of classes. It suggests that a suitable margin should achieve good trade-offs between the gener-
alization of major classes and minor classes. The class-dependent margin for multi classes is verified to have the
form:

△yj =
C

n
1/4
j

, (4)

where nj is the sample size of the j-th class, C is a hyper-parameter to be tuned.
However, the margin item has changed the amplitude of logits of the correct category and influenced gener-

alization, which adds up to the difficulties of representation learning and makes the model sensitive to parameter
settings. Here, we introduce agent vectors for each class by applying a normalized linear layer in the final layer of
the classifier [61]. We normalize both the inputs and the weights of the linear projection layer to clamp the inner
product of feature vectors and weight vectors into [-1, 1]. The experiments prove that the normalization can not
only improve the robustness of the model but also accelerate the convergence during the training process.

Empirically, softmax cross-entropy loss with scaling factor is widely used in reinforcement learning and rel-
evant fields [62]. On the one hand, if the scaling factor is too large, class intervals will become close to 0 and
therefore influence generalization. On the other hand, a small scaling factor will lead to a deviation from the
objective function. Here in our method, a scaling factor is used as a hyper-parameter to ensure the final logits
locate in a reasonable scope:

L(x, y) = − log

 e
(zy−△y)

s

e
(zy−△y)

s +
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i̸=y e
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 , (5)

where
△j =

C

n
1/4
j

for j ∈ {1, ...,K}, (6)
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zy denotes the logit score of the ground truth label, zi denotes the logit score of other labels, and s represents the
scaling factor. Both zy and zi are normalized as agent vectors.

The final objective function optimizes signal peptide prediction and cleavage site prediction jointly:

Ls = −
1

N

N∑
j=1

K∑
y=1

L(xj , yj), (7)

Lc = −
1

N ∗ L

N∗L∑
j=1

K′∑
y=1

L(xj , yj), (8)

Luspnet = Ls + τLc, (9)

where τ = 1. Ls denotes the objective function for signal peptide prediction, where the number of classes
K = 6. And Lc denotes the objective function for cleavage site prediction, where the number of region labels
K ′ = 11. N is the number of input protein sequences, and L is the maximum length of the input sequence set as
70.

Protein language models to enrich representations

Compared with other protein language models, the MSA transformer [24] makes the best of the powerful
model architecture and large evolutionary database. In addition, self-supervised learning is good at encoding
properties of protein sequences in many different scales, which contributes to the high performance of the model.
It is verified that without biological signals other than sequences, the model can still learn the structures of amino
acids, protein sequences, and evolutionary homology [23]. Furthermore, the generalization of the model trained
over multi-families is better than the effects based on a single family. Accordingly, we believe that by adding the
representation of the MSA transformer, the similarity of sequences within the single group can be captured, and
the USPNet will become more powerful to differentiate sequences from different group organisms.

To apply MSA transformer in our method, we first generated Multi-sequence alignment (MSA) for each se-
quence by searching updated UniClust30[63] with HHblits[64]. And diversity maximizing subsampling strategy[24],
a greedy strategy that starts from the reference and adds the sequence with the highest average hamming distance
to the current set of sequences, is used to reduce the number of aligned sequences to 128 for full MSAs with
the size larger than 128. Then we input MSAs to the pre-trained MSA Transformer model [24] to generate 768-
dimensional embeddings from the final layer of the model.

The other version of our model, USPNet-fast replaces MSA embeddings with ESM-1b embeddings [23].
ESM-1b takes single sequences as input to generate embeddings, so it enables USPNet-fast to predict signal
peptide and cleavage sites faster and without much performance degeneration.

Training details

In USPNet, we apply the Adam optimizer [65] with the initial learning rate of 2×10−3 and a weight decay of
1×10−3 [32]. The total number of epochs is set to be 300, with the early stopping strategy to get the best model
during training. All the experiments run on four V100 GPU cards with 32GB memory. USPNet does not rely
on PSSM and HMM profiles to enrich the embeddings or enhance performances. It is more straightforward to
make predictions without evolutionary profile-based features, therefore ensuring a shorter processing time. For
SignalP6.0 and SignalP5.0, we used the hyperparameters they provided in the code repositories to train the models.

4.3 Performance evaluation
For the taken metrics in the experiments, we summarize them into two components: Metrics used for evalua-

tion of classification performance and cleavage site (CS) prediction performance. For classification, we used the
Matthews correlation coefficient (MCC) as a measurement. We considered true/false positives/negatives by labels
of sequences. MCC can be written as:

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (10)
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where TP denotes the number of true positives, TN denotes the number of true negatives, FP denotes the
number of false positives, and FN denotes the number of false negatives. Here, we include both MCC1 and MCC2
to evaluate the performance and hence compute twice. For MCC1, we only take globular and/or transmembrane
proteins as negative set and proteins of relevant signal peptide type as positive set. And then, for MCC2, all the
rest sequences are added to the negative set.

While in the ablation study, we not only measure classification performance by MCC over different organism
groups but also apply overall MCC, Kappa, and balanced accuracy for evaluation. This is because in the ablation
study part, some models’ performances in minor classes are pretty close, and the overall performances will be more
straightforward and intuitive to display differences. Kappa is broadly used in consistency tests and measurements
of multi-class classification. And considering the extreme imbalance in datasets, accuracy cannot demonstrate the
actual performance of models. Therefore, we take balanced accuracy instead. Balanced accuracy normalizes true
positive and true negative predictions over the total number of samples:

Balanced accuracy =
TPR+ TNR

2
, (11)

where TPR denotes the true positive rate and TNR denotes the true negative rate.
In the CS prediction part, we take precision and recall as measurements. Precision represents the fraction of

correct CS predictions over the total number of predicted CSs, and recall represents the fraction of correct CS
predictions over the number of ground truth labels of CSs. Notably, we do not tolerate prediction deviations; in
other words, only exact site predictions will be considered correct.

To estimate the quality of multiple sequence alignment, the number of effective sequences (Neff) is applied. It
can be calculated as the following function:

Neff =

N∑
i=1

1

weight i

, (12)

where N is the number of sequences in an MSA, and weightij is the sequence identity between any two homolo-
gous sequences i and j in the MSA.

4.4 3-D structure prediction
Considering the computational resource, we apply the ColabFold [66] version of AlphaFold2 to perform the

3-D structure prediction in Figure 5.d and e. Specifically, we set the number of synchronously running models
as 1, and use the amber relaxation to refine the prediction. Other settings remain default. For the visualization
of the structure and the following alignment operation, we utilize Pymol [67]. And because the training set has
a large number of sequences, to save our time, the structure inferences of the training set and 347 candidates
were performed by ESMFold [68], and the TM-scores are calculated by TM-align [69] (the subsequent 3 pairs of
samples structure alignment was still conducted by ColabFold).

5 Data availability
All the datasets we used are listed in the Method part and are publicly available. All other relevant data

supporting the key findings of this study, such as the results of the metagenomics study, are available within the
article and the Supplementary Information files or from the corresponding author upon reasonable request. Source
data are provided in this paper.

6 Code availability
The open source codes of USPNet can be found at https://github.com/ml4bio/USPNet, and the experiments

conducted to produce the main results of this article are also stored in this repository.
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